JP2005332809A - Lithium-ion secondary battery and its manufacturing method - Google Patents

Lithium-ion secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005332809A
JP2005332809A JP2005121275A JP2005121275A JP2005332809A JP 2005332809 A JP2005332809 A JP 2005332809A JP 2005121275 A JP2005121275 A JP 2005121275A JP 2005121275 A JP2005121275 A JP 2005121275A JP 2005332809 A JP2005332809 A JP 2005332809A
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
secondary battery
ion secondary
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005121275A
Other languages
Japanese (ja)
Other versions
JP5088807B2 (en
Inventor
Tsumoru Ohata
積 大畠
Junji Nakajima
潤二 中島
Tetsuya Hayashi
徹也 林
Shigeo Ikuta
茂雄 生田
Akiko Fujino
明子 藤野
Eitaro Nakamura
栄太郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005121275A priority Critical patent/JP5088807B2/en
Publication of JP2005332809A publication Critical patent/JP2005332809A/en
Application granted granted Critical
Publication of JP5088807B2 publication Critical patent/JP5088807B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium-ion secondary battery having a superior lifetime characteristic with superior productivity and stability. <P>SOLUTION: This is a manufacturing method of the lithium-ion secondary battery having a process of obtaining a positive electrode by carrying a positive electrode mixture layer on a positive electrode core material, a process of obtaining a negative electrode by carrying a negative electrode mixture layer on a negative electrode core material, a process of forming a porous film having an electron insulating characteristic adhered to at least one surface of the positive electrode and the negative electrode, a process of constituting an electrode plate group by interposing a separator between the positive electrode and the negative electrode, and a process of impregnating a nonaqueous electrolytic solution into the electrode plate group. The process of forming the porous film has a process of preparing a porous film paste containing a film binder containing a thermal cross-linked resin and filler particles, and a process of heating a coated film obtained by applying the porous film paste on at least one surface of the positive electrode and the negative electrode. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池およびその製造法に関し、主として寿命特性に優れたリチウムイオン二次電池の容易な製造法に関する。   The present invention relates to a lithium ion secondary battery and a method for producing the same, and more particularly to an easy method for producing a lithium ion secondary battery having excellent life characteristics.

リチウムイオン二次電池は、一般に正極芯材およびそれに担持された正極合剤層を含む正極、負極芯材およびそれに担持された負極合剤層を含む負極、セパレータおよび非水電解液を具備する。電極合剤層は、活物質と電極結着剤を含み、電極結着剤としては、熱可塑性樹脂、変性ゴム材料等が一般的に用いられている。すなわち、活物質と、電極結着剤と、活物質の分散媒とを混合し、まず、電極合剤スラリーの調製が行われる。電極合剤スラリーは、電極芯材に塗布された後、130℃以下の熱風で乾燥され、ロールプレスで圧延され、電極合剤層となる(特許文献1参照)。   A lithium ion secondary battery generally includes a positive electrode including a positive electrode core material and a positive electrode mixture layer supported thereon, a negative electrode including a negative electrode core material and a negative electrode mixture layer supported thereon, a separator, and a non-aqueous electrolyte. The electrode mixture layer includes an active material and an electrode binder, and a thermoplastic resin, a modified rubber material, and the like are generally used as the electrode binder. That is, an active material, an electrode binder, and a dispersion medium of an active material are mixed, and an electrode mixture slurry is first prepared. After being applied to the electrode core material, the electrode mixture slurry is dried with hot air of 130 ° C. or less, and rolled with a roll press to form an electrode mixture layer (see Patent Document 1).

正極と負極との間に介在するセパレータは、極板間を電子的に絶縁し、さらに電解液を保持する役目をもつ。セパレータには、主にポリエチレン樹脂を含む微多孔性シートが使われている。しかし、微多孔性シートなどのシート状セパレータは、概して150℃以下の温度でも収縮しやすく、電池の短絡を導きやすい。また、釘のような鋭利な形状の突起物が電池を貫いた時(例えば釘刺し試験時)、瞬時に短絡反応熱が発生し、微多孔性シートが収縮して、短絡部が拡大する。   The separator interposed between the positive electrode and the negative electrode serves to electronically insulate between the electrode plates and to hold the electrolytic solution. For the separator, a microporous sheet mainly containing a polyethylene resin is used. However, a sheet-like separator such as a microporous sheet generally tends to shrink even at a temperature of 150 ° C. or less, and easily leads to a short circuit of the battery. Moreover, when a sharply shaped protrusion such as a nail penetrates the battery (for example, during a nail penetration test), short-circuit reaction heat is instantaneously generated, the microporous sheet contracts, and the short-circuit portion expands.

そこで、近年、品質向上の観点から、電極表面にフィラー粒子と膜結着剤からなる多孔膜を接着し、多孔膜と一体化された電極を用いることが提案されている。その場合、フィラー粒子と、膜結着剤と、フィラー粒子の分散媒とを混合し、まず、多孔膜ペーストの調製が行われる。多孔膜ペーストは、電極表面に塗布された後、熱風で乾燥される(特許文献2参照)。   Therefore, in recent years, it has been proposed to use an electrode integrated with a porous film by adhering a porous film made of filler particles and a film binder to the electrode surface from the viewpoint of quality improvement. In that case, the filler particles, the film binder, and the dispersion medium of the filler particles are mixed, and first, the porous film paste is prepared. The porous film paste is applied to the electrode surface and then dried with hot air (see Patent Document 2).

従来の膜結着剤には、上記の分散媒に溶解もしくは分散する樹脂が用いられている。そして、多孔膜ペーストの塗膜を熱風で乾燥し、分散媒を揮散させることにより、多孔膜が形成されている。しかし、このような方法で得られる多孔膜は、強度が弱く、電解液による膨潤や、膜結着剤の電解液への溶出が起こり易い。また、電極活物質の膨張および収縮による応力を受けて、多孔膜が電極表面から剥離することもある。これらの現象は、リチウムイオン二次電池の寿命特性を低下させる原因の一つになると考えられている。
特開平10−334877号公報 特開平7−220759号公報
As a conventional membrane binder, a resin that is dissolved or dispersed in the above dispersion medium is used. And the porous membrane is formed by drying the coating film of porous membrane paste with a hot air, and volatilizing a dispersion medium. However, the porous membrane obtained by such a method is weak in strength, and is easily swelled by the electrolytic solution and elution of the membrane binder into the electrolytic solution. Further, the porous film may be peeled off from the electrode surface due to stress due to expansion and contraction of the electrode active material. These phenomena are considered to be one of the causes for reducing the life characteristics of the lithium ion secondary battery.
Japanese Patent Laid-Open No. 10-334877 Japanese Patent Laid-Open No. 7-220759

電解液による多孔膜の膨潤や、膜結着剤の電解液への溶出を抑制するためには、電解液との親和性の低い膜結着剤を用いることが有効と考えられる。しかし、そのような膜結着剤は、多孔膜ペーストの調製に用いる分散媒に均一に分散もしくは溶解しにくい。よって、均質なペーストが得られず、良好な多孔膜を形成することが困難になる。   In order to suppress swelling of the porous membrane by the electrolytic solution and elution of the membrane binder into the electrolytic solution, it is considered effective to use a membrane binding agent having a low affinity with the electrolytic solution. However, such a film binder is difficult to uniformly disperse or dissolve in the dispersion medium used for preparing the porous film paste. Therefore, a homogeneous paste cannot be obtained, and it becomes difficult to form a good porous film.

多孔膜は、電極表面に薄く形成されるものであり、通常2〜10μmの厚さしか有さず、本来的に強度が弱い。よって、多孔膜ペーストの均一性が多孔膜の強度に与える影響は大きく、電解液との親和性の低い膜結着剤を用いた場合には、電極表面に形成した直後から安定して一定の強度を確保することは困難である。   The porous film is thinly formed on the electrode surface, and usually has a thickness of 2 to 10 μm, and is inherently weak in strength. Therefore, the influence of the uniformity of the porous film paste on the strength of the porous film is large, and when a film binder having a low affinity with the electrolyte is used, it is stable and stable immediately after it is formed on the electrode surface. It is difficult to ensure strength.

すなわち、多孔膜ペーストを調製する段階において、膜結着剤と分散媒との親和性を確保することと、電池内において、多孔膜の電解液による膨潤や膜結着剤の電解液への溶出を抑制することとは、互いに相反関係にある。本発明は、このような相反関係にある効果を両立させることを目的とする。   That is, in the stage of preparing the porous membrane paste, ensuring the affinity between the membrane binder and the dispersion medium, and swelling or elution of the membrane binder into the electrolyte in the battery Suppressing is in a reciprocal relationship with each other. An object of the present invention is to reconcile effects having such a reciprocal relationship.

本発明は、正極芯材に正極合剤層を担持させて正極を得る工程、負極芯材に負極合剤層を担持させて負極を得る工程、前記正極および前記負極の少なくとも一方の表面に接着された電子絶縁性を有する多孔膜を形成する工程、前記正極と前記負極との間にセパレータを介在させて極板群を構成する工程、ならびに前記極板群に非水電解液を含浸させる工程、を有するリチウムイオン二次電池の製造法であって、前記多孔膜を形成する工程は、熱架橋型樹脂を含む膜結着剤と、フィラー粒子とを含む多孔膜ペーストを調製する工程、および前記多孔膜ペーストを前記正極および前記負極の少なくとも一方の表面に塗布し、得られた塗膜を加熱する工程を有する製造法に関する。   The present invention includes a step of obtaining a positive electrode by carrying a positive electrode mixture layer on a positive electrode core material, a step of obtaining a negative electrode by carrying a negative electrode mixture layer on a negative electrode core material, and bonding to at least one surface of the positive electrode and the negative electrode A step of forming a porous film having an electronic insulating property, a step of interposing a separator between the positive electrode and the negative electrode, and a step of impregnating the electrode plate group with a non-aqueous electrolyte A step of forming the porous film, the step of preparing a porous film paste including a film binder containing a thermally cross-linked resin and filler particles, and The present invention relates to a production method comprising a step of applying the porous film paste to at least one surface of the positive electrode and the negative electrode and heating the obtained coating film.

前記熱架橋型樹脂は、例えばマスクされた架橋点を有する一液型樹脂であることが好ましい。
前記熱架橋型樹脂には、例えばアクリロニトリル単位を含む共重合体、ポリアクリロニトリル鎖を含む共重合体もしくはポリアクリロニトリル誘導体を用いることができる。
前記マスクされた架橋点は、例えば100℃以上、更には150℃以上で活性化することが望ましい。ここで、活性化とは、例えば95%を超える架橋反応が進行する状態となることを言う。
架橋を進行させるために前記塗膜を加熱する温度条件は、例えば150℃以上、更には190℃以上の温度で1時間以上の加熱時間であることが望ましい。なお、多孔膜ペーストには、分散媒が含まれているため、架橋を進行させるために塗膜を加熱する前に、130℃以下で数分程度の短時間、多孔膜ペーストの塗膜を乾燥させることが望ましい。
前記塗膜を加熱する工程は、不活性ガス中で行うことが好ましい。
The thermally crosslinkable resin is preferably a one-part resin having a masked crosslink point, for example.
As the thermally crosslinkable resin, for example, a copolymer containing an acrylonitrile unit, a copolymer containing a polyacrylonitrile chain, or a polyacrylonitrile derivative can be used.
The masked cross-linking points are preferably activated at, for example, 100 ° C. or higher, and more preferably 150 ° C. or higher. Here, the activation means that a crosslinking reaction exceeding 95% proceeds, for example.
The temperature condition for heating the coating film in order to advance the crosslinking is preferably, for example, 150 ° C. or higher, more preferably 190 ° C. or higher and a heating time of 1 hour or longer. In addition, since the porous film paste contains a dispersion medium, the porous film paste is dried for a short time of about several minutes at 130 ° C. or lower before heating the coating to advance the crosslinking. It is desirable to make it.
The step of heating the coating film is preferably performed in an inert gas.

本発明は、また、正極芯材およびそれに担持された正極合剤層を含む正極、負極芯材およびそれに担持された負極合剤層を含む負極、前記正極および前記負極の少なくとも一方の表面に接着された電子絶縁性を有する多孔膜、ならびに非水電解液を具備するリチウムイオン二次電池であって、前記多孔膜が、フィラー粒子および膜結着剤を含み、前記膜結着剤が、熱架橋型樹脂の硬化物を含むリチウムイオン二次電池に関する。   The present invention also provides a positive electrode including a positive electrode core material and a positive electrode mixture layer supported thereon, a negative electrode including a negative electrode core material and a negative electrode mixture layer supported thereon, and adheres to at least one surface of the positive electrode and the negative electrode A lithium ion secondary battery comprising a porous film having an electronic insulating property and a non-aqueous electrolyte, wherein the porous film includes filler particles and a film binder, and the film binder includes a heat The present invention relates to a lithium ion secondary battery including a cured product of a crosslinked resin.

前記硬化物を前記非水電解液に60℃で72時間浸漬した場合、前記硬化物の前記非水電解液による膨潤度は、700%以下であることが好ましい。
前記非水電解液は、非水溶媒および前記非水溶媒に溶解するリチウム塩を含み、前記非水溶媒が、炭酸エステルを含むことが好ましい。
When the cured product is immersed in the nonaqueous electrolytic solution at 60 ° C. for 72 hours, the degree of swelling of the cured product by the nonaqueous electrolytic solution is preferably 700% or less.
It is preferable that the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt that dissolves in the non-aqueous solvent, and the non-aqueous solvent contains a carbonate.

熱架橋型樹脂を含む膜結着剤は、架橋が進行する前は、多孔膜ペーストの分散媒に均一に溶解もしくは分散させることができるが、架橋を進行させた後には、電解液に対する耐性が大きく向上し、多孔膜が電解液で膨潤したり、膜結着剤が電解液に溶出したりしにくくなる。すなわち、多孔膜ペーストを調製する段階において、膜結着剤と分散媒との親和性を確保することと、電池内において、多孔膜の電解液による膨潤や膜結着剤の電解液への溶出を抑制することとを両立させることができる。このような多孔膜を具備するリチウムイオン二次電池は、優れた寿命特性を有する。   The film binder containing the heat-crosslinking resin can be uniformly dissolved or dispersed in the dispersion medium of the porous film paste before the crosslinking proceeds. However, after the crosslinking proceeds, the film binder is resistant to the electrolytic solution. It is greatly improved, and it becomes difficult for the porous membrane to swell with the electrolytic solution or to dissolve the membrane binder into the electrolytic solution. That is, in the stage of preparing the porous membrane paste, ensuring the affinity between the membrane binder and the dispersion medium, and swelling or elution of the membrane binder into the electrolyte in the battery It is possible to satisfy both of the above. A lithium ion secondary battery including such a porous film has excellent life characteristics.

また、多孔膜の膜結着剤として、自らが一定以上の温度において架橋反応を起こす熱架橋型樹脂を用いることにより、架橋剤を用いる場合などに多発する多孔膜ペーストの物性の変化を抑制することができる。すなわち、熱架橋型樹脂によれば、目的とする架橋反応の制御が容易になる。熱架橋型樹脂は、所定温度に加熱しない限り安定であるため、多孔膜ペーストを常温付近で保存する場合には、ペーストの粘度変化が起こりにくい。従って、従来の膜結着剤を用いる場合と同様に多孔膜ペーストを取り扱うことができる。   In addition, by using a heat-crosslinking resin that causes a crosslinking reaction at a temperature above a certain level as a membrane binder for the porous membrane, it suppresses changes in the physical properties of the porous membrane paste that frequently occur when a crosslinking agent is used. be able to. That is, according to the heat crosslinkable resin, it is easy to control the target crosslinking reaction. Since the heat-crosslinking resin is stable unless heated to a predetermined temperature, when the porous film paste is stored near room temperature, the viscosity of the paste hardly changes. Therefore, the porous film paste can be handled in the same manner as in the case of using the conventional film binder.

本発明に係るリチウムイオン二次電池の形態は、特に限定されず、円筒型、角型、積層型など、様々なタイプを包含するが、特に、正極と負極とを、セパレータを介して捲回した極板群を含む円筒型や角型の電池において特に有効である。
図1は、一般的な円筒型リチウムイオン二次電池の一例の縦断面図である。正極5および負極6は、セパレータ7を介して捲回された状態であって、柱状の極板群を構成している。正極5には、正極リード5aの一端が接続されており、負極6には、負極リード6aの一端が接続されている。非水電解液を含浸させた極板群は、上部絶縁リング8aおよび下部絶縁リング8bで挟まれた状態で、電池缶1の内空間に収容されている。極板群と電池缶1の内面との間には、セパレータを介装させてある。正極リード5aの他端は、電池蓋2の裏面に溶接されており、負極リード6aの他端は、電池缶1の内底面に溶接されている。電池缶1の開口は、周縁に絶縁パッキン3が配された電池蓋2で塞がれている。
The form of the lithium ion secondary battery according to the present invention is not particularly limited and includes various types such as a cylindrical type, a square type, and a laminated type. In particular, the positive electrode and the negative electrode are wound through a separator. This is particularly effective in a cylindrical or square battery including the electrode plate group.
FIG. 1 is a longitudinal sectional view of an example of a general cylindrical lithium ion secondary battery. The positive electrode 5 and the negative electrode 6 are wound through a separator 7 and constitute a columnar electrode plate group. One end of a positive electrode lead 5 a is connected to the positive electrode 5, and one end of a negative electrode lead 6 a is connected to the negative electrode 6. The electrode plate group impregnated with the nonaqueous electrolyte is accommodated in the inner space of the battery can 1 while being sandwiched between the upper insulating ring 8a and the lower insulating ring 8b. A separator is interposed between the electrode plate group and the inner surface of the battery can 1. The other end of the positive electrode lead 5 a is welded to the back surface of the battery lid 2, and the other end of the negative electrode lead 6 a is welded to the inner bottom surface of the battery can 1. The opening of the battery can 1 is closed by a battery lid 2 having an insulating packing 3 disposed on the periphery.

図1には図示されないが、正極および負極の少なくとも一方の表面には、電子絶縁性を有する多孔膜が接着されている。多孔膜は、フィラー粒子および膜結着剤を含んでいる。多孔膜は、内部短絡部が発生し、多量の発熱が起こり、セパレータが収縮した場合において、セパレータの代わりに極板間を絶縁する役割を果たす。なお、図1は、本発明に係るリチウムイオン二次電池の一形態に過ぎず、本発明の適用範囲が図1の場合に限定されるわけではない。   Although not shown in FIG. 1, a porous film having an electronic insulating property is bonded to at least one surface of the positive electrode and the negative electrode. The porous membrane contains filler particles and a membrane binder. The porous film plays a role of insulating between electrode plates instead of the separator when an internal short circuit occurs, a large amount of heat is generated, and the separator contracts. FIG. 1 is only one form of the lithium ion secondary battery according to the present invention, and the scope of the present invention is not limited to the case of FIG.

正極は、正極芯材およびそれに担持された正極合剤層を含む。正極芯材としては、アルミニウム箔などが好ましく用いられる。正極合剤層は、一般に、正極活物質と、正極結着剤と、導電剤とを含んでいる。負極は、負極芯材およびそれに担持された負極合剤層を含む。負極芯材としては、銅箔やニッケル箔などが好ましく用いられる。負極合剤層は、一般に、負極活物質と、負極結着剤とを含んでいる。   The positive electrode includes a positive electrode core material and a positive electrode mixture layer carried thereon. An aluminum foil or the like is preferably used as the positive electrode core material. The positive electrode mixture layer generally includes a positive electrode active material, a positive electrode binder, and a conductive agent. The negative electrode includes a negative electrode core material and a negative electrode mixture layer carried thereon. As the negative electrode core material, a copper foil or a nickel foil is preferably used. The negative electrode mixture layer generally contains a negative electrode active material and a negative electrode binder.

本発明においては、多孔膜の膜結着剤が、熱架橋型樹脂もしくはその硬化物を含む。ここで、熱架橋型樹脂とは、架橋剤を用いなくても、加熱により架橋反応が進行し得る樹脂を意味する。ここで言う架橋剤とは、例えば、シランカップリング剤、チタンカップリング剤、尿素ホルマリン樹脂、メチロールメラミン樹脂、グリオキザール、タンニン酸などである。
熱架橋型樹脂は、加熱前には、分散媒中に実質的に溶解可能であり、加熱後には、架橋反応が進行するため、分散媒や電解液中への溶解が困難となる。なお、本明細書において、熱架橋型樹脂は、硬化性樹脂と称することもできる。また、硬化とは、架橋を進行させることを言い、架橋を進行させた熱架橋型樹脂は、硬化物とも称される。加熱により架橋を進行させた熱架橋型樹脂(硬化物)の電解液への溶解度(硬化物のうち、電解液に溶解する重量割合)は、5重量%以下であることが好ましい。
In the present invention, the membrane binder of the porous membrane contains a heat crosslinkable resin or a cured product thereof. Here, the heat-crosslinking resin means a resin that can undergo a crosslinking reaction by heating without using a crosslinking agent. Examples of the crosslinking agent herein include silane coupling agents, titanium coupling agents, urea formalin resins, methylol melamine resins, glyoxal, and tannic acid.
The heat-crosslinking resin can be substantially dissolved in the dispersion medium before heating, and the crosslinking reaction proceeds after heating, so that it is difficult to dissolve in the dispersion medium or the electrolytic solution. In the present specification, the thermally crosslinkable resin can also be referred to as a curable resin. Moreover, hardening means progressing cross-linking, and the heat-crosslinking resin that has been cross-linked is also referred to as a cured product. The solubility of the thermally crosslinkable resin (cured product) that has been crosslinked by heating in the electrolytic solution (the weight ratio of the cured product dissolved in the electrolytic solution) is preferably 5% by weight or less.

上記のような特性を熱架橋型樹脂に付与する観点から、熱架橋型樹脂は、加熱により架橋構造を形成し得る架橋性基を有することが好ましい。架橋性基としてはエポキシ基、ヒドロキシル基、N−メチロールアミド基(N−オキシメチルアミド基)、オキサゾリン基(oxazolyl group)などが挙げられる。   From the viewpoint of imparting the above properties to the thermally crosslinkable resin, the thermally crosslinkable resin preferably has a crosslinkable group capable of forming a crosslinked structure by heating. Examples of the crosslinkable group include an epoxy group, a hydroxyl group, an N-methylolamide group (N-oxymethylamide group), and an oxazolyl group.

本発明は、膜結着剤が、熱架橋型樹脂もしくはその硬化物のみからなる場合と、熱架橋型樹脂もしくはその硬化物以外の他の樹脂成分を含む場合を包含する。ただし、膜結着剤全体に占める熱架橋型樹脂もしくはその硬化物の割合は50%以上であることが望ましい。膜結着剤に含ませる他の樹脂成分としては、例えばスチレンブタジエンゴム(SBR)、アクリル酸単位もしくはアクリレート単位を含むSBRの変性体、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのうちでは、特にポリアクリル酸誘導体やポリアクリロニトリル誘導体が好ましい。これらの誘導体は、アクリル酸単位または/およびアクリロニトリル単位の他に、アクリル酸メチル単位、アクリル酸エチル単位、メタクリル酸メチル単位およびメタクリル酸エチル単位よりなる群から選ばれる少なくとも1種を含むことが好ましい。   The present invention includes a case where the film binder is made of only a heat crosslinkable resin or a cured product thereof, and a case where the film binder contains other resin components other than the heat crosslinkable resin or the cured product thereof. However, the ratio of the heat-crosslinking resin or the cured product thereof in the entire film binder is preferably 50% or more. Examples of other resin components included in the film binder include styrene butadiene rubber (SBR), modified SBR containing acrylic acid units or acrylate units, polyethylene, polytetrafluoroethylene (PTFE), and polyvinylidene fluoride (PVDF). ), Tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like. These may be used alone or in combination of two or more. Of these, polyacrylic acid derivatives and polyacrylonitrile derivatives are particularly preferable. These derivatives preferably contain at least one selected from the group consisting of a methyl acrylate unit, an ethyl acrylate unit, a methyl methacrylate unit, and an ethyl methacrylate unit in addition to the acrylic acid unit and / or the acrylonitrile unit. .

リチウムイオン二次電池は、一般に正極芯材に正極合剤層を担持させて正極を得る工程、負極芯材に負極合剤層を担持させて負極を得る工程、正極と負極との間にセパレータを介在させて極板群を構成する工程、ならびに極板群に非水電解液を含浸させる工程を含む製造法により得ることができる。本発明の場合、さらに、正極および負極の少なくとも一方の表面に接着された電子絶縁性を有する多孔膜を形成する工程を行う。   Lithium ion secondary batteries generally include a step of obtaining a positive electrode by supporting a positive electrode mixture layer on a positive electrode core material, a step of obtaining a negative electrode by supporting a negative electrode mixture layer on a negative electrode core material, and a separator between the positive electrode and the negative electrode Can be obtained by a production method including a step of constituting an electrode plate group by interposing the electrode plate and a step of impregnating the electrode plate group with a nonaqueous electrolytic solution. In the case of the present invention, a step of forming an electronic insulating porous film adhered to at least one surface of the positive electrode and the negative electrode is further performed.

正極および負極の少なくとも一方の表面に接着された電子絶縁性を有する多孔膜を形成する工程は、例えば、以下の要領で行う。
まず、多孔膜ペーストを調製する。多孔膜ペーストは、熱架橋型樹脂を含む膜結着剤と、フィラー粒子とを、フィラー粒子の分散媒と混合することにより調製できる。フィラー粒子の分散媒には、熱架橋型樹脂を溶解するものを用いる。多孔膜ペーストに含ませる熱架橋型樹脂は、フィラー粒子100重量部あたり1〜10重量部が好ましく、3.5〜10重量部が更に好ましく、3.5〜5重量部が特に好ましい。熱架橋型樹脂の割合が多すぎると、電池性能が低下する傾向があり、熱架橋型樹脂の割合が少なすぎると、多孔膜の強度が不十分になることがある。
The step of forming the electronic insulating porous film adhered to at least one surface of the positive electrode and the negative electrode is performed, for example, in the following manner.
First, a porous film paste is prepared. The porous film paste can be prepared by mixing a film binder containing a thermally crosslinkable resin and filler particles with a dispersion medium of filler particles. As the dispersion medium for the filler particles, a material capable of dissolving the thermally crosslinkable resin is used. The heat-crosslinking resin contained in the porous film paste is preferably 1 to 10 parts by weight, more preferably 3.5 to 10 parts by weight, and particularly preferably 3.5 to 5 parts by weight per 100 parts by weight of filler particles. If the proportion of the heat-crosslinking resin is too large, the battery performance tends to be lowered, and if the proportion of the heat-crosslinking resin is too small, the strength of the porous film may be insufficient.

次に、多孔膜ペーストを正極および負極の少なくとも一方の表面に塗布し、得られた塗膜を加熱する。加熱により、まず、フィラー粒子の分散媒が揮散する。次いで、より高温で加熱することより、熱架橋型樹脂の架橋反応が進行する。こうして得られた多孔膜は、熱架橋型樹脂が硬化物を形成しているため、強度に優れている。分散媒の揮散は、膜結着剤の架橋反応がほとんど進行しない温度および時間で行い、その後に膜結着剤の架橋反応を行うことが好ましい。   Next, the porous film paste is applied to at least one surface of the positive electrode and the negative electrode, and the obtained coating film is heated. First, the dispersion medium of filler particles is volatilized by heating. Next, the crosslinking reaction of the thermally crosslinkable resin proceeds by heating at a higher temperature. The porous film thus obtained is excellent in strength because the thermally cross-linked resin forms a cured product. It is preferable that the dispersion medium is volatilized at a temperature and time at which the cross-linking reaction of the membrane binder hardly proceeds, and then the cross-linking reaction of the membrane binder is performed.

電極芯材およびそれに担持された電極合剤層を含む電極の作製は、例えば、以下の要領で行う。
まず、電極合剤スラリーを調製する。電極合剤スラリーは、少なくとも活物質および電極結着剤を、活物質の分散媒と混合し、更に必要に応じて導電材などの任意成分を添加することにより調製できる。電極合剤スラリーに含ませる電極結着剤は、活物質100重量部あたり、例えば1〜6重量部が好適である。
次に、電極合剤スラリーを電極芯材に塗布し、得られた塗膜を加熱する。加熱により、活物質の分散媒が揮散して電極合剤層が形成される。乾燥後の電極合剤の塗膜は、ロールプレスで圧延して、電極合剤層の密度調整を行うことが好ましい。
The production of the electrode including the electrode core material and the electrode mixture layer carried thereon is performed, for example, in the following manner.
First, an electrode mixture slurry is prepared. The electrode mixture slurry can be prepared by mixing at least an active material and an electrode binder with a dispersion medium of the active material, and further adding an optional component such as a conductive material as necessary. The electrode binder contained in the electrode mixture slurry is preferably, for example, 1 to 6 parts by weight per 100 parts by weight of the active material.
Next, the electrode mixture slurry is applied to the electrode core material, and the obtained coating film is heated. By heating, the dispersion medium of the active material is volatilized and an electrode mixture layer is formed. The dried electrode mixture coating is preferably rolled with a roll press to adjust the density of the electrode mixture layer.

極板群に非水電解液を含浸させると、一般に、膜結着剤は、電解液で膨潤する。ただし、熱架橋型樹脂の硬化物を含む膜結着剤は、架橋構造を有することから、高温の過酷な使用条件下でも電解液中への溶出を起こしにくい。また、熱架橋型樹脂の硬化物を非水電解液に60℃で72時間浸漬した場合でも、硬化物の非水電解液による膨潤度を700%以下に抑制することができる。硬化物の非水電解液による膨潤度が700%以下である場合、極めて良好な寿命特性を有するリチウムイオン二次電池を得ることが可能である。一方、膨潤度が700%を超えると、イオンの移動に有効な細孔体積が減少して、イオンの移動が阻害される傾向があると考えられる。イオンの移動に有効な細孔体積を十分に確保する観点からは、膨潤度が600%以下であることが更に好ましい。   When the electrode group is impregnated with a non-aqueous electrolyte, generally, the membrane binder swells with the electrolyte. However, since the film binder containing a cured product of a heat-crosslinking resin has a cross-linked structure, it is difficult to cause elution into the electrolytic solution even under severe use conditions at high temperatures. Further, even when the cured product of the heat crosslinkable resin is immersed in a nonaqueous electrolytic solution at 60 ° C. for 72 hours, the degree of swelling of the cured product by the nonaqueous electrolytic solution can be suppressed to 700% or less. When the degree of swelling of the cured product with the nonaqueous electrolytic solution is 700% or less, it is possible to obtain a lithium ion secondary battery having extremely good life characteristics. On the other hand, when the degree of swelling exceeds 700%, it is considered that the pore volume effective for ion movement decreases and the ion movement tends to be inhibited. From the viewpoint of ensuring a sufficient pore volume effective for ion migration, the degree of swelling is more preferably 600% or less.

ここで、熱架橋型樹脂の硬化物の非水電解液による膨潤度は、以下の要領で求めることができる。まず、熱架橋型樹脂の単独からなるシート状硬化物を形成する。そして、得られたシート状硬化物の見かけ体積V1を、その寸法から求めておく。次いで、シート状硬化物を、所定の非水電解液に浸漬し、60℃で72時間保持する。その後、電解液で膨潤したシート状硬化物を取り出し、その体積V2を測定する。膨潤度(X)は、次式:
X(%)={(V2−V1)/V1}×100
により、求めることができる。
Here, the degree of swelling of the cured product of the heat crosslinkable resin by the nonaqueous electrolytic solution can be obtained as follows. First, a sheet-like cured product made of a single heat-crosslinking resin is formed. And the apparent volume V1 of the obtained sheet-like hardened | cured material is calculated | required from the dimension. Next, the sheet-like cured product is immersed in a predetermined nonaqueous electrolytic solution and held at 60 ° C. for 72 hours. Then, the sheet-like cured product swollen with the electrolytic solution is taken out and its volume V2 is measured. The degree of swelling (X) is expressed by the following formula:
X (%) = {(V2−V1) / V1} × 100
Can be obtained.

なお、ポリフッ化ビニリデン(PVdF)は、架橋構造を有さないが、電解液中への溶出を起こしにくい。しかし、PVdF自体が硬いため、PVdFを膜結着剤として用いると、多孔膜の柔軟性が不足する傾向がある。特に、正極および負極を、セパレータを介して捲回する場合には、多孔膜に、ひび割れが発生することがある。   Note that polyvinylidene fluoride (PVdF) does not have a cross-linked structure, but is unlikely to elute into the electrolyte. However, since PVdF itself is hard, when PVdF is used as a membrane binder, the flexibility of the porous membrane tends to be insufficient. In particular, when the positive electrode and the negative electrode are wound through a separator, cracks may occur in the porous film.

フィラー粒子と、膜結着剤と、分散媒との混合や、活物質と、電極結着剤と、分散媒との混合は、例えば一般的なミキサー、ニーダ等により行うことができる。混合工程は、熱架橋型樹脂が不安定にならないように、熱架橋型樹脂の架橋反応が開始する温度よりも十分に低い温度、例えば60℃以下で行うことが好ましい。   Mixing of the filler particles, the membrane binder, and the dispersion medium, and mixing of the active material, the electrode binder, and the dispersion medium can be performed by, for example, a general mixer or a kneader. The mixing step is preferably performed at a temperature sufficiently lower than the temperature at which the crosslinking reaction of the thermally crosslinkable resin starts, for example, 60 ° C. or less, so that the thermally crosslinkable resin does not become unstable.

なお、塗膜を加熱する温度は、150℃以上であることが好ましい。加熱温度が低すぎると、架橋反応が迅速に進行せず、リチウムイオン二次電池の生産性が低下する。また、電極特性の安定性を確保する観点からは、塗膜を加熱する工程を、窒素、アルゴンなどの不活性ガス中で行うことが好ましい。   In addition, it is preferable that the temperature which heats a coating film is 150 degreeC or more. If the heating temperature is too low, the crosslinking reaction does not proceed rapidly, and the productivity of the lithium ion secondary battery decreases. Further, from the viewpoint of ensuring the stability of the electrode characteristics, it is preferable to perform the step of heating the coating film in an inert gas such as nitrogen or argon.

多孔膜ペーストを調製する際に用いるフィラー粒子の分散媒は、特に限定されないが、例えばN−メチル−2−ピロリドン(NMP)、アセトン、シクロヘキサン、メチルエチルケトン、シクロヘキサノンなどを挙げることができる。これらは単独で用いてもよく、2種以上を混合して用いてもよい。   The filler particle dispersion medium used in preparing the porous film paste is not particularly limited, and examples thereof include N-methyl-2-pyrrolidone (NMP), acetone, cyclohexane, methyl ethyl ketone, and cyclohexanone. These may be used alone or in combination of two or more.

膜結着剤としての熱架橋型樹脂は、マスクされた架橋点を有する一液型樹脂であることが、取り扱いが容易であり、かつ架橋反応の制御が容易である点で好ましい。なお、「マスクされた架橋点」とは、分子鎖による遮蔽など、何らかの方法で一時的に不活性化された活性点、もしくは分子構造の変化によって新たに生成する活性点を言う。マスクされた架橋点を有する樹脂は、所定の温度に達すると、マスクされた架橋点が活性化し、架橋反応を開始する。このような一液型樹脂を用いる場合には、架橋剤を用いる場合のように、多孔膜ペーストの調製工程において、混合中の材料が過剰に増粘することもなく、保存中の粘度や分散状態も極めて安定化する。また、多孔膜ペーストの塗布工程も安定に行うことができる。   The heat-crosslinking resin as the membrane binder is preferably a one-part resin having a masked cross-linking point in terms of easy handling and easy control of the cross-linking reaction. The “masked cross-linking point” refers to an active point that is temporarily inactivated by some method, such as shielding by a molecular chain, or an active point newly generated by a change in molecular structure. When the resin having a masked cross-linking point reaches a predetermined temperature, the masked cross-linking point is activated and a cross-linking reaction is started. In the case of using such a one-pack type resin, in the preparation process of the porous film paste as in the case of using a crosslinking agent, the material being mixed is not excessively thickened, and the viscosity and dispersion during storage The state is also extremely stabilized. Moreover, the application | coating process of porous film paste can also be performed stably.

ここで、一液型樹脂とは、所定温度で一定時間放置しても、液状を維持する硬化性樹脂をいう。本発明で用いる一液型樹脂としては、分散媒と混合された状態であっても、例えば40℃で72時間放置しても、5%以下の架橋反応しか進行しない安定なものを用いることが望ましい。架橋反応の進行の度合いは、例えば示差走査熱量測定(DSC:differential scanning calorimetry)により求めることができる。   Here, the one-component resin refers to a curable resin that maintains a liquid state even when left at a predetermined temperature for a certain period of time. As the one-component resin used in the present invention, a stable resin that only progresses to a crosslinking reaction of 5% or less even when it is mixed with a dispersion medium, for example, when left at 40 ° C. for 72 hours, is used. desirable. The degree of progress of the crosslinking reaction can be determined, for example, by differential scanning calorimetry (DSC).

熱架橋型樹脂、特に一液型の熱架橋型樹脂は、重量平均分子量が3000以上300000以下であることが好ましい。重量平均分子量が3000未満では、フィラー粒子を分散させた多孔膜ペーストにおいて、フィラー粒子の沈降が発生しやすくなることがある。また、重量平均分子量が300000を超えると、多孔膜ペーストの粘度が高くなり過ぎる場合がある。   It is preferable that the weight average molecular weight of the heat crosslinkable resin, particularly the one-component heat crosslinkable resin, is 3000 or more and 300000 or less. When the weight average molecular weight is less than 3000, the filler particles may be easily precipitated in the porous film paste in which the filler particles are dispersed. Moreover, when the weight average molecular weight exceeds 300,000, the viscosity of the porous film paste may become too high.

熱架橋型樹脂、特に一液型の熱架橋型樹脂は、分子鎖中に、高解離度の親水性基を含むことが、加熱時の架橋特性と、多孔膜ペーストにおけるフィラー粒子の分散状態の安定性とのバランスが優れる点で好ましい。高解離度の親水性基としては、硫酸基、スルホン酸基、リン酸基、酸性リン酸エステル基、ホスホン酸基などのように、硫黄またはリンを含む基(強酸の塩の基)や、四級アンモニウム基などの強電解質基が好ましい。   Thermally crosslinkable resins, especially one-part thermally crosslinkable resins, contain a hydrophilic group with a high degree of dissociation in the molecular chain, which indicates the crosslinking characteristics during heating and the dispersion state of filler particles in the porous film paste. It is preferable in terms of excellent balance with stability. Highly dissociated hydrophilic groups include groups containing sulfur or phosphorus (groups of strong acid salts) such as sulfuric acid groups, sulfonic acid groups, phosphoric acid groups, acidic phosphoric acid ester groups, phosphonic acid groups, Strong electrolyte groups such as quaternary ammonium groups are preferred.

高解離度の親水性基を含む樹脂は、例えば、高解離度の親水性基を含む単量体と、これと共重合可能な単量体とを、共重合させることにより、得ることができる。高解離度の親水性基を含む単量体としては、不飽和有機スルホン酸塩、不飽和有機硫酸塩などのような硫黄を含む強酸塩の基を含有する単量体、不飽和有機リン酸塩、不飽和有機ホスホン酸塩などのようなリンを含む強酸塩の基を含有する単量体、四級アンモニウム塩の基を含む不飽和単量体などが挙げられる。   A resin containing a hydrophilic group with a high degree of dissociation can be obtained, for example, by copolymerizing a monomer containing a hydrophilic group with a high degree of dissociation and a monomer copolymerizable therewith. . Monomers containing hydrophilic groups with a high degree of dissociation include monomers containing groups of strong acid salts containing sulfur such as unsaturated organic sulfonates and unsaturated organic sulfates, and unsaturated organic phosphoric acids. Examples thereof include monomers containing strong acid salt groups containing phosphorus such as salts and unsaturated organic phosphonates, and unsaturated monomers containing groups of quaternary ammonium salts.

高解離度の親水性基を含む単量体と共重合可能な単量体としては、例えば、アクリル酸メチル、アクリル酸−n−プロピル、アクリル酸イソプロピル、アクリル酸−t−ブチル、アクリル酸ヘキシル、アクリル酸シクロヘキシル、アクリル酸ドデシル、アクリル酸ラウリルなどのアクリル酸アルキルエステル;メタクリル酸メチル、メタクリル酸−n−プロピル、メタクリル酸イソプロピル、メタクリル酸−t−ブチル、メタクリル酸ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ドデシル、メタクリル酸ラウリルなどのメタクリル酸アルキルエステル;フマール酸ジメチル、マレイン酸ジエチル、マレイン酸ブチルベンジルなどの不飽和多価カルボン酸のアルキルエステル;アクリル酸−2−メトキシエチル、メタクリル酸−2−メトキシエチルなどのアルコキシ基を含む不飽和カルボン酸エステル;アクリロニトリル、メタクリロニトリルなどのα,β−不飽和ニトリル;酢酸ビニル、プロピオン酸ビニルなどのカルボン酸ビニルエステル;塩化ビニル、フッ化ビニル、臭化ビニル、塩化ビニリデン、フッ化ビニリデン、三フッ化エチレン、四フッ化エチレン、六フッ化プロピレンなどのハロゲン化オレフィン;メチルビニルエーテル、イソブチルビニルエーテル、セチルビニルエーテルなどのビニルエーテル;マレイン酸、イタコン酸などの不飽和カルボン酸、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸無水物、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミドなどの不飽和カルボン酸アミド;エチレン、プロピレンなどのα−オレフィン;シアン化ビニリデン;などが挙げられる。特に、アクリロニトリル単位を含む共重合体は、柔軟性と強度とのバランスに優れる点で好ましい。   Examples of the monomer copolymerizable with a monomer containing a hydrophilic group having a high dissociation degree include, for example, methyl acrylate, acrylic acid-n-propyl, isopropyl acrylate, acrylic acid-t-butyl, and hexyl acrylate. Alkyl acrylates such as cyclohexyl acrylate, dodecyl acrylate, lauryl acrylate; methyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, t-butyl methacrylate, hexyl methacrylate, cyclohexyl methacrylate, methacrylic acid Methacrylic acid alkyl esters such as dodecyl acid lauryl methacrylate; alkyl esters of unsaturated polycarboxylic acids such as dimethyl fumarate, diethyl maleate, butylbenzyl maleate; -2-methoxyethyl acrylate, methacrylic acid-2- Unsaturated carboxylic acid ester containing alkoxy group such as toxiethyl; α, β-unsaturated nitrile such as acrylonitrile, methacrylonitrile; carboxylic acid vinyl ester such as vinyl acetate and vinyl propionate; vinyl chloride, vinyl fluoride, bromide Halogenated olefins such as vinyl, vinylidene chloride, vinylidene fluoride, ethylene trifluoride, tetrafluoroethylene, and hexafluoropropylene; vinyl ethers such as methyl vinyl ether, isobutyl vinyl ether, and cetyl vinyl ether; unsaturateds such as maleic acid and itaconic acid Unsaturated carboxylic acid anhydrides such as carboxylic acid, maleic anhydride, itaconic anhydride, unsaturated carboxylic acid amides such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide; α-oleic such as ethylene and propylene Fin; vinylidene cyanide; and the like. In particular, a copolymer containing an acrylonitrile unit is preferable in that it has an excellent balance between flexibility and strength.

高解離度の親水性基を含む単量体と、これと共重合可能な単量体とを、共重合させる方法は、特に限定されないが、例えば、溶液重合法、懸濁重合法、乳化重合法などを用いることができる。重合に用いられる重合開始剤としては、例えば過酸化ラウロイル、ジイソプロピルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、t−ブチルパーオキシピバレート、3,5,5−トリメチルヘキサノイルパーオキシドなどの有機過酸化物;α,α’−アゾビスイソブチロニトリルなどのアゾ化合物;過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩などが挙げられる。   A method of copolymerizing a monomer containing a hydrophilic group having a high degree of dissociation and a monomer copolymerizable therewith is not particularly limited. For example, a solution polymerization method, a suspension polymerization method, an emulsion weight Legal or the like can be used. Examples of the polymerization initiator used for the polymerization include lauroyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, t-butyl peroxypivalate, 3,5,5-trimethylhexanoyl peroxide. Organic peroxides such as; azo compounds such as α, α′-azobisisobutyronitrile; persulfates such as ammonium persulfate and potassium persulfate;

膜結着剤としての熱架橋型樹脂は、100℃以上で迅速に架橋反応が進行するものであることが好ましい。従って、マスクされた架橋点が活性化する温度は、100℃以上であることが好ましい。架橋点が活性化する温度が100℃未満では、安定な多孔膜ペーストを得ることが困難になることがある。また、架橋反応が進行する温度が高すぎると、架橋反応の際に、活物質等の電極構成材料が劣化することがあるため、架橋点が活性化する温度は220℃以下であることが好ましい。架橋点が活性化する温度は、例えば示差走査熱量測定(DSC:differential scanning calorimetry)において得られる吸熱ピークの頂点温度として定義することができる。   The thermally crosslinkable resin as the membrane binder is preferably one that undergoes a rapid crosslinking reaction at 100 ° C. or higher. Therefore, the temperature at which the masked crosslinking points are activated is preferably 100 ° C. or higher. If the temperature at which the crosslinking point is activated is less than 100 ° C., it may be difficult to obtain a stable porous film paste. In addition, if the temperature at which the crosslinking reaction proceeds is too high, an electrode constituent material such as an active material may be deteriorated during the crosslinking reaction. Therefore, the temperature at which the crosslinking point is activated is preferably 220 ° C. or lower. . The temperature at which the crosslinking point is activated can be defined as, for example, the peak temperature of the endothermic peak obtained in differential scanning calorimetry (DSC).

熱架橋型樹脂は、ポリアクリロニトリル鎖を含むことが望ましい。ポリアクリロニトリル鎖を含む樹脂は、柔軟性と強度とのバランスに優れるからである。例えば、柱状の極板群の中心付近では、極板が形成する円筒の半径は非常に小さくなっており、一般に0.5〜1.5mm程度である。従って、極板表面に接着した多孔膜も、同様に屈曲することになる。そこで、このように屈曲しても損傷しない、柔軟性に優れた多孔膜を極板上に形成することが望まれる。   The heat-crosslinking resin desirably contains a polyacrylonitrile chain. This is because a resin containing a polyacrylonitrile chain is excellent in the balance between flexibility and strength. For example, in the vicinity of the center of the columnar electrode plate group, the radius of the cylinder formed by the electrode plate is very small and is generally about 0.5 to 1.5 mm. Therefore, the porous film adhered to the electrode plate surface is similarly bent. Therefore, it is desired to form a porous film excellent in flexibility, which is not damaged even when bent in this manner, on the electrode plate.

多孔膜に用いられるフィラー粒子は、リチウムイオン二次電池の使用環境下で、電気化学的にも安定であることが望まれる。また、フィラー粒子は、多孔膜ペーストを調製するのに適した材料であることが望まれる。   It is desired that the filler particles used for the porous film are electrochemically stable under the usage environment of the lithium ion secondary battery. The filler particles are desirably a material suitable for preparing a porous film paste.

フィラー粒子のBET比表面積は、例えば0.9m/g以上、さらには1.5m/g以上であることが好ましい。また、フィラー粒子の凝集を抑制し、多孔膜ペーストの流動性を好適化する観点から、BET比表面積は大き過ぎず、例えば150m/g以下であることが好ましい。また、フィラー粒子の平均粒径(個数基準のメディアン径)は、0.1〜5μmであることが好ましい。 The BET specific surface area of the filler particles is preferably 0.9 m 2 / g or more, and more preferably 1.5 m 2 / g or more, for example. Further, from the viewpoint of suppressing the aggregation of filler particles and optimizing the fluidity of the porous film paste, the BET specific surface area is not too large, and is preferably 150 m 2 / g or less, for example. Moreover, it is preferable that the average particle diameter (number basis median diameter) of a filler particle is 0.1-5 micrometers.

以上のような観点から、フィラー粒子としては、無機酸化物が好ましく、例えばアルミナ(酸化アルミニウム)、チタニア(酸化チタン)、ジルコニア(酸化ジルコニウム)、タルク、珪石、マグネシア(酸化マグネシウム)等を好ましく用いることができる。特に、α−アルミナ、マグネシアを用いることが好ましい。   In view of the above, the filler particles are preferably inorganic oxides such as alumina (aluminum oxide), titania (titanium oxide), zirconia (zirconium oxide), talc, silica stone, magnesia (magnesium oxide), and the like. be able to. In particular, α-alumina and magnesia are preferably used.

正極活物質としては、複合リチウム酸化物が好ましく用いられる。複合リチウム酸化物としては、コバルト酸リチウム(LiCoO2)、コバルト酸リチウムの変性体、ニッケル酸リチウム(LiNiO2)、ニッケル酸リチウムの変性体、マンガン酸リチウム(LiMn24)、マンガン酸リチウムの変性体、これらの酸化物のCo、MnもしくはNiの一部を他の遷移金属元素で置換したものなどが好ましい。各変性体は、アルミニウム、マグネシウムなどの元素を含むものが好ましい。また、コバルト、ニッケルおよびマンガンの少なくとも2種を含むものもある。LiMn24などのMn系リチウム含有遷移金属酸化物は、特に、地球上に豊富に存在し、低価格である点で有望である。 As the positive electrode active material, composite lithium oxide is preferably used. Examples of the composite lithium oxide include lithium cobaltate (LiCoO 2 ), lithium cobaltate modified, lithium nickelate (LiNiO 2 ), lithium nickelate modified, lithium manganate (LiMn 2 O 4 ), lithium manganate Preferred are those obtained by substituting a part of Co, Mn or Ni of these oxides with other transition metal elements. Each modified body preferably contains an element such as aluminum or magnesium. There are also those containing at least two of cobalt, nickel and manganese. Mn-based lithium-containing transition metal oxides such as LiMn 2 O 4 are particularly promising because they exist abundantly on the earth and are inexpensive.

負極活物質としては、各種天然黒鉛、各種人造黒鉛、石油コークス、炭素繊維、有機高分子焼成物などの炭素材料、酸化物、シリサイドなどのシリコン含有複合材料、各種金属もしくは合金材料を用いることができる。   As the negative electrode active material, it is possible to use various natural graphites, various artificial graphites, petroleum coke, carbon fibers, organic polymer fired products such as carbon materials, oxides, silicon-containing composite materials such as silicides, various metals or alloy materials. it can.

正極合剤層や負極合剤層には、導電剤を含めることができる。このような導電剤としては、アセチレンブラック、ケッチェンブラック(登録商標)、各種黒鉛などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。   A conductive agent can be included in the positive electrode mixture layer or the negative electrode mixture layer. As such a conductive agent, acetylene black, ketjen black (registered trademark), various graphites, and the like can be used. These may be used alone or in combination of two or more.

電極結着剤には、種々の樹脂材料を用いることができる。
正極結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリアクリル酸誘導体系ゴム粒子(日本ゼオン(株)製の「BM−500B(商品名)」など)、ポリフッ化ビニリデン(PVdF)などを用いることができる。PTFEやBM−500Bは、正極合剤層の原料ペーストの増粘剤となるカルボキシメチルセルロース(CMC)、ポリエチレンオキシド(PEO)、変性アクリロニトリルゴム(日本ゼオン(株)製の「BM−720H(商品名)」など)などと組み合わせて用いることが好ましい。PVdFは、単一でも正極結着剤としての機能と、増粘剤としての機能とを有する。
Various resin materials can be used for the electrode binder.
Examples of the positive electrode binder include polytetrafluoroethylene (PTFE), polyacrylic acid derivative rubber particles (such as “BM-500B (trade name)” manufactured by Nippon Zeon Co., Ltd.), and polyvinylidene fluoride (PVdF). Can be used. PTFE and BM-500B are carboxymethyl cellulose (CMC), polyethylene oxide (PEO), and modified acrylonitrile rubber ("BM-720H (trade name) manufactured by Nippon Zeon Co., Ltd." Etc.) etc.) and the like. Even if PVdF is single, it has a function as a positive electrode binder and a function as a thickener.

負極結着剤としては、正極結着剤と同様のものも用いられるが、ゴム性状高分子が好ましく用いられる。ゴム性状高分子としては、スチレン単位およびブタジエン単位含むものが好ましく用いられる。例えばスチレン−ブタジエン共重合体(SBR)、SBRの変性体などを用いることができるが、これらに限定されない。これらのゴム性状高分子は、粒子状を呈することが好ましい。粒子状を呈するゴム性状高分子は、活物質粒子同士を点接着することができる。従って、空隙率が高くてリチウムイオン受入れ性に優れた負極合剤層が得られる。負極結着剤と負極増粘剤とを併用する場合、負極増粘剤としては、水溶性高分子が好ましく用いられる。水溶性高分子の中では、セルロース系樹脂が好ましく、特にカルボキシメチルセルロース(CMC)が好ましい。   As the negative electrode binder, the same as the positive electrode binder can be used, but a rubbery polymer is preferably used. As the rubbery polymer, those containing styrene units and butadiene units are preferably used. For example, a styrene-butadiene copolymer (SBR), a modified SBR, or the like can be used, but it is not limited thereto. These rubbery polymers are preferably in the form of particles. The rubber-like polymer exhibiting a particulate form can point-bond the active material particles to each other. Therefore, a negative electrode mixture layer having a high porosity and excellent lithium ion acceptability can be obtained. When the negative electrode binder and the negative electrode thickener are used in combination, a water-soluble polymer is preferably used as the negative electrode thickener. Among the water-soluble polymers, a cellulose resin is preferable, and carboxymethyl cellulose (CMC) is particularly preferable.

非水電解液には、リチウム塩を溶質として溶解する非水溶媒を用いることが好ましい。リチウム塩は、特に限定されないが、6フッ化リン酸リチウム(LiPF)、過塩素酸リチウム(LiClO)、ホウフッ化リチウム(LiBF)などを用いることが好ましい。また、非水溶媒は、特に限定されないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)などを用いることが好ましい。非水溶媒は、1種を単独で用いることもできるが、2種以上を組み合わせて用いることが好ましく、少なくとも炭酸エステルを含むことが好ましい。非水溶媒に溶解する溶質濃度は、一般に0.5〜2mol/Lである。 As the non-aqueous electrolyte, it is preferable to use a non-aqueous solvent that dissolves a lithium salt as a solute. The lithium salt is not particularly limited, but lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium borofluoride (LiBF 4 ), or the like is preferably used. The non-aqueous solvent is not particularly limited, and for example, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), or the like is preferably used. . Although a nonaqueous solvent can also be used individually by 1 type, it is preferable to use 2 or more types in combination, and it is preferable that at least carbonate ester is included. The solute concentration dissolved in the non-aqueous solvent is generally 0.5 to 2 mol / L.

電池の過充電時の安定性を向上させるために、極板上に良好な皮膜を形成させる添加剤を非水電解液と混合することが好ましい。このような添加剤としては、ビニレンカーボネート(VC)、シクロヘキシルベンゼン(CHB)、VCやCHBの変性体などを用いることができる。   In order to improve the stability when the battery is overcharged, it is preferable to mix an additive for forming a good film on the electrode plate with the non-aqueous electrolyte. As such an additive, vinylene carbonate (VC), cyclohexylbenzene (CHB), a modified product of VC or CHB, or the like can be used.

セパレータは、リチウムイオン二次電池の使用環境に耐え得る材料からなるものであれば、特に限定されない。ポリオレフィン樹脂をベースとする微多孔性シートをセパレータとして用いることが一般的である。ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレンなどが挙げられる。微多孔性シートは、1種のポリオレフィン樹脂を含む単層膜であってもよく、2種以上のポリオレフィン樹脂を含む多層膜であってもよい。セパレータの厚さは8〜30μmであることが好ましい。
次に、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
A separator will not be specifically limited if it consists of a material which can endure the use environment of a lithium ion secondary battery. It is common to use a microporous sheet based on a polyolefin resin as a separator. Examples of the polyolefin resin include polyethylene and polypropylene. The microporous sheet may be a single layer film containing one kind of polyolefin resin or a multilayer film containing two or more kinds of polyolefin resins. The thickness of the separator is preferably 8 to 30 μm.
EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited to a following example.

まず、以下の実施例および比較例で行った評価方法について説明する。
(短絡不良率)
所定の柱状の極板群について、正極と負極との間の電気抵抗を抵抗計(テスター)で測定した。抵抗値が30MΩ以上の極板群を良品と判定し、30MΩ未満の極板群を不良品と判定した。同じ種類の極板群をそれぞれ100個ずつ作製し、不良品数nを求め、個数で示した。
First, evaluation methods performed in the following examples and comparative examples will be described.
(Short-circuit defect rate)
About a predetermined columnar electrode plate group, the electrical resistance between the positive electrode and the negative electrode was measured with a resistance meter (tester). An electrode plate group having a resistance value of 30 MΩ or more was determined as a non-defective product, and an electrode plate group having a resistance value of less than 30 MΩ was determined as a defective product. 100 electrode plate groups of the same type were prepared, and the number n of defective products was determined and indicated by the number.

(多孔膜の柔軟性)
電極合剤層の表面に多孔膜が接着した電極を、多孔膜を外側にして、半径1.5mm(3mmφ)の固定された丸棒に一重に巻き付け、電極の両端を一点で固定した。そして、固定された電極両端部に対して、鉛直下方に300gの荷重を印加した。この状態で、多孔膜の屈曲部の表面を、倍率100倍の顕微鏡で観察した。多孔膜にひび割れが無い場合には“○”、微小なひび割れが有る場合には“NG”を示した。
(Porous membrane flexibility)
An electrode having a porous film adhered to the surface of the electrode mixture layer was wound around a fixed round bar having a radius of 1.5 mm (3 mmφ) with the porous film facing outside, and both ends of the electrode were fixed at one point. A load of 300 g was applied vertically downward to both ends of the fixed electrode. In this state, the surface of the bent portion of the porous film was observed with a microscope having a magnification of 100 times. When there was no crack in the porous film, “◯” was indicated, and when there was a minute crack, “NG” was indicated.

(多孔膜ペースト粘度変化率)
調製直後の多孔膜ペーストを、25℃で2時間静置し、その後、多孔膜ペーストの25℃における粘度をB型回転粘度計(回転数:30rpm、コーン:4)で測定した。2時間静置後における粘度を測定した後の多孔膜ペーストを、続いて、25℃で3日間静置し、その後、多孔膜ペーストの25℃における粘度を上記と同様に測定した。前者の粘度に対する後者の粘度の変化率を求めた。
(Porosity paste viscosity change rate)
The porous film paste immediately after preparation was allowed to stand at 25 ° C. for 2 hours, and then the viscosity of the porous film paste at 25 ° C. was measured with a B-type rotational viscometer (rotation speed: 30 rpm, cone: 4). The porous membrane paste after measuring the viscosity after standing for 2 hours was then allowed to stand at 25 ° C. for 3 days, and then the viscosity of the porous membrane paste at 25 ° C. was measured in the same manner as described above. The rate of change of the latter viscosity with respect to the former viscosity was determined.

(500サイクル後容量維持率)
完成した電池に対し、2度の予備充放電を行い、45℃環境下で7日間保存した。その後、20℃環境下で、以下のパターンの充放電を500回繰り返した。初回の放電容量に対する500サイクル目の放電容量の割合を、容量維持率として求めた。
(Capacity maintenance rate after 500 cycles)
The completed battery was precharged / discharged twice and stored in a 45 ° C. environment for 7 days. Then, charging / discharging of the following patterns was repeated 500 times in a 20 degreeC environment. The ratio of the discharge capacity at the 500th cycle to the initial discharge capacity was determined as the capacity retention rate.

定電流充電:1400mA(終止電圧4.2V)
定電圧充電:4.2V(終止電流100mA)
定電流放電:400mA(終止電圧3V)
Constant current charge: 1400mA (end voltage 4.2V)
Constant voltage charge: 4.2V (end current 100mA)
Constant current discharge: 400mA (end voltage 3V)

(膨潤度)
所定の結着剤の単独からなる厚さ50μmのシート(架橋型の結着剤の場合はシート状の硬化物)を形成し、得られたシートもしくはシート状の硬化物の見かけ体積V1を求めた。次いで、シートもしくはシート状の硬化物を、電池の作製に用いた下記の非水電解液(ECとDMCとMECとを、体積比2:3:3で含む混合溶媒に、LiPFを1mol/Lの濃度で溶解し、さらにビニレンカーボネート(VC)を3重量%添加した非水電解液)に浸漬し、60℃で72時間保持した。その後、電解液で膨潤したシートもしくはシート状の硬化物を取り出し、その体積V2を測定した。そして、膨潤度(X)を、次式:
X(%)={(V2−V1)/V1}×100
により求めた。所定の結着剤の単独からなるシートもしくはシート状の硬化物は、結着剤を溶解させたN−メチル−2−ピロリドン(NMP)溶液を用いて、キャスト法により作製した。架橋型の結着剤の場合は、キャスト法で得られたシートを加熱して硬化させた。
(Swelling degree)
A sheet having a thickness of 50 μm made of a predetermined binder alone (in the case of a cross-linking binder, a sheet-like cured product) is formed, and an apparent volume V1 of the obtained sheet or the sheet-like cured product is obtained. It was. Next, the sheet or the sheet-like cured product was added to the following non-aqueous electrolyte solution (EC, DMC, and MEC in a mixed solvent containing a volume ratio of 2: 3: 3), and 1 mol / liter of LiPF 6 was used. It was dissolved at a concentration of L, and further immersed in a nonaqueous electrolytic solution to which 3% by weight of vinylene carbonate (VC) was added, and held at 60 ° C. for 72 hours. Thereafter, the sheet swollen with the electrolytic solution or the sheet-like cured product was taken out, and its volume V2 was measured. And the degree of swelling (X) is expressed by the following formula:
X (%) = {(V2−V1) / V1} × 100
Determined by A sheet made of a predetermined binder alone or a sheet-like cured product was produced by a casting method using an N-methyl-2-pyrrolidone (NMP) solution in which the binder was dissolved. In the case of a crosslinking binder, the sheet obtained by the casting method was heated and cured.

(熱架橋型樹脂の分子量の測定)
膜結着剤に用いた熱架橋型樹脂の重量平均分子量は、N−メチル−2−ピロリドンを溶媒とするゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算値として求めた。
(Measurement of molecular weight of thermal crosslinkable resin)
The weight average molecular weight of the thermally crosslinkable resin used for the membrane binder was determined as a polystyrene equivalent value by gel permeation chromatography using N-methyl-2-pyrrolidone as a solvent.

(架橋点の活性化温度)
膜結着剤に用いた熱架橋型樹脂を、様々な温度で24時間加熱し、加熱後の熱架橋型樹脂を電解液(ECとDMCとMECとを、体積比2:3:3で含む混合溶媒に、LiPFを1mol/Lの濃度で溶解し、さらにビニレンカーボネート(VC)を3重量%添加した非水電解液)中に60℃で、24時間浸漬し、その後、電解液から引き上げて乾燥させた。そして、電解液に浸漬する前の重量W1と、電解液に浸漬してから乾燥後の重量W2より、溶解度:S(%)=100(W1−W2)/W1を求めた。溶解度Sが5%以下となる温度を活性化温度とした。
(Activation temperature of crosslinking point)
The heat-crosslinking resin used for the film binder is heated at various temperatures for 24 hours, and the heat-crosslinking resin after heating is contained in an electrolyte solution (EC, DMC, and MEC at a volume ratio of 2: 3: 3). In a mixed solvent, LiPF 6 is dissolved at a concentration of 1 mol / L, and further immersed in a non-aqueous electrolyte solution containing 3% by weight of vinylene carbonate (VC) at 60 ° C. for 24 hours, and then pulled up from the electrolyte solution. And dried. And solubility: S (%) = 100 (W1-W2) / W1 was calculated | required from the weight W1 before immersing in electrolyte solution, and the weight W2 after immersing in electrolyte solution, and drying. The temperature at which the solubility S was 5% or less was defined as the activation temperature.

《実施例1》
(a)正極の作製
コバルト酸リチウム3kgと、正極結着剤としての呉羽化学(株)製のPVdF「#1320(商品名)」(PVdFを12重量%含むN−メチル−2−ピロリドン(NMP)溶液)1kgと、アセチレンブラック90gと、適量のNMPとを、双腕式練合機にて攪拌し、正極合剤スラリーを調製した。このスラリーを正極芯材である15μm厚のアルミニウム箔の両面に塗布し、乾燥後、ロールプレスして、密度が3.3g/cmの正極合剤層を形成した。この際、アルミニウム箔および正極合剤層からなる極板の厚みを160μmに制御した。その後、円筒型電池(品番18650)の缶状電池ケースに挿入可能な幅に極板をスリットし、正極のフープを得た。
Example 1
(A) Production of Positive Electrode 3 kg of lithium cobaltate and PVdF “# 1320 (trade name)” (NMP-N-2-methyl-2-pyrrolidone (NMP containing 12% by weight of PVdF) manufactured by Kureha Chemical Co., Ltd. as a positive electrode binder. ) Solution) 1 kg, acetylene black 90 g, and an appropriate amount of NMP were stirred with a double-arm kneader to prepare a positive electrode mixture slurry. This slurry was applied to both surfaces of a 15 μm-thick aluminum foil as a positive electrode core material, dried and then roll-pressed to form a positive electrode mixture layer having a density of 3.3 g / cm 3 . Under the present circumstances, the thickness of the electrode plate which consists of aluminum foil and a positive mix layer was controlled to 160 micrometers. Thereafter, the electrode plate was slit to a width that could be inserted into a can battery case of a cylindrical battery (Part No. 18650) to obtain a positive electrode hoop.

(b)負極の作製
人造黒鉛3kgと、負極結着剤としての日本ゼオン(株)製のBM−400B(スチレン−ブタジエンゴム粒子を40重量%含む水性分散液)150gと、増粘剤としてのCMC30gと、適量の水とを、双腕式練合機にて攪拌し、負極合剤スラリーを調製した。このスラリーを負極芯材である10μm厚の銅箔の両面に塗布し、乾燥後、ロールプレスして、密度が1.4g/cmの負極合剤層を形成した。この際、銅箔および負極合剤層からなる極板の厚みを180μmに制御した。その後、円筒型電池(品番18650)の缶状電池ケースに挿入可能な幅に極板をスリットし、負極のフープを得た。
(B) Production of negative electrode 3 kg of artificial graphite, 150 g of BM-400B (aqueous dispersion containing 40% by weight of styrene-butadiene rubber particles) manufactured by Nippon Zeon Co., Ltd. as a negative electrode binder, and a thickener 30 g of CMC and an appropriate amount of water were stirred with a double arm kneader to prepare a negative electrode mixture slurry. This slurry was applied to both sides of a 10 μm-thick copper foil as a negative electrode core material, dried and then roll-pressed to form a negative electrode mixture layer having a density of 1.4 g / cm 3 . Under the present circumstances, the thickness of the electrode plate which consists of copper foil and a negative mix layer was controlled to 180 micrometers. Thereafter, the electrode plate was slit to a width that could be inserted into a can battery case of a cylindrical battery (Part No. 18650) to obtain a negative electrode hoop.

(c)多孔膜ペーストの調製
フィラー粒子としての住友化学工業(株)製のメディアン径0.3μmのα−アルミナ「AKP50(商品名)」を970gと、膜結着剤として一液型の熱架橋型アクリロニトリル共重合体を8重量%含むNMP溶液774gと、適量のNMPとを、予備攪拌機であるディゾルバで30分間攪拌した。得られた予備攪拌物を、さらに内容積2リットルのビーズミル((株)シンマルエンタープライズ製のKDC−PAILOT−A型)で滞留時間を10分間に設定して攪拌し、不揮発成分40重量%の多孔膜ペーストを調製した。ビーズミルには、円盤状のディスクが内蔵されており、ディスクの回転により、ミルの内容物が攪拌される仕組である。なお、滞留時間とは、ミルの内容積を、ミル内に送り込まれる予備攪拌物の流速で除した値で定義され、分散処理時間に相当する。
(C) Preparation of porous membrane paste 970 g of α-alumina “AKP50 (trade name)” having a median diameter of 0.3 μm manufactured by Sumitomo Chemical Co., Ltd. as filler particles and one-pack type heat as a membrane binder 774 g of an NMP solution containing 8% by weight of a crosslinked acrylonitrile copolymer and an appropriate amount of NMP were stirred for 30 minutes with a dissolver as a preliminary stirrer. The obtained pre-stirred product was further stirred with a bead mill (KDC-PAILOT-A type, manufactured by Shinmaru Enterprise Co., Ltd.) with an internal volume of 2 liters, and the residence time was set to 10 minutes. A porous film paste was prepared. The bead mill incorporates a disk-shaped disk, and the contents of the mill are stirred by the rotation of the disk. The residence time is defined by a value obtained by dividing the internal volume of the mill by the flow rate of the pre-stirred material fed into the mill and corresponds to the dispersion processing time.

熱架橋型アクリロニトリル共重合体には、マスクされた架橋点を有し、アクリロニトリル単位(unit)、アクリル酸ドデシル単位、およびブタジエンモノオキサイド単位を含み、高解離度の親水性基としてスルホン酸基を含むアクリロニトリル共重合体を用いた。
ここで用いたアクリロニトリル共重合体の重量平均分子量は239000であり、40℃で72時間放置しても、5重量%以下しか架橋反応が進行しなかった。また、アクリロニトリル共重合体を170℃で24時間加熱して得られた硬化物の電解液への溶解度Sは5重量%以下であった。加熱前のアクリロニトリル共重合体は、分散媒に完全溶解した。
The thermally cross-linked acrylonitrile copolymer has a masked cross-linking point, contains an acrylonitrile unit, a dodecyl acrylate unit, and a butadiene monooxide unit, and has a sulfonic acid group as a hydrophilic group having a high degree of dissociation. The containing acrylonitrile copolymer was used.
The weight average molecular weight of the acrylonitrile copolymer used here was 239000, and even when it was allowed to stand at 40 ° C. for 72 hours, the crosslinking reaction proceeded only at 5% by weight or less. Further, the solubility S of the cured product obtained by heating the acrylonitrile copolymer at 170 ° C. for 24 hours in the electrolytic solution was 5% by weight or less. The acrylonitrile copolymer before heating was completely dissolved in the dispersion medium.

(d)多孔膜の形成
得られた多孔膜ペーストを、負極合剤層の表面に塗布し、120℃で乾燥させ、厚さ10μmの乾燥塗膜を得た。その後、乾燥塗膜を有する負極を窒素ガス雰囲気中で、170℃で24時間加熱し、一液型熱架橋型アクリロニトリル共重合体を架橋させ、多孔膜を完成させた。
(D) Formation of porous film The obtained porous film paste was applied to the surface of the negative electrode mixture layer and dried at 120 ° C. to obtain a dry coating film having a thickness of 10 μm. Thereafter, the negative electrode having a dried coating film was heated at 170 ° C. for 24 hours in a nitrogen gas atmosphere to crosslink the one-component thermally crosslinked acrylonitrile copolymer to complete a porous film.

(e)非水電解液の調製
エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、メチルエチルカーボネート(MEC)とを、体積比2:3:3で含む混合溶媒に、LiPFを1mol/Lの濃度で溶解し、さらにビニレンカーボネート(VC)を3重量%添加して、非水電解液とした。
(E) Preparation of non-aqueous electrolyte solution In a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (MEC) at a volume ratio of 2: 3: 3, LiPF 6 was added at 1 mol / mol. It melt | dissolved in the density | concentration of L, Furthermore, 3 weight% of vinylene carbonate (VC) was added, and it was set as the non-aqueous electrolyte.

(f)電池の作製
上述の正極、負極および非水電解液を用いて、品番18650の円筒型電池を作製した。まず、正極と負極を、それぞれ所定の長さで切断した。正極芯材には、正極リードの一端を接続した。また、負極芯材には、負極リードの一端を接続した。その後、正極と負極とを、厚さ10μmのポリエチレン樹脂製微多孔性シートからなるセパレータを介して、捲回し、柱状の極板群を構成した。極板群の外面はセパレータで介装した。この極板群を、上部絶縁リングおよび下部絶縁リングで挟まれた状態で、電池缶の内空間に収容した。次いで、上記の非水電解液を5g秤量して、電池缶内に注液し、133Paの減圧雰囲気中で非水電解液を極板群に含浸させた。正極リードの他端は電池蓋の裏面に溶接した。また、負極リードの他端は電池缶の内底面に溶接した。最後に電池缶の開口を、周縁に絶縁パッキンが配された電池蓋で塞いだ。こうして、円筒型のリチウムイオン二次電池を完成した。
(F) Production of Battery A cylindrical battery of product number 18650 was produced using the positive electrode, the negative electrode, and the non-aqueous electrolyte described above. First, the positive electrode and the negative electrode were each cut to a predetermined length. One end of a positive electrode lead was connected to the positive electrode core material. Further, one end of a negative electrode lead was connected to the negative electrode core material. Thereafter, the positive electrode and the negative electrode were wound through a separator made of a polyethylene resin microporous sheet having a thickness of 10 μm to constitute a columnar electrode plate group. The outer surface of the electrode plate group was interposed with a separator. The electrode plate group was accommodated in the inner space of the battery can while being sandwiched between the upper insulating ring and the lower insulating ring. Next, 5 g of the above non-aqueous electrolyte solution was weighed and poured into a battery can, and the electrode plate group was impregnated with the non-aqueous electrolyte solution in a reduced pressure atmosphere of 133 Pa. The other end of the positive electrode lead was welded to the back surface of the battery lid. The other end of the negative electrode lead was welded to the inner bottom surface of the battery can. Finally, the opening of the battery can was closed with a battery lid with insulating packing on the periphery. Thus, a cylindrical lithium ion secondary battery was completed.

《実施例2》
負極合剤層の表面に多孔膜を形成する代わりに、正極合剤層の表面に、実施例1と同様の多孔膜を形成した。以上の他は、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。
Example 2
Instead of forming a porous film on the surface of the negative electrode mixture layer, a porous film similar to that of Example 1 was formed on the surface of the positive electrode mixture layer. Other than the above, a cylindrical lithium ion secondary battery was completed in the same manner as in Example 1.

《比較例1》
膜結着剤として、一液型熱架橋型アクリロニトリル共重合体の代わりに、アクリロニトリル単位とアクリル酸ドデシル単位とを含み、架橋点を有さない、非架橋型アクリロニトリル共重合体を用いて、多孔膜ペーストを調製した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。
<< Comparative Example 1 >>
As a membrane binder, a non-crosslinked acrylonitrile copolymer containing an acrylonitrile unit and a dodecyl acrylate unit and having no crosslinking point is used instead of a one-part thermally crosslinked acrylonitrile copolymer. A film paste was prepared. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used.

《比較例2》
膜結着剤として、一液型熱架橋型アクリロニトリル共重合体の代わりに、ポリフッ化ビニリデン(PVdF)を用いて、多孔膜ペーストを調製した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。
<< Comparative Example 2 >>
A porous film paste was prepared by using polyvinylidene fluoride (PVdF) instead of the one-component thermally crosslinked acrylonitrile copolymer as a film binder. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used.

《比較例3》
膜結着剤として、一液型熱架橋型アクリロニトリル共重合体の代わりに、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF―HFP)を用いて、多孔膜ペーストを調製した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。
<< Comparative Example 3 >>
A porous film paste was prepared using a vinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP) instead of the one-component thermally crosslinked acrylonitrile copolymer as a film binder. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used.

《比較例4》
膜結着剤として、一液型熱架橋型アクリロニトリル共重合体の代わりに、マスクされていない水酸基を含有するポリアクリロニトリル誘導体を用いて、多孔膜ペーストを調製した。多孔膜ペーストには、架橋剤として、末端にイソシアネート基を有するポリイソシアネートを、マスクされていない水酸基を含有するポリアクリロニトリル誘導体100重量部あたり20重量部添加した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。
なお、マスクされていない水酸基を含有するポリアクリロニトリル誘導体100重量部と、末端にイソシアネート基を有するポリイソシアネート20重量部との混合物を、40℃で72時間放置したところ、混合物の5重量%を超える量の架橋反応が進行した。
<< Comparative Example 4 >>
As a film binder, a porous film paste was prepared using a polyacrylonitrile derivative containing an unmasked hydroxyl group in place of the one-component thermally crosslinked acrylonitrile copolymer. To the porous film paste, 20 parts by weight of a polyisocyanate having an isocyanate group at the terminal as a crosslinking agent was added per 100 parts by weight of a polyacrylonitrile derivative containing an unmasked hydroxyl group. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used.
When a mixture of 100 parts by weight of a polyacrylonitrile derivative containing an unmasked hydroxyl group and 20 parts by weight of a polyisocyanate having an isocyanate group at the end was left at 40 ° C. for 72 hours, it exceeded 5% by weight of the mixture. The amount of crosslinking reaction proceeded.

実施例1、2および比較例1〜4に係る多孔膜ペーストの粘度変化率、多孔膜の柔軟性、電池の短絡不良率、および充放電500サイクル後の容量維持率を、上記の方法で評価した。結果を表1に示す。   Viscosity change rate of porous film paste according to Examples 1 and 2 and Comparative Examples 1 to 4, flexibility of porous film, short-circuit failure rate of battery, and capacity retention rate after 500 cycles of charge / discharge were evaluated by the above methods. did. The results are shown in Table 1.

Figure 2005332809
Figure 2005332809

表1において、実施例1、2の短絡不良率と、多孔膜ペーストの粘度変化率は、特に問題のない水準であり、かつ良好な容量維持率(寿命特性)を示している。一方、比較例1、3では、短絡不良率と、多孔膜ペーストの粘度変化率は、特に問題のないレベルであるが、容量維持率は、満足なレベルに達していない。   In Table 1, the short-circuit failure rate of Examples 1 and 2 and the viscosity change rate of the porous film paste are at a level with no particular problem, and show a good capacity retention rate (life characteristics). On the other hand, in Comparative Examples 1 and 3, the short-circuit defect rate and the viscosity change rate of the porous film paste are at levels that are not particularly problematic, but the capacity retention rate has not reached a satisfactory level.

PVdFを用いた比較例2では、膜結着剤が硬く、多孔膜の柔軟性が不十分であり、短絡不良率も比較的高くなっている。架橋剤を別に添加した比較例4では、短絡不良率は特に問題なく、容量維持率も比較的良好であるが、多孔膜ペーストの粘度変化率が高く、製造工程上、実用的ではないと考えられる。   In Comparative Example 2 using PVdF, the membrane binder is hard, the flexibility of the porous membrane is insufficient, and the short-circuit failure rate is relatively high. In Comparative Example 4 in which a cross-linking agent was added separately, the short-circuit failure rate was not particularly problematic and the capacity retention rate was relatively good, but the viscosity change rate of the porous film paste was high, which is not practical in the manufacturing process. It is done.

《実施例3》
膜結着剤として、架橋点の活性化温度が170℃以上である一液型熱架橋型アクリロニトリル共重合体の代わりに、表2に示すような架橋点の活性化温度を有する一液型熱架橋型アクリロニトリル共重合体を用いて、多孔膜ペーストを調製した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。
なお、架橋点の活性化温度は、例えば架橋点をマスクするマスキング剤の分子構造や分子の大きさ、共重合体の分子量、単量体の組成比などのうち、少なくともいずれかを変化させるとことにより行った。
Example 3
As a membrane binder, instead of a one-component thermally crosslinked acrylonitrile copolymer having an activation temperature of 170 ° C. or higher as a crosslinking agent, a one-component heat having a crosslinking point activation temperature as shown in Table 2 is used. A porous film paste was prepared using a cross-linked acrylonitrile copolymer. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used.
Note that the activation temperature of the crosslinking point is changed, for example, by changing at least one of the molecular structure and molecular size of the masking agent that masks the crosslinking point, the molecular weight of the copolymer, the composition ratio of the monomers, and the like. Was done.

各々の一液型熱架橋型アクリロニトリル共重合体を用いた場合について、粘度変化率、多孔膜の柔軟性、電池の短絡不良率、および充放電500サイクル後の容量維持率を、上記の方法で評価した。結果を表2に示す。   For each of the one-component thermally crosslinked acrylonitrile copolymers, the viscosity change rate, the flexibility of the porous membrane, the short-circuit failure rate of the battery, and the capacity retention rate after 500 cycles of charge / discharge are as described above. evaluated. The results are shown in Table 2.

Figure 2005332809
Figure 2005332809

表2において、架橋点の活性化温度が150℃以上の場合について、多孔膜ペーストの粘度変化率が小さくなっている。このことから、架橋点の活性化温度は、150℃以上であることが望ましいと考えられる。   In Table 2, when the activation temperature of the crosslinking point is 150 ° C. or higher, the viscosity change rate of the porous film paste is small. From this, it is considered that the activation temperature of the crosslinking point is desirably 150 ° C. or higher.

なお、架橋のための加熱を空気雰囲気中で行うこと以外、実施例1と同様にして作製した電池においては、電極芯材の酸化が進行していた。電極芯材が酸化すると、電池間における寿命特性のバラツキが大きくなると考えられる。従って、架橋のための加熱は、不活性雰囲気で行うことが好ましい。   In the battery produced in the same manner as in Example 1 except that heating for crosslinking was performed in an air atmosphere, the electrode core material was oxidized. It is considered that when the electrode core material is oxidized, the variation in the life characteristics between the batteries increases. Therefore, it is preferable to perform heating for crosslinking in an inert atmosphere.

《実施例4》
膜結着剤として用いる一液型熱架橋型アクリロニトリル共重合体の膨潤度を表3に示すように変化させたこと以外、実施例1と同じ多孔膜ペーストを調製した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。
なお、一液型熱架橋型アクリロニトリル共重合体の膨潤度の変更は、アクリロニトリル共重合体に導入する官能基の構造もしくは大きさまたは官能基数を変化させることにより行った。
Example 4
The same porous membrane paste as that of Example 1 was prepared except that the swelling degree of the one-component thermally crosslinked acrylonitrile copolymer used as a membrane binder was changed as shown in Table 3. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used.
The degree of swelling of the one-part thermally crosslinked acrylonitrile copolymer was changed by changing the structure or size of the functional group introduced into the acrylonitrile copolymer or the number of functional groups.

各々の一液型熱架橋型アクリロニトリル共重合体の単独からなるシート状硬化物の膨潤度、それらを用いた多孔膜を具備する電池の充放電500サイクル後の容量維持率を、上記の方法で評価した。結果を表3に示す。   The degree of swelling of the sheet-like cured product composed of each of the one-component thermally crosslinked acrylonitrile copolymers, the capacity retention rate after 500 cycles of charge / discharge of the battery comprising the porous film using them, was determined by the above method. evaluated. The results are shown in Table 3.

また、膜結着剤として、一液型熱架橋型アクリロニトリル共重合体の代わりに、比較例1で用いたのと同じ架橋点を有さない非架橋型アクリロニトリル共重合体を用いたこと以外、実施例1と同じ多孔膜ペーストを調製した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。架橋点を有さない非架橋型アクリロニトリル誘導体の単独からなるシートの膨潤度、それを用いた多孔膜を具備する電池の充放電500サイクル後の容量維持率を、上記の方法で評価した。結果を表3に示す。   Further, as a membrane binder, instead of using a one-part thermally crosslinked acrylonitrile copolymer, a non-crosslinked acrylonitrile copolymer that does not have the same crosslinking point as used in Comparative Example 1 was used, The same porous film paste as in Example 1 was prepared. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used. The degree of swelling of a sheet composed solely of a non-crosslinked acrylonitrile derivative having no crosslinking point, and the capacity retention rate after 500 cycles of charge / discharge of a battery comprising the porous film using the sheet were evaluated by the above methods. The results are shown in Table 3.

さらに、膜結着剤として、一液型熱架橋型アクリロニトリル共重合体の代わりに、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVdF―HFP)を用いたこと以外、実施例1と同じ多孔膜ペーストを調製した。この多孔膜ペーストを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池を完成した。PVdF―HFPの単独からなるシートの膨潤度、それを用いた多孔膜を具備する電池の充放電500サイクル後の容量維持率を、上記の方法で評価した。結果を表3に示す。   Further, the same porous membrane as in Example 1 except that vinylidene fluoride-hexafluoropropylene copolymer (PVdF-HFP) was used as the membrane binder instead of the one-pack type thermally crosslinked acrylonitrile copolymer. A paste was prepared. A cylindrical lithium ion secondary battery was completed in the same manner as in Example 1 except that this porous film paste was used. The swelling degree of the sheet made of PVdF-HFP alone and the capacity retention rate after 500 cycles of charge / discharge of the battery comprising the porous film using the PVdF-HFP were evaluated by the above methods. The results are shown in Table 3.

Figure 2005332809
Figure 2005332809

表3において、膨潤度が700%以下の場合において、良好な寿命特性が得られている。膨潤度が900%の場合には、容量維持率がやや低下している。一方、マスクされていない水酸基を含有するアクリロニトリル共重合体とポリイソシアネートとの組み合わせや、PVdF―HFPは、非水電解液に溶解したため、膨潤度を測定することができなかった。   In Table 3, good lifetime characteristics are obtained when the degree of swelling is 700% or less. When the degree of swelling is 900%, the capacity retention rate is slightly lowered. On the other hand, since the combination of an acrylonitrile copolymer containing an unmasked hydroxyl group and a polyisocyanate, or PVdF-HFP was dissolved in a non-aqueous electrolyte, the degree of swelling could not be measured.

以上のように、本発明によれば、優れた寿命特性を有するリチウムイオン二次電池を、生産性良く、安定して提供することができる。   As described above, according to the present invention, it is possible to stably provide a lithium ion secondary battery having excellent life characteristics with high productivity.

円筒型のリチウムイオン二次電池の一例の縦断面図である。It is a longitudinal cross-sectional view of an example of a cylindrical lithium ion secondary battery.

符号の説明Explanation of symbols

1 電池缶
2 電池蓋
3 絶縁パッキン
5 正極
5a 正極リード
6 負極
6a 負極リード
7 セパレータ
8a 上部絶縁リング
8b 下部絶縁リング
DESCRIPTION OF SYMBOLS 1 Battery can 2 Battery cover 3 Insulation packing 5 Positive electrode 5a Positive electrode lead 6 Negative electrode 6a Negative electrode lead 7 Separator 8a Upper insulating ring 8b Lower insulating ring

Claims (9)

正極芯材に正極合剤層を担持させて正極を得る工程、
負極芯材に負極合剤層を担持させて負極を得る工程、
前記正極および前記負極の少なくとも一方の表面に接着された電子絶縁性を有する多孔膜を形成する工程、
前記正極と前記負極との間にセパレータを介在させて極板群を構成する工程、ならびに
前記極板群に非水電解液を含浸させる工程、を有するリチウムイオン二次電池の製造法であって、
前記多孔膜を形成する工程は、熱架橋型樹脂を含む膜結着剤と、フィラー粒子とを含む多孔膜ペーストを調製する工程、および前記多孔膜ペーストを前記正極および前記負極の少なくとも一方の表面に塗布し、得られた塗膜を加熱する工程を有する、製造法。
A step of obtaining a positive electrode by supporting a positive electrode mixture layer on the positive electrode core material;
A step of obtaining a negative electrode by supporting a negative electrode mixture layer on the negative electrode core material;
Forming a porous film having an electronic insulating property adhered to at least one surface of the positive electrode and the negative electrode;
A method for producing a lithium ion secondary battery, comprising: a step of forming an electrode plate group by interposing a separator between the positive electrode and the negative electrode; and a step of impregnating the electrode plate group with a non-aqueous electrolyte. ,
The step of forming the porous film includes a step of preparing a porous film paste containing a film binder containing a thermally crosslinkable resin and filler particles, and a surface of at least one of the positive electrode and the negative electrode on the porous film paste. The manufacturing method which has the process of apply | coating to and heating the obtained coating film.
前記熱架橋型樹脂が、マスクされた架橋点を有する一液型樹脂である、請求項1記載のリチウムイオン二次電池の製造法。   The method for producing a lithium ion secondary battery according to claim 1, wherein the thermally crosslinkable resin is a one-component resin having a masked crosslinking point. 前記熱架橋型樹脂が、ポリアクリロニトリル鎖を含む、請求項1記載のリチウムイオン二次電池の製造法。   The method for producing a lithium ion secondary battery according to claim 1, wherein the thermally crosslinkable resin contains a polyacrylonitrile chain. 前記マスクされた架橋点が、100℃以上で活性化する、請求項2記載のリチウムイオン二次電池の製造法。   The method for producing a lithium ion secondary battery according to claim 2, wherein the masked crosslinking point is activated at 100 ° C. or higher. 前記塗膜を加熱する温度が、150℃以上である、請求項1記載のリチウムイオン二次電池の製造法。   The manufacturing method of the lithium ion secondary battery of Claim 1 whose temperature which heats the said coating film is 150 degreeC or more. 前記塗膜を加熱する工程が、不活性ガス中で行われる、請求項1記載のリチウムイオン二次電池の製造法。   The method for producing a lithium ion secondary battery according to claim 1, wherein the step of heating the coating film is performed in an inert gas. 正極芯材およびそれに担持された正極合剤層を含む正極、負極芯材およびそれに担持された負極合剤層を含む負極、前記正極および前記負極の少なくとも一方の表面に接着された電子絶縁性を有する多孔膜、ならびに非水電解液を具備するリチウムイオン二次電池であって、前記多孔膜が、フィラー粒子および膜結着剤を含み、前記膜結着剤が、熱架橋型樹脂の硬化物を含む、リチウムイオン二次電池。   A positive electrode including a positive electrode core material and a positive electrode mixture layer supported thereon, a negative electrode including a negative electrode core material and a negative electrode mixture layer supported thereon, and an electronic insulating property adhered to at least one surface of the positive electrode and the negative electrode A lithium ion secondary battery comprising a porous membrane having a nonaqueous electrolyte, wherein the porous membrane includes filler particles and a membrane binder, and the membrane binder is a cured product of a thermally crosslinkable resin. Lithium ion secondary battery. 前記硬化物を前記非水電解液に60℃で72時間浸漬した場合、前記硬化物の前記非水電解液による膨潤度が、700%以下である、請求項7記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 7, wherein when the cured product is immersed in the nonaqueous electrolytic solution at 60 ° C. for 72 hours, the degree of swelling of the cured product by the nonaqueous electrolytic solution is 700% or less. 前記非水電解液が、非水溶媒および前記非水溶媒に溶解するリチウム塩を含み、前記非水溶媒が、炭酸エステルを含む、請求項8記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 8, wherein the non-aqueous electrolyte includes a non-aqueous solvent and a lithium salt that dissolves in the non-aqueous solvent, and the non-aqueous solvent includes a carbonate ester.
JP2005121275A 2004-04-19 2005-04-19 Lithium ion secondary battery and manufacturing method thereof Active JP5088807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005121275A JP5088807B2 (en) 2004-04-19 2005-04-19 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004122893 2004-04-19
JP2004122893 2004-04-19
JP2005121275A JP5088807B2 (en) 2004-04-19 2005-04-19 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005332809A true JP2005332809A (en) 2005-12-02
JP5088807B2 JP5088807B2 (en) 2012-12-05

Family

ID=35487279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005121275A Active JP5088807B2 (en) 2004-04-19 2005-04-19 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5088807B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
JP2009117159A (en) * 2007-11-06 2009-05-28 Sony Corp Positive electrode and lithium ion secondary battery
WO2009123168A1 (en) 2008-03-31 2009-10-08 日本ゼオン株式会社 Porous film and secondary cell electrode
JP2010520095A (en) 2007-03-07 2010-06-10 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
WO2015133424A1 (en) * 2014-03-03 2015-09-11 日本ゼオン株式会社 Secondary cell binder composition
JPWO2015178241A1 (en) * 2014-05-20 2017-04-20 日本ゼオン株式会社 Electrochemical element electrode composite particles and method for producing electrochemical element electrode composite particles

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH09213366A (en) * 1996-01-30 1997-08-15 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09274933A (en) * 1996-04-03 1997-10-21 Yuasa Corp Thin lithium battery and its manufacture
JPH09289022A (en) * 1996-04-24 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
JPH10106578A (en) * 1996-09-30 1998-04-24 Sanyo Electric Co Ltd Lithium battery and its manufacture
JP2000067856A (en) * 1998-08-18 2000-03-03 Matsushita Battery Industrial Co Ltd Manufacture of electrode for lithium secondary battery
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
JP2003157851A (en) * 2001-08-30 2003-05-30 Hitachi Chem Co Ltd Thermosetting polyvinyl alcohol-based binder resin composition, mix slurry, electrode, nonaqueous electrolyte secondary battery, and thermosetting polyvinyl alcohol-based binder resin for electrode material
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (en) * 1994-01-31 1995-08-18 Sony Corp Nonaqueous electrolyte secondary battery
JPH09213366A (en) * 1996-01-30 1997-08-15 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JPH09274933A (en) * 1996-04-03 1997-10-21 Yuasa Corp Thin lithium battery and its manufacture
JPH09289022A (en) * 1996-04-24 1997-11-04 Seiko Instr Kk Nonaqueous electrolyte secondary battery
JPH10106578A (en) * 1996-09-30 1998-04-24 Sanyo Electric Co Ltd Lithium battery and its manufacture
JP2000067856A (en) * 1998-08-18 2000-03-03 Matsushita Battery Industrial Co Ltd Manufacture of electrode for lithium secondary battery
JP2002289174A (en) * 2001-01-17 2002-10-04 Nisshinbo Ind Inc Active material mix powder for battery, electrode composition, carbon material mix powder for secondary- battery electrode, secondary battery, and electric double layer capacitor, polarizable electrode composition, polarizable electrode, and electric double layer capacitor
WO2002076924A1 (en) * 2001-03-26 2002-10-03 Nisshinbo Industries, Inc., Ionic liquid, electrolyte salt for storage device, electrolytic solution for storage device, electric double layer capacitor, and secondary battery
JP2003157851A (en) * 2001-08-30 2003-05-30 Hitachi Chem Co Ltd Thermosetting polyvinyl alcohol-based binder resin composition, mix slurry, electrode, nonaqueous electrolyte secondary battery, and thermosetting polyvinyl alcohol-based binder resin for electrode material
JP2003317722A (en) * 2002-04-26 2003-11-07 Kureha Chem Ind Co Ltd Binder composition for nonaqueous secondary battery electrode, electrode mix composition, electrode and secondary battery

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010520095A (en) 2007-03-07 2010-06-10 エルジー・ケム・リミテッド Organic / inorganic composite separation membrane and electrochemical device provided with the same
WO2009014388A2 (en) * 2007-07-25 2009-01-29 Lg Chem, Ltd. Electrochemical device and its manufacturing method
WO2009014388A3 (en) * 2007-07-25 2009-03-19 Lg Chemical Ltd Electrochemical device and its manufacturing method
US9799866B2 (en) 2007-07-25 2017-10-24 Lg Chem, Ltd. Electrochemical device and its manufacturing method
JP2009117159A (en) * 2007-11-06 2009-05-28 Sony Corp Positive electrode and lithium ion secondary battery
US7951491B2 (en) 2007-11-06 2011-05-31 Sony Corporation Positive electrode and lithium ion secondary battery
WO2009123168A1 (en) 2008-03-31 2009-10-08 日本ゼオン株式会社 Porous film and secondary cell electrode
KR20110005793A (en) 2008-03-31 2011-01-19 제온 코포레이션 Porous film and secondary cell electrode
EP2747173A1 (en) 2008-03-31 2014-06-25 Zeon Corporation Porous film and secondary battery electrode
WO2015133424A1 (en) * 2014-03-03 2015-09-11 日本ゼオン株式会社 Secondary cell binder composition
JPWO2015133424A1 (en) * 2014-03-03 2017-04-06 日本ゼオン株式会社 Secondary battery binder composition
JPWO2015178241A1 (en) * 2014-05-20 2017-04-20 日本ゼオン株式会社 Electrochemical element electrode composite particles and method for producing electrochemical element electrode composite particles

Also Published As

Publication number Publication date
JP5088807B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
KR100803470B1 (en) Lithium ion secondary battery and method for producing same
JP5077864B2 (en) Lithium ion secondary battery and its manufacturing method
KR100853593B1 (en) Lithium ion secondary battery and method for producing same
TWI608023B (en) Acrylonitrile Copolymer Adhesive and Its Application in Lithium Ion Battery
JP7167440B2 (en) Composition for non-aqueous secondary battery adhesive layer, adhesive layer for non-aqueous secondary battery, laminate, and non-aqueous secondary battery
JP4763253B2 (en) Lithium ion secondary battery
JP3949686B2 (en) Metal alloy negative electrode for lithium secondary battery, method for producing the same, and battery including the same
JP4794824B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4645778B2 (en) Electrode for lithium ion secondary battery
WO2005117169A1 (en) Wound nonaqueous secondary battery and electrode plate used therein
WO2006061940A1 (en) Lithium ion secondary battery and method for producing negative electrode thereof
JP5088807B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4368114B2 (en) Lithium ion secondary battery and method for producing secondary battery
WO2014196436A1 (en) Porous film slurry composition for lithium ion secondary batteries, separator for lithium ion secondary batteries, electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP6798505B2 (en) Thermal layer for lithium-ion secondary battery
JP6414202B2 (en) Secondary battery binder composition
JP6863288B2 (en) Electrodes for lithium-ion secondary batteries
JP2005222780A (en) Lithium-ion secondary battery
JP4389340B2 (en) Binder composition for electrode of lithium ion secondary battery, slurry, electrode, and battery
JP2006012561A (en) Positive electrode for battery/reactive polymer carrying porous film/negative electrode laminated body
JPH08124560A (en) Manufacture of plate for nonaqueous electrolytic secondary battery
JPH08124561A (en) Manufacture of plate for nonaqueous electrolyte secondary battery and active material applying liquid used in the manufacture
JP2005310658A (en) Binder for non-aqueous electrolytic liquid primary battery
JP2005063825A (en) Slurry composition for positive electrode of nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061226

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20070427

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120605

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120906

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5088807

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250