JP2004071305A - Non-aqueous electrolyte rechargeable battery - Google Patents

Non-aqueous electrolyte rechargeable battery Download PDF

Info

Publication number
JP2004071305A
JP2004071305A JP2002227809A JP2002227809A JP2004071305A JP 2004071305 A JP2004071305 A JP 2004071305A JP 2002227809 A JP2002227809 A JP 2002227809A JP 2002227809 A JP2002227809 A JP 2002227809A JP 2004071305 A JP2004071305 A JP 2004071305A
Authority
JP
Japan
Prior art keywords
negative electrode
aqueous electrolyte
secondary battery
electrolyte secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002227809A
Other languages
Japanese (ja)
Inventor
Masayuki Yamada
山田 将之
Hideyuki Morimoto
森本 英行
Tokuji Ueda
上田 篤司
Shigeo Aoyama
青山 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002227809A priority Critical patent/JP2004071305A/en
Publication of JP2004071305A publication Critical patent/JP2004071305A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high energy density non-aqueous rechargeable battery whose electrode expansion and contraction do not increase, whose electrically conductive network inside the electrodes is not broken, whose capacity does not decrease, and whoseinternal resistance does not increase, even when charge and discharge cycle is repeated. <P>SOLUTION: The non-aqueous electrolyte rechargeable battery has a positive electrode 1, a negative electrode 2 and non-aqueous electrolyte, wherein the negative electrode 2 is constructed using a three-dimensional structure collector on which a film is formed by depositing material containing element that can form alloy with lithium, and thin film formation method as eletroplating method, CVD method, PVD method, sputtering method, thermal spraying method, vacuum deposition method or the like is used for forming the film. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高容量でかつサイクル特性に優れた非水電解質二次電池に関する。
【0002】
【従来の技術】
アルカリ金属を活物質とする電池は、高いエネルギー密度を有する高性能の電池として注目されている。その中でも、リチウム電池は特に高いエネルギー密度を有し、貯蔵性などの信頼性においても優れているため、既に一次電池として小型の電子機器の電源に広く用いられている。また、最近では、小型携帯用電気機器の普及に伴い、充電して繰り返し使えるリチウム二次電池の需要が急増している。
【0003】
このリチウム二次電池の負極材料には、例えば、リチウム金属、リチウム合金又はリチウムを吸蔵・放出可能な炭素材料にリチウムを吸蔵させた炭素質材料などが使用されている。
【0004】
リチウム金属やリチウム合金を負極に用いた非水電解質二次電池では、高エネルギー密度の電池が得られるが、充放電サイクルの進行に伴いリチウムの溶解と析出が繰り返され、その際に析出した活性なリチウムが電解液の溶媒と反応するため、充放電可能なリチウムが失われて負極の充放電効率が低下するという問題がある。さらに、リチウムはデンドライト(樹枝状結晶)として析出するため、そのデンドライトがセパレータを貫通して内部短絡を招く危険性がある。
【0005】
このため、リチウム金属やリチウム合金に代えて、リチウムイオンをドープ・脱ドープすることが可能なコークス又はガラス状炭素等の非晶質炭素、天然又は人造の黒鉛等の炭素材料を負極材料として用いることが行われている。例えば、特開平1−204361号公報、特開平2−66856号公報、特開平4−24831号公報、特開平5−17669公報などには、この炭素材料を負極材料として使用することにより、リチウム二次電池にサイクル耐久性を付与することが記載されている。
【0006】
しかし、上記炭素材料を負極材料として使用した負極の理論容量は、例えば黒鉛では372mAh/gであり、最近の携帯機器用電池における高容量化の要請には不十分である。そこで、最近ではリチウムと合金を形成することが可能な元素であるケイ素(Si)や錫(Sn)等からなる負極材料が注目を集めている。例えば、特開平7−29602号公報には、LiSi(0≦x≦5)を負極材料として用いた非水電解質二次電池が記載されている。
【0007】
【発明が解決しようとする課題】
しかしながら、リチウムと合金を形成することが可能な元素からなる負極材料は、上記のような炭素材料に比べて高容量化が可能であるが、充放電サイクルによる負極材料の膨張・収縮が大きく、これにより負極内の導電性ネットワークが破壊されて容量が著しく低下したり、内部抵抗が増大したりする問題がある。また、負極合剤を金属箔に塗布する従来の方式で作製した負極では、負極材料の膨張・収縮が大きいために負極そのものが厚み方向に大きく膨張し、集電体の集電性能が低下したり、負極自体が湾曲したり、又は電池缶が膨れたりするといった問題が生じる。
【0008】
本発明は、充放電サイクルを繰り返しても電極の膨張・収縮が大きくならず、また電極内部の導電性ネットワークが破壊されず、電池容量が減少したり内部抵抗が増大したりしない高エネルギー密度の非水電解質二次電池を提供するものである。
【0009】
【課題を解決するための手段】
本発明の非水電解質二次電池は、正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、前記負極として、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料を堆積して薄膜を形成した電極を用いることを特徴とする。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0011】
本発明の非水電解質二次電池は、正極と、負極と、非水電解質とを備え、前記負極として、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料を堆積して薄膜を形成した電極を用いている。
【0012】
リチウムと合金を形成することが可能な元素を含有する負極材料を用いることにより、高容量化が可能である。また、リチウムと合金を形成することが可能な元素を含有する材料を薄膜状に堆積させて形成した負極を用いることにより、充放電サイクルに伴う負極材料の微粉化や集電体からの剥離を抑制できる。さらに、三次元構造を有する集電体を用いることにより、あらかじめ電極内に任意の空隙を導入することができ、充放電サイクルを繰り返しても負極の膨張・収縮が大きくならず、また負極内部の導電性ネットワークが破壊されない。
【0013】
リチウムと合金を形成することが可能な元素としては、例えば、ケイ素、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、錫、鉛、アンチモン、ビスマスなどが挙げられる。特に、ケイ素、錫、アルミニウムが材料コストや取り扱い上の観点から好ましい。
【0014】
また、リチウムと合金を形成することが可能な元素を含有する材料は、結晶、低結晶及びアモルファスのいずれの状態であってもよい。また、この材料は、リチウムと合金を形成することが可能な元素の単体、及びそれらの元素を含む合金又は化合物を用いることができる。例えば、ケイ素、錫、アルミニウム、酸化ケイ素(SiO)、酸化錫(SnO)、あるいはケイ素、錫、アルミニウムなどと他の金属の固溶体又は金属間化合物などである。ケイ素やゲルマニウムを含有する材料には、例えばホウ素やリンのドープによりn型あるいはp型の半導体となって電気抵抗が大きく低下したものを用いてもよい。
【0015】
リチウムと合金を形成することが可能な元素を含有する材料を堆積して形成した薄膜は、薄膜形成法により形成されていることが好ましい。これにより、リチウムと合金を形成することが可能な元素を含有する材料と集電体とを強固に固着することができ、充放電サイクルに伴う負極材料の微粉化や集電体からの剥離をより抑制できる。
【0016】
また、その薄膜形成法は、電気メッキ法、CVD法(化学気相蒸着法)、PVD法(物理気相蒸着法)、スパッタリング法、溶射法、真空蒸着法などであることが好ましい。これらによると容易に均一な薄膜の形成が可能となるからである。
【0017】
前記薄膜は、通常均一な薄膜状あるいは微小粒子の集合堆積膜のような形態をなしており、その平均膜厚は、0.1〜100μmであることが好ましく、2〜50μmであることがより好ましい。この範囲内であれば、三次元構造を有する集電体内に適度の空隙を保持しつつ、十分な負極材料を電極内に確保できるからである。
【0018】
また、前記集電体は、発泡状金属又は繊維状金属焼結体から構成されていることが好ましい。これらは、集電性能に優れているとともに負極材料の膨張・収縮に対して大きな抵抗を有しているからである。
【0019】
前記発泡状金属及び前記繊維状金属焼結体は、ニッケル又は銅の少なくとも1種類を含む金属からなることが好ましい。これらはリチウムに対して耐食性を有しているからである。
【0020】
通常、負極の厚さと空隙率の調整は、集電体にリチウムと合金を形成することが可能な元素を含有する材料からなる薄膜を形成したものをプレス等で圧縮して行う。電極作製時にプレスすることにより、電極の厚み方向への膨張に対して膨張抑制力を与えることができ、さらに電極内の空隙の量を任意に設定できるようになるからである。これにより、前記薄膜の膨張・収縮が大きいものとなっても電極の膨張は抑制できる。また、負極の厚さは0.05mm以上が好ましく、より好ましくは0.1mm以上である。この範囲内であれば電極材料の担持量を十分に確保できるので電池容量を大きくすることができる。また、圧縮による空隙率の調整を容易にするなどの実用性を保持するため、負極の厚さは10mm以下とするのが好ましい。
【0021】
また、電解液の含浸を容易にし、電解液を経由するイオン伝導性を高め、電池容量を向上させるため、負極の空隙率は20〜60%とするのが好ましく、25〜50%とするのがより好ましい。なお、空隙率は、空隙の占める体積÷見かけの体積×100で表され、空隙の占める体積は水銀圧入法で測定される。
【0022】
以下、リチウムと合金を形成することが可能な元素に錫を用いた場合を例にして本発明の負極をさらに説明する。
【0023】
負極は、例えば、錫を発泡状金属のシート又は繊維状金属焼結体のマットに電気メッキして得ることができる。次いで、プレス等で圧縮し、厚さと空隙率を調整する。また、錫を発泡状金属のシートや繊維状金属焼結体のマットにスパッタリングや蒸着して作製してもよい。
【0024】
負極中では、発泡状金属又は繊維状金属焼結体が負極材料を縛りつけているので、薄膜材料が充放電サイクルの進行によって膨張・収縮を繰り返すことがあっても、集電体との接触が保持されて負極の内部抵抗の増大が抑制され、また導電性ネットワークが崩壊することがなく電池の初期容量を保持できる。
【0025】
また、この負極は、プレス等で好ましくは9.8〜980MPaの圧力で圧縮してその空隙率を調整することができるので、負極の体積当たりの容量を大きくできる。また、負極中に適量の隙間を確保して電解液を容易に負極内に含浸させることができ、リチウムイオンの拡散に必要な経路が確保されるので、大電流を流したときにも負極材料の利用率が高い。さらに、充電時に前記薄膜が膨張しても、その空隙が膨張体積分を埋め合わせることが出来るため、電極の膨張を抑制できる。
【0026】
上記発泡状金属は、連続した開孔を有する海綿状の多孔体であることが好ましい。これにより、内部抵抗が小さくなり、充放電サイクルを繰り返しても導電性ネットワークが維持されるため内部抵抗の増大も防止でき、さらに電極の膨張も抑制できる。また、発泡状金属の開孔径は、5μm〜1.0mmであることが好ましい。開孔径が5μm以上であると、開孔部への薄膜形成が容易となり、また1.0mm以下であると、集電体である発泡状金属と負極材料との間の平均距離が大きくならず、充放電サイクルに伴う導電性ネットワークの維持が容易となって、容量低下や電極の内部抵抗増加を引き起こすことがなくなるからである。
【0027】
また、発泡状金属の開孔率は、70〜99.5%であることが好ましい。開孔率が70%以上であると、開孔内に負極材料を多く堆積でき、電池の容量を十分確保できる。また、開孔率が99.5%以下であると、発泡状金属の強度が小さくならず、負極材料を縛りつける力を維持できるからである。
【0028】
上記発泡状金属の開孔径の場合と同じ理由によって、繊維状金属焼結体の繊維径(直径)は、1〜50μmであることが好ましい。繊維状金属焼結体としては、短繊維又は長繊維の焼結体が使用される。その開孔率は、発泡状金属の場合と同じ理由によって、50〜95%のものを使用するのが好ましい。
【0029】
本発明の負極に使用される発泡状金属や繊維状金属焼結体の材質は、ニッケル、銅、ニッケル−銅合金、ニッケル−鉄−クロム合金などのリチウムに対して耐食性を有する金属が好ましく使用される。
【0030】
三次元構造を有する集電体にリチウムと合金を形成することが可能な元素を含有する材料を堆積して薄膜を形成するとともに、さらに前記集電体に負極用の導電材を充填してもよい。負極用の導電材は、構成された非水電解質二次電池において化学変化を起こさない電子伝導性材料であれば特に限定されない。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人工黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、炭素繊維、金属粉(銅粉、ニッケル粉、アルミニウム粉、銀粉など)、金属繊維、又は特開昭59−20971号公報に記載のポリフェニレン誘導体などの導電性材料を使用できる。これらの導電性材料は単独でも使用できるが、複数の導電性材料を混合して使用することもできる。
【0031】
一方、本発明の非水電解質二次電池の正極には、従来の塗布方式で形成した電極を用いることが出来る。さらには、アルミニウム、チタニウム、ステンレス(SUS316又はSUS316L)を主成分とする発泡状金属又は繊維状金属焼結体に、リチウムを吸蔵・放出可能な正極材料と導電材との混合物をバインダとともに充填し、その厚さが0.1mm以上で、空隙率が20〜50%であるものを用いることができる。
【0032】
また、リチウムを吸蔵・放出可能な正極材料には、例えば、周期表の4属、5属、6属、7属、8属、9属、10属、11属、12属、13属及び14属に属する金属を主体とする酸化物、複合酸化物、硫化物等のカルコゲン化物、及びこれらの金属を主体とするオキシハロゲン化物が使用される。また、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン、ポリパラフェニレン、又はそれらの誘導体等の導電性高分子材料も正極材料として使用できる。
【0033】
作動電位が高く、リチウムを吸蔵・放出する容量が大きい正極材料を使用することによって電池のエネルギー密度を高くできるので、化学式がLiCoO、LiNiO、LiMnO又はLiMnで示されるスピネル型リチウムマンガン複合酸化物を正極材料として用いるのが好ましい。
【0034】
なお、正極材料は通常粉末状であり、その粉末の粒子径は、電極を作製しやすく、リチウムの吸蔵と放出がスムーズに行われ、かつあまり嵩高くならないように1〜80μmとするのが好ましい。
【0035】
正極は、例えば次のようにして作製される。即ち、正極材料の粉末、導電材及びバインダであるフッ素樹脂からなる混合物に、有機溶媒を加えてスラリーとし、このスラリーを金属箔上に塗布するか、あるいは発泡状金属のシート又は繊維状金属焼結体のマットに塗工し、乾燥して有機溶媒を除去する。次いで、プレス等によって圧縮し、正極の厚さと空隙率を調整する。
【0036】
また、本発明に用いられる非水電解質は、非水系の液状電解質、ポリマー電解質のいずれも用い得るが、一般に電解液と呼ばれる液状電解質が多用されるので、以下、この液状電解質に関して「電解液」という表現で説明する。即ち、非水系の電解液は、有機溶媒と、その有機溶媒に溶解しているリチウム塩とから構成されている。有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、1、2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメチルスルフォキシド、1、3−ジオキソラン、ホルムアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、ニトロメタン、蟻酸メチル、酢酸メチル、燐酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、ジエチルエーテル、1、3−プロパンサルトン、などの非プロトン性有機溶媒の1種又は2種以上を混合した溶媒を用いることができる。また、その有機溶媒に溶解させるリチウム塩としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiAlCl、LiCl、LiBr、LiI、クロロボランリチウム、四フェニルホウ酸リチウムなどの1種以上の塩を用いることができる。中でも、エチレンカーボネート又はプロピレンカーボネートと、1、2−ジメトキシエタン及び/又はジエチルカーボネート及び/又はメチルエチルカーボネートの混合溶媒に、LiClO、LiBF、LiPF及び/又はLiCFSOを溶解させた電解液が好ましい。
【0037】
これらの非水電解質の電池内での使用量は特に限定されないが、電極材料の量や電池のサイズによって必要量を調整することができる。支持電解質であるリチウム塩の濃度も特に限定されないが、電解液1dm当たり0.2〜3.0molが好ましい。この濃度の範囲内であれば、イオン伝導度が低下したり、リチウム塩が析出したりすることがないからである。
【0038】
セパレータとしては、微孔性フィルムや不織布などが用いられるが、その材質としては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィンのほか、耐熱用途として、四フッ化エチレン−パーフルオロアルコキシエチレン共重合体(PFA)などのフッ素樹脂、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリブチレンテレフタレート(PBT)などが挙げられる。
【0039】
本発明の非水電解質二次電池の形状は、コイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型、電気自動車等に用いる大型のものなどいずれであってもよい。
【0040】
【実施例】
次に、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0041】
(実施例1)
負極は次のように作製した。まず、厚さが0.45mmのニッケルの発泡体シート(開孔率90%、平均孔径0.2mm)に約10μm厚の錫皮膜を電気メッキ法により形成した。このシートを直径16mmの円形に打ち抜き、プレスで加圧して、その厚さを0.2mmに圧縮して負極とした。この負極中に含まれる水分を完全に除くため、圧力13Paの減圧下で120℃にて24時間保持して乾燥した。この負極の空隙率は50%であった。
【0042】
次に、正極を以下のようにして作製した。まず、LiMnOの粉末を100質量部、導電材としてカーボンブラックを5質量部、同じく導電材として鱗片状黒鉛を5質量部、バインダとしてポリテトラフルオロエチレンを0.7質量部混合し、乾燥後に直径16mm、厚さ0.1mmのペレット状に加圧成形し、250℃で加熱乾燥して正極とした。
【0043】
セパレータは、ポリエチレン製の微孔性フィルムからなるものを用い、電解液は、エチレンカーボネートとエチルメチルカーボネートの容積比1:1の混合溶媒に、1mol/dmの濃度となるようにLiPFを溶解させたものを使用した。
【0044】
上記負極、正極、セパレータ、電解液を用い、図1に示すようなコイン型非水電解質二次電池を作製した。図1に示すように、正極端子を兼ねる金属外装缶4の開口端部を内方に締め付けることにより、金属外装缶4と負極端子を兼ねる封口板5及びガスケット6とで、正極1、負極2及び電解液を含浸させたセパレータ3を密閉している。なお、電解液の電極等への含浸と電池の封口は、露点がマイナス50℃の乾燥空気雰囲気としたグローブボックス中で行った。
【0045】
上記コイン型非水電解質二次電池を用いて以下の条件で充放電サイクル特性を調べた。即ち、充電は電流密度を0.2mA/cmとして定電流で行い、充電電圧が4.25Vに達した後、1/10の電流密度になるまで定電圧で充電を行った。放電は電流密度0.2mA/cmの定電流で行い、放電終止電圧は2.5Vとした。その結果、1サイクル目の放電容量、50サイクル目の容量保持率は、それぞれ600mAh/g、98%であった。放電容量は錫1g当たりで算出した。また、50サイクル目の容量保持率は50サイクル目の放電容量を1サイクル目の放電容量で割ることによりを算出した。
【0046】
さらに、上記負極と金属リチウムとを組み合わせ、上記と同様の電解液とセパレータとを用いてモデルセルを作製した。このモデルセルを用いて上記負極の厚み変化を調べた。その結果、上記と同じ条件で600mAh/gまで充電した際の負極の厚みは0.22mmとなり、充電前の負極の厚み0.2mmから計算すると、負極の厚みの膨張率は110%であった。
【0047】
(実施例2)
ニッケルの発泡体シートに代えて、プレス前の厚さが0.5mmの繊維状ニッケル焼結体マット(開孔率91%、繊維径20μm)を用いたこと以外は、実施例1と同様にしてコイン型非水電解質二次電池とモデルセルを作製し、同様に充放電サイクル特性と負極の厚み変化を調べた。
【0048】
このコイン型非水電解質二次電池の1サイクル目の放電容量、50サイクル目の容量保持率はそれぞれ600mAh/g、95%であった。また、このモデルセルを用いた負極の充電前後の厚み変化は、600mAh/gまで充電した際の負極の厚みは0.24mmとなり、充電前の負極の厚み0.2mmから計算すると、負極の厚みの膨張率は120%であった。
【0049】
(実施例3)
ニッケルの発泡体シートに代えて、プレス前の厚さが0.6mmの銅の発泡体シート(開孔率96%、平均孔径0.2mm)を用いて作製した負極(厚み0.3mm、空隙率34%)を使用したこと以外は、実施例1と同様にしてコイン型非水電解質二次電池とモデルセルを作製し、同様に充放電サイクル特性と負極の厚み変化を調べた。
【0050】
このコイン型非水電解質二次電池の1サイクル目の放電容量、50サイクル目の容量保持率はそれぞれ600mAh/g、92%であった。また、このモデルセルを用いた負極の充電前後の厚み変化は、600mAh/gまで充電した際の負極の厚みは0.33mmとなり、充電前の負極の厚み0.3mmから計算すると、負極の厚みの膨張率は110%であった。
【0051】
(比較例1)
ニッケルの発泡体シートに代えて、厚さ10μmの銅箔の片面に厚さ0.02mmの錫を電気メッキして作製した負極(空隙率0%)を使用したこと以外は、実施例1と同様にしてコイン型非水電解質二次電池とモデルセルを作製し、同様に充放電サイクル特性と負極の厚み変化を調べた。
【0052】
このコイン型非水電解質二次電池の1サイクル目の放電容量、50サイクル目の容量保持率はそれぞれ600mAh/g、40%であった。また、このモデルセルを用いた負極の充電前後の厚み変化は、600mAh/gまで充電した際の負極の厚みは0.032mmとなり、充電前の負極の厚み0.02mmから計算すると、負極の厚みの膨張率は160%であった。
【0053】
本発明の非水電解質二次電池の負極として、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料を堆積して薄膜を形成した電極を用いることで、集電体が負極材料中に三次元的に広がった状態で負極材料と一体化されるので、前記薄膜の膨張・収縮が大きいものとなっても導電性ネットワークは維持され続ける。また、負極材料と集電体との間の平均距離が小さくなるため、負極の内部抵抗が小さい。したがって、負極材料のほとんどがその機能を発揮することになるため、容量の大きい電池が得られ、大電流にも耐えることができる。さらに、電極内の空隙を三次元集電体のプレス条件により任意に設定できるので、負極材料が膨張しても電極が膨張しない構造を実現できる。
【0054】
【発明の効果】
以上説明したように、本発明では、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料を堆積して薄膜を形成した電極を用いることにより、充放電サイクルを繰り返しても電極の膨張・収縮が大きくならず、また電極内部の導電性ネットワークが破壊されず、電池容量が減少したり内部抵抗が増大したりしない高エネルギー密度の非水電解質二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明のコイン型非水電解質二次電池の断面図である。
【符号の説明】
1 正極
2 負極
3 セパレータ
4 金属外装缶
5 封口板
6 ガスケット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery having high capacity and excellent cycle characteristics.
[0002]
[Prior art]
A battery using an alkali metal as an active material has attracted attention as a high-performance battery having a high energy density. Among them, lithium batteries have particularly high energy densities and are excellent in reliability such as storability, and thus are already widely used as primary batteries for power supplies of small electronic devices. Recently, with the spread of small portable electric devices, demand for lithium secondary batteries that can be charged and used repeatedly has been rapidly increasing.
[0003]
As the negative electrode material of the lithium secondary battery, for example, a lithium metal, a lithium alloy, or a carbonaceous material obtained by storing lithium in a carbon material capable of storing and releasing lithium is used.
[0004]
A non-aqueous electrolyte secondary battery using lithium metal or lithium alloy for the negative electrode can provide a battery with a high energy density.However, the dissolution and deposition of lithium are repeated as the charge / discharge cycle progresses, Since such lithium reacts with the solvent of the electrolytic solution, there is a problem that chargeable / dischargeable lithium is lost and charge / discharge efficiency of the negative electrode is reduced. Furthermore, since lithium precipitates as dendrites (dendritic crystals), there is a risk that the dendrites may penetrate the separator and cause an internal short circuit.
[0005]
Therefore, in place of lithium metal or lithium alloy, carbon materials such as coke or glassy carbon capable of doping and undoping lithium ions, and carbon materials such as natural or artificial graphite are used as negative electrode materials. That is being done. For example, JP-A-1-204361, JP-A-2-66856, JP-A-4-24831, and JP-A-5-17669 disclose the use of this carbon material as a negative electrode material to produce lithium secondary battery. It is described that the secondary battery is provided with cycle durability.
[0006]
However, the theoretical capacity of a negative electrode using the above carbon material as a negative electrode material is, for example, 372 mAh / g for graphite, which is insufficient for a recent demand for higher capacity in a battery for a portable device. Therefore, recently, a negative electrode material made of an element capable of forming an alloy with lithium, such as silicon (Si) or tin (Sn), has attracted attention. For example, JP-A-7-29602 describes a non-aqueous electrolyte secondary battery using Li x Si (0 ≦ x ≦ 5) as a negative electrode material.
[0007]
[Problems to be solved by the invention]
However, although a negative electrode material made of an element capable of forming an alloy with lithium can have a higher capacity than a carbon material as described above, expansion and contraction of the negative electrode material due to charge / discharge cycles are large, As a result, there is a problem that the conductive network in the negative electrode is destroyed, the capacity is significantly reduced, and the internal resistance is increased. In addition, in a negative electrode manufactured by a conventional method in which a negative electrode mixture is applied to a metal foil, the negative electrode itself expands greatly in the thickness direction due to a large expansion and contraction of the negative electrode material, and the current collecting performance of the current collector is reduced. There is a problem that the negative electrode itself is curved or the battery can swells.
[0008]
The present invention has a high energy density in which the expansion and contraction of the electrode does not increase even if the charge / discharge cycle is repeated, the conductive network inside the electrode is not broken, and the battery capacity does not decrease or the internal resistance does not increase. A non-aqueous electrolyte secondary battery is provided.
[0009]
[Means for Solving the Problems]
The non-aqueous electrolyte secondary battery of the present invention is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and as the negative electrode, a current collector having a three-dimensional structure, lithium and An electrode in which a material containing an element capable of forming an alloy is deposited to form a thin film is used.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0011]
The non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.As the negative electrode, a current collector having a three-dimensional structure includes an element capable of forming an alloy with lithium. An electrode in which a material to be contained is deposited to form a thin film is used.
[0012]
By using a negative electrode material containing an element capable of forming an alloy with lithium, high capacity can be achieved. In addition, by using a negative electrode formed by depositing a material containing an element capable of forming an alloy with lithium in the form of a thin film, pulverization of the negative electrode material and separation from the current collector due to a charge / discharge cycle are prevented. Can be suppressed. Furthermore, by using a current collector having a three-dimensional structure, it is possible to introduce arbitrary voids in the electrode in advance, and even if the charge and discharge cycle is repeated, the expansion and contraction of the negative electrode does not increase. The conductive network is not destroyed.
[0013]
Examples of elements capable of forming an alloy with lithium include silicon, silver, gold, zinc, cadmium, aluminum, gallium, indium, thallium, germanium, tin, lead, antimony, and bismuth. In particular, silicon, tin, and aluminum are preferred from the viewpoint of material cost and handling.
[0014]
The material containing an element capable of forming an alloy with lithium may be in any of crystalline, low-crystalline, and amorphous states. As this material, a simple substance of an element capable of forming an alloy with lithium, and an alloy or a compound containing the element can be used. For example, silicon, tin, aluminum, silicon oxide (SiO), tin oxide (SnO), or a solid solution or an intermetallic compound of silicon, tin, aluminum, and another metal. As the material containing silicon or germanium, for example, a material which becomes an n-type or p-type semiconductor by doping with boron or phosphorus and whose electric resistance is greatly reduced may be used.
[0015]
The thin film formed by depositing a material containing an element capable of forming an alloy with lithium is preferably formed by a thin film forming method. As a result, a material containing an element capable of forming an alloy with lithium can be firmly fixed to the current collector, and the negative electrode material can be pulverized and peeled from the current collector during a charge / discharge cycle. More can be suppressed.
[0016]
Further, the thin film forming method is preferably an electroplating method, a CVD method (chemical vapor deposition method), a PVD method (physical vapor deposition method), a sputtering method, a thermal spraying method, a vacuum vapor deposition method, or the like. According to these, a uniform thin film can be easily formed.
[0017]
The thin film is usually in the form of a uniform thin film or an aggregated film of fine particles, and the average thickness thereof is preferably 0.1 to 100 μm, more preferably 2 to 50 μm. preferable. Within this range, a sufficient amount of the negative electrode material can be secured in the electrode while maintaining an appropriate gap in the current collector having the three-dimensional structure.
[0018]
Preferably, the current collector is formed of a foamed metal or a fibrous metal sintered body. These are because they have excellent current collection performance and have a large resistance to expansion and contraction of the negative electrode material.
[0019]
The foamed metal and the fibrous metal sintered body are preferably made of a metal containing at least one of nickel and copper. This is because they have corrosion resistance to lithium.
[0020]
Normally, the thickness and porosity of the negative electrode are adjusted by compressing a thin film formed of a material containing an element capable of forming an alloy with lithium on a current collector by pressing or the like. Pressing during the production of the electrode can provide an expansion suppressing force against the expansion of the electrode in the thickness direction, and the amount of voids in the electrode can be arbitrarily set. Thereby, even if the expansion and contraction of the thin film becomes large, the expansion of the electrode can be suppressed. The thickness of the negative electrode is preferably 0.05 mm or more, more preferably 0.1 mm or more. Within this range, a sufficient amount of the electrode material can be secured, so that the battery capacity can be increased. Further, in order to maintain practicality such as easy adjustment of the porosity by compression, the thickness of the negative electrode is preferably 10 mm or less.
[0021]
Further, in order to facilitate the impregnation of the electrolytic solution, increase the ionic conductivity through the electrolytic solution, and improve the battery capacity, the porosity of the negative electrode is preferably set to 20 to 60%, more preferably 25 to 50%. Is more preferred. The porosity is represented by the volume occupied by the void / the apparent volume × 100, and the volume occupied by the void is measured by a mercury intrusion method.
[0022]
Hereinafter, the negative electrode of the present invention will be further described with reference to an example in which tin is used as an element capable of forming an alloy with lithium.
[0023]
The negative electrode can be obtained by, for example, electroplating tin on a foamed metal sheet or a fibrous metal sintered body mat. Next, it is compressed by a press or the like to adjust the thickness and the porosity. Alternatively, tin may be formed by sputtering or vapor deposition on a foamed metal sheet or a fibrous metal sintered body mat.
[0024]
In the negative electrode, the foamed metal or fibrous metal sintered body binds the negative electrode material, so even if the thin film material repeatedly expands and contracts due to the progress of the charge / discharge cycle, contact with the current collector does not occur. Thus, the increase in the internal resistance of the negative electrode is suppressed, and the initial capacity of the battery can be maintained without disruption of the conductive network.
[0025]
Further, since the porosity of the negative electrode can be adjusted by compressing it with a press or the like at a pressure of preferably 9.8 to 980 MPa, the capacity per volume of the negative electrode can be increased. In addition, the electrolyte can be easily impregnated into the negative electrode by securing an appropriate amount of gap in the negative electrode, and a path necessary for diffusion of lithium ions is secured. Usage rate is high. Furthermore, even if the thin film expands during charging, the voids can compensate for the expansion volume, so that the expansion of the electrode can be suppressed.
[0026]
The foamed metal is preferably a spongy porous body having continuous pores. As a result, the internal resistance is reduced, and the conductive network is maintained even after repeated charge / discharge cycles, so that an increase in the internal resistance can be prevented, and the expansion of the electrode can be suppressed. Further, the opening diameter of the foamed metal is preferably 5 μm to 1.0 mm. When the opening diameter is 5 μm or more, it becomes easy to form a thin film on the opening, and when the opening diameter is 1.0 mm or less, the average distance between the foamed metal as the current collector and the negative electrode material does not increase. This is because the maintenance of the conductive network associated with the charge / discharge cycle becomes easy, and the reduction of the capacity and the increase of the internal resistance of the electrode do not occur.
[0027]
The porosity of the foamed metal is preferably 70 to 99.5%. When the opening ratio is 70% or more, a large amount of the negative electrode material can be deposited in the openings, and the capacity of the battery can be sufficiently ensured. Further, when the porosity is 99.5% or less, the strength of the foamed metal does not decrease, and the force for binding the negative electrode material can be maintained.
[0028]
The fiber diameter (diameter) of the fibrous metal sintered body is preferably 1 to 50 μm for the same reason as in the case of the opening diameter of the foamed metal. As the fibrous metal sintered body, a sintered body of short fibers or long fibers is used. For the same reason as in the case of the foamed metal, it is preferable to use one having an opening ratio of 50 to 95%.
[0029]
The material of the foamed metal or the fibrous metal sintered body used for the negative electrode of the present invention is preferably a metal having corrosion resistance to lithium, such as nickel, copper, a nickel-copper alloy, and a nickel-iron-chromium alloy. Is done.
[0030]
A thin film is formed by depositing a material containing an element capable of forming an alloy with lithium on a current collector having a three-dimensional structure, and furthermore, the current collector is filled with a conductive material for a negative electrode. Good. The conductive material for the negative electrode is not particularly limited as long as it is an electron conductive material that does not cause a chemical change in the configured nonaqueous electrolyte secondary battery. Usually, natural graphite (scale graphite, flake graphite, earth graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder (copper powder, nickel powder, aluminum powder, silver powder, etc.), Conductive materials such as metal fibers or polyphenylene derivatives described in JP-A-59-20971 can be used. These conductive materials can be used alone, or a plurality of conductive materials can be mixed and used.
[0031]
On the other hand, as the positive electrode of the nonaqueous electrolyte secondary battery of the present invention, an electrode formed by a conventional coating method can be used. Furthermore, a mixture of a positive electrode material capable of occluding and releasing lithium and a conductive material is filled together with a binder into a foamed metal or fibrous metal sintered body mainly containing aluminum, titanium, and stainless steel (SUS316 or SUS316L). The one having a thickness of 0.1 mm or more and a porosity of 20 to 50% can be used.
[0032]
In addition, positive electrode materials capable of inserting and extracting lithium include, for example, 4 groups, 5 groups, 6 groups, 7 groups, 8 groups, 9 groups, 10 groups, 11 groups, 12 groups, 13 groups and 14 groups of the periodic table. Chalcogenides such as oxides, composite oxides, sulfides, etc., mainly containing metals belonging to the genus, and oxyhalides mainly containing these metals are used. In addition, a conductive polymer material such as polyaniline, polypyrrole, polythiophene, polyacene, polyparaphenylene, or a derivative thereof can also be used as the positive electrode material.
[0033]
Since the energy density of the battery can be increased by using a positive electrode material having a high operating potential and a large capacity for inserting and extracting lithium, a spinel type chemical formula represented by LiCoO 2 , LiNiO 2 , LiMnO 2, or LiMn 2 O 4 It is preferable to use a lithium manganese composite oxide as a positive electrode material.
[0034]
The positive electrode material is usually in the form of a powder, and the particle size of the powder is preferably 1 to 80 μm so that the electrode can be easily produced, lithium is smoothly absorbed and released, and the bulk is not too bulky. .
[0035]
The positive electrode is manufactured, for example, as follows. That is, an organic solvent is added to a mixture of the powder of the positive electrode material, the conductive material and the fluororesin as a binder to form a slurry, and this slurry is applied on a metal foil, or a sheet of a foamed metal or a fibrous metal It is applied to the mat of the solid and dried to remove the organic solvent. Next, it compresses with a press etc. and adjusts the thickness and porosity of a positive electrode.
[0036]
Further, the non-aqueous electrolyte used in the present invention may be any of a non-aqueous liquid electrolyte and a polymer electrolyte, but a liquid electrolyte generally called an electrolyte is often used. It is explained by the expression. That is, the non-aqueous electrolyte is composed of an organic solvent and a lithium salt dissolved in the organic solvent. Examples of the organic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3 -Dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2-oxazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, diethyl ether , 1,3-propane sultone, or a mixture of two or more aprotic organic solvents. It is possible to have. As the lithium salt to be dissolved in organic solvents, for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, lower aliphatic carboxylic acid One or more salts such as lithium, LiAlCl 4 , LiCl, LiBr, LiI, lithium chloroborane, and lithium tetraphenylborate can be used. Above all, LiClO 4 , LiBF 6 , LiPF 6 and / or LiCF 3 SO 3 were dissolved in a mixed solvent of ethylene carbonate or propylene carbonate, 1,2-dimethoxyethane and / or diethyl carbonate and / or methyl ethyl carbonate. Electrolytes are preferred.
[0037]
The amount of these nonaqueous electrolytes used in the battery is not particularly limited, but the required amount can be adjusted depending on the amount of the electrode material and the size of the battery. But not the concentration of the lithium salt as a supporting electrolyte also particularly limited, preferred electrolyte 1 dm 3 per 0.2~3.0mol is. This is because if the concentration is within the range, the ionic conductivity does not decrease and the lithium salt does not precipitate.
[0038]
As the separator, a microporous film or a non-woven fabric is used. Examples of the material include polyolefin such as polyethylene and polypropylene, and a heat-resistant application such as ethylene tetrafluoride-perfluoroalkoxyethylene copolymer (PFA). ), Polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polybutylene terephthalate (PBT), and the like.
[0039]
The shape of the non-aqueous electrolyte secondary battery of the present invention may be any of a coin type, a button type, a sheet type, a stacked type, a cylindrical type, a flat type, a square type, and a large type used for electric vehicles.
[0040]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
[0041]
(Example 1)
The negative electrode was manufactured as follows. First, a tin film having a thickness of about 10 μm was formed on a nickel foam sheet having a thickness of 0.45 mm (porosity 90%, average pore diameter 0.2 mm) by an electroplating method. This sheet was punched out into a circular shape having a diameter of 16 mm, pressed by a press, and compressed to a thickness of 0.2 mm to obtain a negative electrode. In order to completely remove the water contained in the negative electrode, the negative electrode was dried under a reduced pressure of 13 Pa at 120 ° C. for 24 hours. The porosity of this negative electrode was 50%.
[0042]
Next, a positive electrode was produced as follows. First, 100 parts by mass of LiMnO 2 powder, 5 parts by mass of carbon black as a conductive material, 5 parts by mass of flaky graphite as a conductive material, and 0.7 parts by mass of polytetrafluoroethylene as a binder are mixed. It was pressed into a pellet having a diameter of 16 mm and a thickness of 0.1 mm, and dried by heating at 250 ° C. to obtain a positive electrode.
[0043]
The separator is made of a polyethylene microporous film, and the electrolyte is LiPF 6 in a mixed solvent of ethylene carbonate and ethyl methyl carbonate at a volume ratio of 1: 1 so as to have a concentration of 1 mol / dm 3. The dissolved one was used.
[0044]
A coin-type non-aqueous electrolyte secondary battery as shown in FIG. 1 was produced using the negative electrode, the positive electrode, the separator, and the electrolytic solution. As shown in FIG. 1, by tightening the open end of the metal outer can 4 also serving as the positive electrode terminal inward, the positive electrode 1 and the negative electrode 2 are formed by the metal outer can 4 and the sealing plate 5 and the gasket 6 which also serve as the negative electrode terminal. Further, the separator 3 impregnated with the electrolyte is sealed. The impregnation of the electrode with the electrolytic solution and the sealing of the battery were performed in a glove box in a dry air atmosphere having a dew point of minus 50 ° C.
[0045]
Using the coin-type nonaqueous electrolyte secondary battery, charge / discharge cycle characteristics were examined under the following conditions. That is, charging was performed at a constant current with a current density of 0.2 mA / cm 2. After the charging voltage reached 4.25 V, charging was performed at a constant voltage until the current density reached 1/10. The discharge was performed at a constant current of a current density of 0.2 mA / cm 2 , and the discharge end voltage was set to 2.5 V. As a result, the discharge capacity at the first cycle and the capacity retention at the 50th cycle were 600 mAh / g and 98%, respectively. The discharge capacity was calculated per 1 g of tin. The capacity retention at the 50th cycle was calculated by dividing the discharge capacity at the 50th cycle by the discharge capacity at the 1st cycle.
[0046]
Further, a model cell was prepared by combining the above negative electrode and metallic lithium and using the same electrolytic solution and separator as above. Using this model cell, the change in thickness of the negative electrode was examined. As a result, the thickness of the negative electrode when charged to 600 mAh / g under the same conditions as described above was 0.22 mm, and the expansion rate of the thickness of the negative electrode was 110% when calculated from the thickness of the negative electrode before charging of 0.2 mm. .
[0047]
(Example 2)
In the same manner as in Example 1 except that a fibrous nickel sintered mat (aperture ratio: 91%, fiber diameter: 20 μm) having a thickness of 0.5 mm before pressing was used instead of the nickel foam sheet. Thus, a coin-type non-aqueous electrolyte secondary battery and a model cell were prepared, and the charge / discharge cycle characteristics and the thickness change of the negative electrode were similarly examined.
[0048]
The discharge capacity at the first cycle and the capacity retention at the 50th cycle of this coin-type nonaqueous electrolyte secondary battery were 600 mAh / g and 95%, respectively. The change in the thickness of the negative electrode using this model cell before and after charging was as follows. The thickness of the negative electrode when charged to 600 mAh / g was 0.24 mm. Was 120%.
[0049]
(Example 3)
A negative electrode (thickness 0.3 mm, void) prepared using a copper foam sheet (pore ratio 96%, average pore diameter 0.2 mm) having a thickness of 0.6 mm before pressing instead of the nickel foam sheet. Rate of 34%), a coin-type nonaqueous electrolyte secondary battery and a model cell were prepared in the same manner as in Example 1, and the charge / discharge cycle characteristics and the thickness change of the negative electrode were examined in the same manner.
[0050]
The discharge capacity at the first cycle and the capacity retention at the 50th cycle of the coin-type nonaqueous electrolyte secondary battery were 600 mAh / g and 92%, respectively. The change in the thickness of the negative electrode before and after charging using this model cell is as follows. The thickness of the negative electrode when charged to 600 mAh / g is 0.33 mm. Was 110%.
[0051]
(Comparative Example 1)
Example 1 was repeated except that a nickel foam sheet was replaced with a negative electrode (porosity: 0%) produced by electroplating 0.02 mm thick tin on one side of a copper foil having a thickness of 10 µm. Similarly, a coin-type non-aqueous electrolyte secondary battery and a model cell were prepared, and the charge / discharge cycle characteristics and the thickness change of the negative electrode were similarly examined.
[0052]
The discharge capacity at the first cycle and the capacity retention at the 50th cycle of this coin-type nonaqueous electrolyte secondary battery were 600 mAh / g and 40%, respectively. The thickness change of the negative electrode using this model cell before and after charging was as follows. The thickness of the negative electrode when charged to 600 mAh / g was 0.032 mm. Was 160%.
[0053]
As the negative electrode of the nonaqueous electrolyte secondary battery of the present invention, an electrode obtained by depositing a material containing an element capable of forming an alloy with lithium on a current collector having a three-dimensional structure to form a thin film is used. Since the current collector is integrated with the negative electrode material in a state of being three-dimensionally spread in the negative electrode material, the conductive network is maintained even if the expansion and contraction of the thin film becomes large. Further, since the average distance between the negative electrode material and the current collector becomes small, the internal resistance of the negative electrode is small. Therefore, since most of the negative electrode materials exhibit their functions, a battery having a large capacity can be obtained, and can withstand a large current. Furthermore, since the gap in the electrode can be arbitrarily set according to the pressing conditions of the three-dimensional current collector, a structure in which the electrode does not expand even if the negative electrode material expands can be realized.
[0054]
【The invention's effect】
As described above, in the present invention, the current collector having a three-dimensional structure is filled with an electrode formed by depositing a material containing an element capable of forming an alloy with lithium to form a thin film. A high energy density non-aqueous electrolyte secondary that does not increase the expansion and contraction of the electrode even after repeated discharge cycles, does not destroy the conductive network inside the electrode, and does not decrease the battery capacity or increase the internal resistance. A battery can be provided.
[Brief description of the drawings]
FIG. 1 is a sectional view of a coin-type non-aqueous electrolyte secondary battery of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Metal outer can 5 Sealing plate 6 Gasket

Claims (8)

正極と、負極と、非水電解質とを備えた非水電解質二次電池であって、前記負極として、三次元構造を有する集電体に、リチウムと合金を形成することが可能な元素を含有する材料を堆積して薄膜を形成した電極を用いることを特徴とする非水電解質二次電池。A non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the current collector having a three-dimensional structure includes an element capable of forming an alloy with lithium as the negative electrode. A non-aqueous electrolyte secondary battery using an electrode formed by depositing a material to form a thin film. 前記薄膜が、薄膜形成法により形成されている請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the thin film is formed by a thin film forming method. 前記薄膜形成法が、電気メッキ法、CVD法、PVD法、スパッタリング法、溶射法及び真空蒸着法からなる群から選択された1種類である請求項2に記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 2, wherein the thin film forming method is one type selected from the group consisting of an electroplating method, a CVD method, a PVD method, a sputtering method, a thermal spraying method, and a vacuum deposition method. 前記薄膜の平均膜厚が、0.1〜100μmである請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the thin film has an average thickness of 0.1 to 100 μm. 前記集電体が、発泡状金属及び繊維状金属焼結体からなる群から選択された1種類から構成されている請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the current collector is formed of one type selected from the group consisting of a foamed metal and a fibrous metal sintered body. 前記発泡状金属及び前記繊維状金属焼結体が、ニッケル及び銅からなる群から選ばれた少なくとも1種類を含む金属からなる請求項5に記載の非水電解質二次電池。The nonaqueous electrolyte secondary battery according to claim 5, wherein the foamed metal and the fibrous metal sintered body are made of a metal containing at least one selected from the group consisting of nickel and copper. 前記リチウムと合金を形成することが可能な元素が、ケイ素、銀、金、亜鉛、カドミウム、アルミニウム、ガリウム、インジウム、タリウム、ゲルマニウム、錫、鉛、アンチモン、ビスマスからなる群から選択された1種類である請求項1に記載の非水電解質二次電池。The element capable of forming an alloy with lithium is one selected from the group consisting of silicon, silver, gold, zinc, cadmium, aluminum, gallium, indium, thallium, germanium, tin, lead, antimony, and bismuth. The non-aqueous electrolyte secondary battery according to claim 1, wherein 前記負極の厚さが0.05〜10mmであり、その空隙率が20〜60%である請求項1に記載の非水電解質二次電池。The non-aqueous electrolyte secondary battery according to claim 1, wherein the thickness of the negative electrode is 0.05 to 10 mm, and the porosity is 20 to 60%.
JP2002227809A 2002-08-05 2002-08-05 Non-aqueous electrolyte rechargeable battery Withdrawn JP2004071305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002227809A JP2004071305A (en) 2002-08-05 2002-08-05 Non-aqueous electrolyte rechargeable battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002227809A JP2004071305A (en) 2002-08-05 2002-08-05 Non-aqueous electrolyte rechargeable battery

Publications (1)

Publication Number Publication Date
JP2004071305A true JP2004071305A (en) 2004-03-04

Family

ID=32014730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002227809A Withdrawn JP2004071305A (en) 2002-08-05 2002-08-05 Non-aqueous electrolyte rechargeable battery

Country Status (1)

Country Link
JP (1) JP2004071305A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278170A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Manufacturing method of electrode for lithium secondary battery
WO2008037154A1 (en) * 2006-09-22 2008-04-03 Xiaoping Ren A lithium ion secondary battery using foam metal as current collect and a battery assembly using the same
US7648537B2 (en) 2004-10-01 2010-01-19 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same
US7695855B2 (en) 2004-04-20 2010-04-13 Sanyo Electric. Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
JP2011003383A (en) * 2009-06-18 2011-01-06 Furukawa Battery Co Ltd:The Manufacturing method of negative electrode for lithium secondary battery, and lithium secondary battery
JP2011082179A (en) * 2006-01-23 2011-04-21 Nexeon Ltd Method of manufacturing fibers comprising silicon or silicon material, and use of the same in lithium storage battery
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
WO2012111707A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrode for electrochemical element, and manufacturing method therefor
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
JP2014521196A (en) * 2012-04-26 2014-08-25 ▲寧▼波杉杉新材料科技有限公司 Porous film silicon negative electrode material in high performance lithium ion battery and method for producing the same
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9012066B2 (en) 2008-04-08 2015-04-21 Sony Corporation Anode and secondary battery
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9634330B2 (en) * 2008-04-23 2017-04-25 Sony Corporation Anode and secondary battery
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9698416B2 (en) 2007-06-05 2017-07-04 Sony Corporation Anode and secondary battery with anode material with pore group with low volumetric capacity
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
WO2022118692A1 (en) 2020-12-01 2022-06-09 クラレクラフレックス株式会社 Current collector, electrode, and non-aqueous electrolyte battery

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US7695855B2 (en) 2004-04-20 2010-04-13 Sanyo Electric. Co., Ltd. Electrode for lithium secondary battery and lithium secondary battery
US7648537B2 (en) 2004-10-01 2010-01-19 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same
US7901468B2 (en) 2004-10-01 2011-03-08 Kabushiki Kaisha Toshiba Rechargeable battery and method for fabricating the same
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
JP2006278170A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Manufacturing method of electrode for lithium secondary battery
JP2011082179A (en) * 2006-01-23 2011-04-21 Nexeon Ltd Method of manufacturing fibers comprising silicon or silicon material, and use of the same in lithium storage battery
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
WO2008037154A1 (en) * 2006-09-22 2008-04-03 Xiaoping Ren A lithium ion secondary battery using foam metal as current collect and a battery assembly using the same
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9698416B2 (en) 2007-06-05 2017-07-04 Sony Corporation Anode and secondary battery with anode material with pore group with low volumetric capacity
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US9012066B2 (en) 2008-04-08 2015-04-21 Sony Corporation Anode and secondary battery
US9634330B2 (en) * 2008-04-23 2017-04-25 Sony Corporation Anode and secondary battery
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
JP2011003383A (en) * 2009-06-18 2011-01-06 Furukawa Battery Co Ltd:The Manufacturing method of negative electrode for lithium secondary battery, and lithium secondary battery
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
WO2012111707A1 (en) * 2011-02-18 2012-08-23 住友電気工業株式会社 Electrode for electrochemical element, and manufacturing method therefor
JP2012186143A (en) * 2011-02-18 2012-09-27 Sumitomo Electric Ind Ltd Electrode for electrochemical element, and method for manufacturing the same
US9184435B2 (en) 2011-02-18 2015-11-10 Sumitomo Electric Industries, Ltd. Electrode for electrochemical element and method for producing the same
JP2014521196A (en) * 2012-04-26 2014-08-25 ▲寧▼波杉杉新材料科技有限公司 Porous film silicon negative electrode material in high performance lithium ion battery and method for producing the same
WO2022118692A1 (en) 2020-12-01 2022-06-09 クラレクラフレックス株式会社 Current collector, electrode, and non-aqueous electrolyte battery
KR20230113753A (en) 2020-12-01 2023-08-01 구라레 구라후렛쿠스 가부시키가이샤 Current collectors, electrodes and non-aqueous electrolyte cells

Similar Documents

Publication Publication Date Title
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
US10326136B2 (en) Porous carbonized composite material for high-performing silicon anodes
US20190181440A1 (en) Prelithiated and methods for prelithiating an energy storage device
JP2015122340A (en) Lithium secondary battery
JP3535454B2 (en) Non-aqueous electrolyte secondary battery
KR20030081160A (en) Battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
WO2005064714A1 (en) Negative electrode material for secondary battery, negative electrode for secondary battery and secondary battery using same
KR101775542B1 (en) Negative active material for rechargeable lithium battery, method of preparing the same, and negative electrode and rechargeable lithium battery including same
JP2004362789A (en) Negative electrode material and secondary battery using it
JP2003297353A (en) Negative electrode for secondary battery, secondary battery using such negative electrode, and manufacturing method for negative electrode
JP2001126733A (en) Nonaqueous electrolytic material
US20060199078A1 (en) Negative electrode for non-aqueous secondary battery
JP4482953B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US8785040B2 (en) Positive electrode for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP2018006331A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2002367602A (en) Nonaqueous electrolyte secondary cell
JP4077294B2 (en) Nonaqueous electrolyte secondary battery
CN109075383B (en) Lithium ion secondary battery and battery pack
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2000268879A (en) Lithium secondary battery
JP3824111B2 (en) Non-aqueous electrolyte battery
JP2000357517A (en) Electrode, battery using the same, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20051101