JPH08180853A - Separator and lithium secondary battery - Google Patents

Separator and lithium secondary battery

Info

Publication number
JPH08180853A
JPH08180853A JP6336052A JP33605294A JPH08180853A JP H08180853 A JPH08180853 A JP H08180853A JP 6336052 A JP6336052 A JP 6336052A JP 33605294 A JP33605294 A JP 33605294A JP H08180853 A JPH08180853 A JP H08180853A
Authority
JP
Japan
Prior art keywords
negative electrode
separator
electrode layer
secondary battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6336052A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Hiroshi Soejima
博 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6336052A priority Critical patent/JPH08180853A/en
Publication of JPH08180853A publication Critical patent/JPH08180853A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a Li secondary battery excellent in charging and discharg ing cycle life and excellent in long-term keeping property with high charging and discharging capacity, and a separator therefor. CONSTITUTION: A Li secondary battery has a Li secondary battery forming separator 4 having porous insulating films 42 having electrolyte holding property on both side of a Li-ion permeable metal film 41, a positive electrode layer 3 provided on one side of the separator 4 for holding an electrolyte consisting of an organic solvent solution of Li salt and a Li alloy negative electrode layer 5 provided on the other side. The metal film 41 of the separator 3 functions as a Li-ion permeable bipolar electrode, and also functions to moderate the local current collection to the negative electrode surface protruding part derived from the change with the lapse of time of the negative electrode surface by charge and discharge, and the local pulverization of the negative electrode and the generation of dendrite are suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電のサイクル寿命
や高充放電容量の維持性に優れるLi二次電池を形成し
うるセパレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a separator capable of forming a Li secondary battery having excellent charge / discharge cycle life and high charge / discharge capacity.

【0002】[0002]

【従来の技術】従来、Li二次電池を形成する際に正極
層と負極層の間に介在させるセパレータとしては、多孔
性ポリプロピレンフィルムやその表面に界面活性剤をコ
ートして親水性としたものなどからなる多孔性絶縁膜が
知られていた。かかるセパレータは、電解液を保持して
Liイオンがその孔を介し負極上に電析しLiが負極中
に直ちに吸収されることを可能にし、それにより正・負
極間での電池反応を可能とするものである。
2. Description of the Related Art Conventionally, as a separator to be interposed between a positive electrode layer and a negative electrode layer when forming a Li secondary battery, a porous polypropylene film or a surface of which is coated with a surfactant to make it hydrophilic. A porous insulating film made of, for example, was known. Such a separator holds the electrolytic solution, and allows Li ions to be electrodeposited on the negative electrode through the pores and allows Li to be immediately absorbed in the negative electrode, thereby enabling a battery reaction between the positive and negative electrodes. To do.

【0003】しかしながら、従来の多孔性絶縁膜からな
るセパレータにあっては、その片面に正極層を設け、他
面に負極層を設けてLi二次電池を形成した場合に、充
放電を繰り返すうちに充放電容量が漸次低下し、電池の
サイクル寿命、ないし充放電容量の維持性に乏しい問題
点があった。
However, in a conventional separator made of a porous insulating film, when a positive electrode layer is provided on one surface and a negative electrode layer is provided on the other surface to form a Li secondary battery, charging and discharging are repeated. In addition, the charge / discharge capacity gradually decreased, and there was a problem that the cycle life of the battery or the charge / discharge capacity was not maintained.

【0004】[0004]

【発明が解決しようとする課題】本発明は、充放電のサ
イクル寿命に優れて高充放電容量の長期維持性に優れる
Li二次電池を形成できるセパレータを得ることを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to obtain a separator capable of forming a Li secondary battery having excellent charge / discharge cycle life and excellent long-term maintainability of high charge / discharge capacity.

【0005】[0005]

【課題を解決するための手段】本発明は、Liイオン透
過性の金属膜の両側に電解液保持性の多孔性絶縁膜を有
することを特徴とするLi二次電池形成用のセパレー
タ、及びLi塩の有機溶媒溶液からなる電解液を保持す
る前記セパレータの片側に正極層を有し、他方側にLi
合金負極層を有することを特徴とするLi二次電池を提
供するものである。
Means for Solving the Problems The present invention has a separator for forming a Li secondary battery, characterized in that it has an electrolyte solution-holding porous insulating film on both sides of a Li ion permeable metal film. A positive electrode layer is provided on one side of the separator holding an electrolytic solution composed of an organic solvent solution of salt, and Li is provided on the other side.
An Li secondary battery having an alloy negative electrode layer is provided.

【0006】[0006]

【実施態様の例示】Li二次電池における正極層や負極
層は、集電体に付設したものなどとしてセパレータに対
し配置することもできる。
[Exemplary Embodiments] The positive electrode layer and the negative electrode layer in the Li secondary battery can be arranged on the separator as those attached to the current collector.

【0007】[0007]

【作用】本発明者らは上記の課題を克服するために鋭意
研究を重ねるなかで、従来の多孔性絶縁膜からなるセパ
レータとLi合金負極層を用いたLi二次電池における
短寿命の問題は、負極のLi吸収に伴う負極表面の凹凸
状態の変化で凸部に電流が局所集中し、この局所的な電
流集中がその部分において局所的な負極合金の粉体化の
促進、局所的な過大電流密度化の誘発による金属Liの
析出が引き起こす電解液の劣化、あるいはLiデンドラ
イトの成長を引き起こし、その結果、電池のサイクル寿
命、ないしは充放電容量維持率の低下を招くことが原因
であることを究明した。
In order to overcome the above-mentioned problems, the present inventors have made intensive studies and found that the problem of a short life in a Li secondary battery using a conventional separator made of a porous insulating film and a Li alloy negative electrode layer , The current is locally concentrated on the convex portion due to the change in the unevenness of the negative electrode surface due to the absorption of Li in the negative electrode, and this local current concentration locally promotes the pulverization of the negative electrode alloy in that portion, and the local excessiveness is caused. The cause is that deterioration of the electrolytic solution caused by precipitation of metallic Li due to induction of current density or growth of Li dendrite is caused, resulting in a decrease in battery cycle life or charge / discharge capacity retention rate. Investigated.

【0008】すなわち前記において本発明者らは、高い
放電容量のLi二次電池の形成には、電池内における高
い充放電容量の正極活物質の増量をはかり、一方、負極
活物質が過少では放電容量や充放電のサイクル寿命の低
下を招くことから少量で大きな充放電容量を示してサイ
クル寿命に優れる負極が有利であり、負極としては、か
かる少量で高放電容量を示すLi−Al合金、Li−I
n合金、Li−Pb合金等のLi合金が有利である知見
を得た。炭素負極では、炭素量の低減に限界があるため
高放電容量の負極形成が困難である。
That is, in the above description, the present inventors have attempted to form a Li secondary battery having a high discharge capacity by increasing the amount of the positive electrode active material having a high charge / discharge capacity in the battery, while the negative electrode active material is discharged in an insufficient amount. A negative electrode that exhibits a large charge / discharge capacity with a small amount and is excellent in cycle life is advantageous because it causes a decrease in the capacity and the cycle life of charging / discharging, and as the negative electrode, a Li-Al alloy, Li that exhibits a high discharge capacity with such a small amount is used. -I
It was found that Li alloys such as n alloy and Li-Pb alloy are advantageous. In the carbon negative electrode, it is difficult to form a high discharge capacity negative electrode because there is a limit to the reduction of the carbon amount.

【0009】従って本発明は、上記したLi合金負極に
特有の問題を克服したものであり、多孔性絶縁膜の間に
Liイオン透過性の金属膜を介在させることにより、そ
の金属膜が充電時には正極側の表面をカソード、負極側
の表面をアノードとする複極性電極として機能し、放電
時には正極側の表面をアノード、負極側の表面をカソー
ドとする複極性電極として機能してLiイオンが透過す
ると共に、特に正極/負極間の電流密度分布を均一化す
る機能を示し、上記した局所的な電流集中を防止するこ
とが可能となる。また当該金属膜内においては充放電
中、Li濃度が一定に維持されるためLi吸放出による
体積変化がなくて粉体化することもなく電流分布均一化
機能を持続して発揮することになる。以上の如く、上記
した電流集中の解消が可能なため充放電サイクルの長寿
命化もしくは高充放電容量の維持が可能となる。
Therefore, the present invention has overcome the problems peculiar to the Li alloy negative electrode described above. By interposing a Li ion permeable metal film between the porous insulating films, the metal film is charged during charging. It functions as a bipolar electrode with the positive electrode surface as the cathode and the negative electrode surface as the anode. During discharge, it functions as the bipolar electrode with the positive electrode surface as the anode and the negative electrode surface as the cathode, allowing Li ions to pass through. In addition, in particular, it has a function of equalizing the current density distribution between the positive electrode and the negative electrode, and it becomes possible to prevent the above-mentioned local current concentration. Further, in the metal film, since the Li concentration is maintained constant during charge and discharge, there is no volume change due to Li absorption and release, and there is no pulverization, so that the current distribution uniformizing function is continuously exhibited. . As described above, since the current concentration described above can be eliminated, it is possible to extend the life of the charge / discharge cycle or maintain a high charge / discharge capacity.

【0010】[0010]

【実施例】本発明のセパレータは、Liイオン透過性の
金属膜の両側に電解液保持性の多孔性絶縁膜を有してL
i二次電池の形成に用いるものである。また本発明のL
i二次電池は、Li塩の有機溶媒溶液からなる電解液を
保持する前記セパレータの片側に正極層を有し、他方側
にLi合金負極層を有するものである。そのLi二次電
池の例を図1に示した。
EXAMPLE A separator according to the present invention has a lithium ion permeable metal film having an electrolyte holding porous insulating film on both sides thereof.
i Used for forming a secondary battery. Further, L of the present invention
The i secondary battery has a positive electrode layer on one side and a Li alloy negative electrode layer on the other side of the separator holding an electrolytic solution made of an organic solvent solution of Li salt. An example of the Li secondary battery is shown in FIG.

【0011】図1に例示の電池は、コイン型のものを示
したものであり、1,7は電池缶、2,6はNi板から
なる集電体、3は正極層、4はセパレータ、41はその
Liイオン透過性の金属膜、42は多孔性絶縁膜、5は
Li合金負極層、8は絶縁封止材である。シート状の正
極層と負極層をセパレータを介して積層したものを捲回
したものなどからなる捲回型のLi二次電池などについ
ても前記コイン型電池に準じて形成することができる。
The battery illustrated in FIG. 1 is a coin type battery, 1 and 7 are battery cans, 2 and 6 are collectors made of Ni plate, 3 is a positive electrode layer, 4 is a separator, 41 is the Li ion permeable metal film, 42 is a porous insulating film, 5 is a Li alloy negative electrode layer, and 8 is an insulating sealing material. A wound Li secondary battery, which is formed by winding a sheet-shaped positive electrode layer and a negative electrode layer laminated via a separator, and the like can also be formed according to the coin-type battery.

【0012】セパレータは、正極層と負極層の間に介在
してLiイオンを介した電池反応を可能とするものであ
るが、本発明においてかかるセパレータは、図例の如く
Liイオン透過性の金属膜の両側に電解液保持性の多孔
性絶縁膜を配置した形態に形成される。その金属膜と多
孔性絶縁膜は、層間への電解液の浸入を防止するため密
着一体化していることが好ましいが、これに限定するも
のではない。
The separator is interposed between the positive electrode layer and the negative electrode layer to enable a battery reaction through Li ions. In the present invention, the separator is a Li ion permeable metal as shown in the figure. It is formed in a form in which an electrolyte retaining porous insulating film is arranged on both sides of the film. The metal film and the porous insulating film are preferably adhered and integrated in order to prevent the electrolyte solution from entering between the layers, but the invention is not limited to this.

【0013】図2に他のセパレータを例示した。このセ
パレータ4は、Liイオン透過性の金属膜43の両側に
異なる特性の多孔性絶縁膜44,45を有してなる。従
って本発明のセパレータにおいて、その金属膜の両側に
設けられる多孔性絶縁膜は、同じものであってもよい
し、異なるものであってもよく、形成目的のLi二次電
池に応じて適宜に決定することができる。
FIG. 2 illustrates another separator. The separator 4 has porous insulating films 44 and 45 having different characteristics on both sides of a Li ion permeable metal film 43. Therefore, in the separator of the present invention, the porous insulating films provided on both sides of the metal film may be the same or different, and may be appropriately selected depending on the Li secondary battery to be formed. You can decide.

【0014】金属膜としては、Liイオン透過性の種々
のものを用いることができ、例えばアルミニウムやビス
マス、インジウムや錫、鉛などのLiイオンの拡散速度
に優れる金属(合金を含む)からなるものが好ましい。
金属膜の厚さは、無孔性等の点より0.01μm以上が
好ましく、また膜厚の均一性によるLiイオン透過の均
等性の点より10μm以下が好ましい。就中0.05〜
0.5μmの厚さが好ましい。
As the metal film, various Li ion permeable materials can be used. For example, a metal film (including an alloy) such as aluminum, bismuth, indium, tin, or lead having a high diffusion rate of Li ions. Is preferred.
The thickness of the metal film is preferably 0.01 μm or more from the viewpoint of non-porosity and the like, and is preferably 10 μm or less from the viewpoint of uniformity of Li ion permeation due to the uniformity of the film thickness. Above all 0.05
A thickness of 0.5 μm is preferred.

【0015】金属膜の両側に設ける多孔性絶縁膜は、電
解液の保持を目的とする。従って、例えばポリプロピレ
ンやポリエチレン等のポリオレフィンからなる多孔性ポ
リマーフィルムやガラスフィルター、不織布の如き多孔
性素材からなる、電解液を保持する能力を有する適宜な
ものを用いることができる。多孔性絶縁膜を介した電解
液の保持は、多孔性絶縁膜に電解液を含浸させたり、充
填する方式、あるいは電池缶内に電解液を充填する方式
などの適宜な方式で達成してよい。
The porous insulating films provided on both sides of the metal film are intended to retain the electrolytic solution. Therefore, for example, a porous polymer film made of polyolefin such as polypropylene or polyethylene, a glass filter, or a porous material such as a nonwoven fabric, which is capable of holding an electrolytic solution, may be used. The holding of the electrolytic solution through the porous insulating film may be achieved by an appropriate method such as a method of impregnating or filling the porous insulating film with the electrolytic solution, or a method of filling the electrolytic solution into the battery can. .

【0016】多孔性絶縁膜の厚さは、形成目的の電池等
に応じて適宜に決定することができ、一般には500μ
m以下、就中1〜300μm、特に5〜100μmとされ
る。なお多孔性絶縁膜は、電解液の保持能に優れる例え
ばポリビニレンカーボネートやポリビニルピロリドンな
どからなるコーティング膜を有していてもよい。また上
記した金属膜と多孔性絶縁膜が密着一体化したセパレー
タの形成は、多孔性絶縁膜を損傷させないで金属膜を付
設できる、例えばクラスターイオンビーム蒸着方式、パ
ルスプラズマ蒸着方式、減圧プラズマ溶射方式の如き低
温成膜方式などの適宜な方式で行うことができる。
The thickness of the porous insulating film can be appropriately determined depending on the intended battery and the like, and is generally 500 μm.
m or less, especially 1 to 300 μm, especially 5 to 100 μm. The porous insulating film may have a coating film made of, for example, polyvinylene carbonate or polyvinylpyrrolidone, which has an excellent ability to retain an electrolytic solution. Further, the formation of the separator in which the metal film and the porous insulating film are adhered and integrated can be performed by attaching a metal film without damaging the porous insulating film, for example, a cluster ion beam vapor deposition method, a pulse plasma vapor deposition method, a low pressure plasma spraying method. It can be performed by an appropriate method such as a low temperature film forming method.

【0017】本発明においてLi二次電池は、Li塩の
有機溶媒溶液からなる電解液を保持する当該セパレータ
の片側に正極層を有し、他方側にLi合金負極層を有す
るものであればよく、その他の点については特に限定は
なく適宜に決定することができる。
In the present invention, the Li secondary battery may be any one as long as it has a positive electrode layer on one side and a Li alloy negative electrode layer on the other side of the separator holding an electrolytic solution consisting of an organic solvent solution of Li salt. The other points are not particularly limited and can be appropriately determined.

【0018】従って前記の点を除き、従来に準じた仕様
のLi二次電池を形成でき、電池形態なども使用目的等
に応じて適宜に決定してよく、例えばコイン型やボタン
型、あるいは捲回体型などのような任意な形態とするこ
とができる。また正極層や負極層の形態についても、電
池形態などに応じて適宜に決定でき、図1に例示の如く
正極層3や負極層5が集電体2,6に付設された形態、
あるいはその集電体を有しない形態などとすることがで
きる。
Therefore, except for the above points, it is possible to form a Li secondary battery having specifications conforming to the conventional one, and the battery form and the like may be appropriately determined according to the intended use. For example, a coin type, a button type, or a winding type. It may have any shape such as a revolving type. Further, the form of the positive electrode layer and the negative electrode layer can be appropriately determined according to the form of the battery, and the form in which the positive electrode layer 3 and the negative electrode layer 5 are attached to the current collectors 2 and 6 as illustrated in FIG.
Alternatively, the current collector may not be provided.

【0019】ちなみに正極層については、金属酸化物系
の適宜なものを用いて形成することができ、公知物のい
ずれも用いうる。前記金属酸化物系正極層の例として
は、Liを含有する、Ti、Mo、Cu、Nb、V、M
n、Cr、Ni、Fe、Co、P等の金属の複合酸化
物、硫化物、セレン化物、V25などがあげられる。
Incidentally, the positive electrode layer can be formed by using an appropriate metal oxide-based material, and any known material can be used. Examples of the metal oxide-based positive electrode layer include Ti, Mo, Cu, Nb, V, and M containing Li.
Examples thereof include complex oxides of metals such as n, Cr, Ni, Fe, Co and P, sulfides, selenides and V 2 O 5 .

【0020】前記したLi含有の金属酸化物系正極層の
具体例としては、LiMnO2、LiMn24、LiM
2-xx4、LiNiO2、LiNiMO2、LiCo
2、LiCrO2、LiFeO2、LiVO2、LiwCo
1-x-yxy2+z(ただし、Mは1種又は2種以上の遷
移金属、wは0<w≦2、xは0≦x<1、yは0<y
<1、zは−1≦z≦4である。)、あるいはLiない
しLi・Coのリン酸塩及び/又はCoないしLi・Co
の酸化物を成分として1モルのLiあたり0.1モル以
上のCoと0.2モル以上のPを含有するものなどを活
物質とするものがあげられる。
Specific examples of the Li-containing metal oxide positive electrode layer described above include LiMnO 2 , LiMn 2 O 4 , and LiM.
n 2-x M x O 4 , LiNiO 2, LiNiMO 2, LiCo
O 2, LiCrO 2, LiFeO 2 , LiVO 2, Li w Co
1-xy M x P y O 2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y
<1, z is −1 ≦ z ≦ 4. ), Or Li to Li · Co phosphate and / or Co to Li · Co
The active material may be, for example, one containing 0.1 mol or more of Co and 0.2 mol or more of P per mol of Li as the active material.

【0021】Li合金負極層についても、リチウム合金
を用いて適宜に形成することができる。そのリチウム合
金としては、Liと、例えばAl、Pb、Sn、In、B
i、Ag、Ba、Ca、Hg、Pd、Pt、Sr、Te等の
金属との2元又は3元以上の合金に、必要に応じてS
i、Cd、Zn、La等を添加したものなどがあげられる。
The Li alloy negative electrode layer can also be appropriately formed using a lithium alloy. The lithium alloy includes Li and, for example, Al, Pb, Sn, In, and B.
A binary or ternary or more alloy with a metal such as i, Ag, Ba, Ca, Hg, Pd, Pt, Sr, Te, etc.
Examples thereof include those to which i, Cd, Zn, La, etc. are added.

【0022】前記リチウム合金からなる負極の具体例と
しては、例えばAl、Bi、Sn又はIn等とLiとの
金属間化合物などからなるLi合金、LiとPbの合金
にLa等を添加して機械的特性を改善したもの、あるい
はAg、Al、Mg、Zn又はCaの少なくとも1種か
らなるX成分を含むLi−X−Te系合金などを用いた
ものがあげられる。リチウム合金におけるリチウム以外
の成分の含有量は、原子比に基づいて80%以下、就中
20〜60%、特に30〜60%が好ましい。
Specific examples of the negative electrode made of the lithium alloy include, for example, a Li alloy made of an intermetallic compound of Al, Bi, Sn, In or the like and Li, or an alloy of Li and Pb to which La or the like is added. Examples of the alloy include those having improved physical properties, or those using a Li—X—Te-based alloy containing an X component composed of at least one of Ag, Al, Mg, Zn, and Ca. The content of components other than lithium in the lithium alloy is 80% or less based on the atomic ratio, preferably 20 to 60%, and particularly preferably 30 to 60%.

【0023】充放電のサイクル寿命、高起電力性、高放
電容量性、高エネルギー密度性などの点より特に好まし
く用いうるリチウム合金は、Li−Ag−Te系合金か
らなるLi:Ag:Teの原子比が80〜150:1〜
20:0.001〜30のものなどであり、Liを80
原子%以上含有するものである。
A lithium alloy which can be particularly preferably used in terms of charge / discharge cycle life, high electromotive force, high discharge capacity, high energy density and the like is Li: Ag: Te composed of Li-Ag-Te alloy. Atomic ratio 80-150: 1-
20: 0.001 to 30 and the like, 80% Li
It contains at least atomic%.

【0024】正極層、Li合金負極層の形成は、例えば
前記活物質等の極形成材を必要に応じてアセチレンブラ
ックやケッチェンブラック等の導電材料、及びポリテト
ラフルオロエチレンやポリエチレン、ポリフッ化ビニリ
デンやエチレン・プロピレン・ジエン共重合体等の結着
剤と共に、キャスティング方式や圧縮成形方式、ロール
成形方式やドクターブレード方式、圧延方式や熱間押出
方式などの適宜な方式で成形する方法や、各種の蒸着方
式や溶融メッキ方式などにより膜形成する方法などで行
うことができる。正極層や負極層の厚さは、500μm
以下、就中300μm以下、特に5〜200μmが一般的
であるが1mmを超える厚さとするときもあり、その厚さ
は適宜に決定することができる。
The positive electrode layer and the Li alloy negative electrode layer are formed, for example, by using a conductive material such as acetylene black or Ketjen black, and an electrode forming material such as the above-mentioned active material, and polytetrafluoroethylene, polyethylene, or polyvinylidene fluoride. Various methods such as casting method, compression molding method, roll molding method, doctor blade method, rolling method and hot extrusion method together with a binder such as ethylene / propylene / diene copolymer It can be performed by a method of forming a film by a vapor deposition method or a hot dipping method. The thickness of the positive and negative electrode layers is 500 μm
In the following, the thickness is generally 300 μm or less, particularly 5 to 200 μm in general, but the thickness may exceed 1 mm, and the thickness can be appropriately determined.

【0025】上記したように正極層や負極層は、集電体
に付設したものなどとしてセパレータに対して配置する
ことができる。かかる正極層や負極層の形成は、例えば
テープ形態等の集電体を付設ベースに用いて極形成材を
塗布する方式などの適宜な方式で得ることができる。集
電体としては、例えば銅、アルミニウム、銀等の導電性
に優れる金属などからなる導電性支持基材が用いられ
る。集電体の厚さは、電極の使用目的等に応じて適宜に
決定され、一般には100μm以下、就中、薄型化の点
より5〜50μm、特に10〜30μmとされる。
As described above, the positive electrode layer and the negative electrode layer can be arranged with respect to the separator as those attached to the current collector. The positive electrode layer and the negative electrode layer can be formed by an appropriate method such as a method in which a current collector in the form of a tape or the like is used as an attached base to apply the electrode forming material. As the current collector, for example, a conductive support substrate made of a metal having excellent conductivity such as copper, aluminum or silver is used. The thickness of the current collector is appropriately determined according to the purpose of use of the electrode and the like, and is generally 100 μm or less, and particularly 5 to 50 μm, particularly 10 to 30 μm from the viewpoint of thinning.

【0026】上記した高起電力化、高充放電容量化を目
的に負極層を薄肉化して電極面積の維持をはかりつつ体
積を縮小化し、正極活物質の量を多くして正極層や負極
層を大面積化するために溶融メッキ方式を適用する場合
などには、特にLi合金負極層を形成する場合には導電
性支持基材の上に必要に応じて拡散バリア層や濡れ促進
材層等を設けたものなども用いられる。拡散バリア層
は、溶融メッキ時にそのメッキ成分が導電性支持基材を
侵食することの防止を目的とし、その形成には例えばニ
ッケルやコバルト、鉄などのメッキ成分と反応しにくい
適宜な導体を用いることができる。
For the purpose of increasing the electromotive force and charging / discharging capacity described above, the negative electrode layer is made thin to reduce the volume while maintaining the electrode area, and the amount of the positive electrode active material is increased to increase the positive electrode layer and the negative electrode layer. In the case of applying a hot dip plating method to increase the area, especially in the case of forming a Li alloy negative electrode layer, a diffusion barrier layer, a wetting promoting material layer, etc. may be formed on the conductive supporting substrate as necessary. Those provided with are also used. The diffusion barrier layer is for the purpose of preventing the plating component from eroding the conductive supporting base material during hot dipping, and for that formation, an appropriate conductor that is hard to react with the plating component such as nickel, cobalt, or iron is used. be able to.

【0027】拡散バリア層の上に必要に応じて設けられ
る濡れ促進材層は、溶融メッキ時におけるメッキ液の濡
れを促進して凹凸化などの電極表面性状の悪化を防止
し、溶融メッキによる平坦かつ均一なコーティング層を
形成して良質の活物質層が形成されやすくすることを目
的とする。濡れ促進材層の形成には、メッキ成分と親和
性の適宜な導体、好ましくはメッキ成分と反応しやすく
てその化学親和性に優れるものを用いうる。その例とし
ては銀、銅、亜鉛、マグネシウム、アルミニウム、カル
シウム、バリウム、ビスマス、インジウム、鉛、白金、
パラジウム、スズなどがあげられる。
The wetting promoting material layer, which is provided on the diffusion barrier layer as needed, promotes the wetting of the plating solution during the hot dipping, prevents the deterioration of the electrode surface properties such as unevenness, and flattens the hot spot by the hot dipping. Moreover, it is intended to form a uniform coating layer to facilitate formation of a high-quality active material layer. For forming the wetting promoting material layer, a conductor having an appropriate affinity for the plating component, preferably a conductor which easily reacts with the plating component and has an excellent chemical affinity can be used. Examples are silver, copper, zinc, magnesium, aluminum, calcium, barium, bismuth, indium, lead, platinum,
Examples include palladium and tin.

【0028】拡散バリア層や濡れ促進材層の形成は、例
えば電気メッキ方式、無電解メッキ方式、物理的ないし
化学的蒸着方式などの適宜な方式で行うことができる。
拡散バリア層、濡れ促進材層の厚さは0.01〜5μm
が一般的である。また溶融メッキ層の形成は、例えば集
電体テープをアルゴンガスやヘリウムガス等の不活性ガ
スの雰囲気下にある溶融メッキ浴に導入してそのコーテ
ィング層を形成する方式や、コーティング層形成後その
コーティング層を急冷処理する方式などにより行うこと
ができる。
The diffusion barrier layer and the wetting promoter layer can be formed by an appropriate method such as an electroplating method, an electroless plating method, and a physical or chemical vapor deposition method.
The thickness of the diffusion barrier layer and the wetting promoting material layer is 0.01 to 5 μm.
Is common. The hot-dip plating layer may be formed by, for example, introducing a current collector tape into a hot-dip plating bath under an atmosphere of an inert gas such as argon gas or helium gas to form the coating layer, or after forming the coating layer. It can be performed by a method such as quenching the coating layer.

【0029】なお本発明のLi二次電池において、その
Li合金負極層については必要に応じ例えばLiF、L
3PO4、Li2S、LiCl、Li2CO3などのLi
イオンを透過する性質を有するLiイオン透過薄膜で被
覆することもできる。Liイオン透過薄膜は、負極層と
電解液との接触を防止してその反応を防止するためのも
のであり、その付設は例えば溶液浸漬方式、電解液添加
物方式、気相反応方式、低温蒸着方式などにより行うこ
とができる。
In the Li secondary battery of the present invention, the Li alloy negative electrode layer may be made of, for example, LiF or L if necessary.
Li such as i 3 PO 4 , Li 2 S, LiCl and Li 2 CO 3
It is also possible to coat with a Li ion permeable thin film having a property of transmitting ions. The Li ion permeable thin film is for preventing contact between the negative electrode layer and the electrolytic solution to prevent the reaction, and its attachment is, for example, a solution dipping method, an electrolytic solution additive method, a gas phase reaction method, low temperature deposition. It can be performed according to the method.

【0030】Li二次電池の形成に用いる電解液として
は、Liイオンを含有する適宜なものを用いることがで
きる。その例としては、エステルやエーテル等の有機溶
媒にリチウム塩を溶解させてなる非水電解液系のものな
どがあげられる。その有機溶媒の代表例としては、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、ジメトキシエタ
ン、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。
As the electrolytic solution used for forming the Li secondary battery, an appropriate one containing Li ions can be used. As an example thereof, a non-aqueous electrolyte solution-based one obtained by dissolving a lithium salt in an organic solvent such as ester or ether can be mentioned. As typical examples of the organic solvent, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like.

【0031】リチウム塩の代表例としては、LiI、L
iCF3SO3、Li(CF2SO22、LiBF4、Li
ClO4、LiAlCl4、Li2GeF6、LiPF6、Li
SCN、LiAsF6などがあげられる。電解液における
リチウム塩濃度は0.1〜3モル/リットルが一般的で
あるが、これに限定されない。なお非水溶液系電解液の
形成に際しては、寿命や放電容量、起電力等の電池特性
の向上などを目的として、必要に応じて2−メチルフラ
ン、チオフェン、ピロール、クラウンエーテル、Li錯
イオン形成剤(大環状化合物等)などの有機添加物を添
加することもできる。
Typical examples of the lithium salt include LiI and L
iCF 3 SO 3, Li (CF 2 SO 2) 2, LiBF 4, Li
ClO 4 , LiAlCl 4 , Li 2 GeF 6 , LiPF 6 , Li
Examples include SCN and LiAsF 6 . The concentration of lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this. In forming the non-aqueous electrolyte, 2-methylfuran, thiophene, pyrrole, crown ether, Li complex ion forming agent, if necessary, for the purpose of improving battery characteristics such as life, discharge capacity and electromotive force. It is also possible to add organic additives such as (macrocyclic compounds).

【0032】実施例1 幅45mm、厚さ15μmの多孔性ポリエチレンフィルム
の片面に、厚さ0.2μmのAl蒸着膜をパルスプラズ
マ蒸着法にて連続的に形成し、その上に前記と同じ多孔
性ポリエチレンフィルムを重ね合せてセパレータを得
た。
Example 1 An Al vapor deposition film having a thickness of 0.2 μm was continuously formed on one surface of a porous polyethylene film having a width of 45 mm and a thickness of 15 μm by the pulse plasma vapor deposition method, and the same porosity as described above was formed thereon. A polyethylene film was overlaid to obtain a separator.

【0033】一方、幅41mm、厚さ10μmのCuテー
プ上に厚さ2μmのNiメッキ層とその上に厚さ0.1
μmのAgメッキ層を有する集電体テープを高純度アル
ゴン雰囲気中にて、リチウムの溶融メッキ浴に2m/分
の速度で連続的に導入し通過させ、絞り治具にて両面に
おけるコーティング厚をそれぞれ25μmに調節し、そ
のテープより長さ420mmのピースを切り出して負極テ
ープを得た。
On the other hand, on a Cu tape having a width of 41 mm and a thickness of 10 μm, a Ni plating layer having a thickness of 2 μm and having a thickness of 0.1 on the Ni plating layer.
A collector tape having a μm Ag plating layer was continuously introduced into a lithium hot-dip plating bath at a rate of 2 m / min in a high-purity argon atmosphere and allowed to pass therethrough. Each piece was adjusted to 25 μm, and a piece having a length of 420 mm was cut out from the tape to obtain a negative electrode tape.

【0034】他方、幅39mm、厚さ25μmのAlテー
プの両面に、正極層形成用のペーストをドクターブレー
ド方式で塗布して厚さ300μmの正極層を形成したの
ち、圧延機により表裏の正極層を各100μmに圧縮
し、それより長さ400mmのピースを切り出してそのピ
ースの片端における長さ20mm部分の正極層を剥離し、
その部分にリード線を溶接して、正極テープを得た。
On the other hand, a paste for forming a positive electrode layer is applied to both surfaces of an Al tape having a width of 39 mm and a thickness of 25 μm by a doctor blade method to form a positive electrode layer having a thickness of 300 μm. Is compressed to 100 μm each, and a piece having a length of 400 mm is cut out from the piece, and the positive electrode layer having a length of 20 mm at one end of the piece is peeled off.
A lead wire was welded to the portion to obtain a positive electrode tape.

【0035】なお前記の正極層形成用のペーストは、炭
酸リチウムと塩基性炭酸コバルトとリン酸含有率85%
のリン酸水溶液をLi:Co:P=2:1.5:0.5
の原子比で混合し、それをアルミナ製坩堝に入れて90
0℃で24時間加熱処理し、リチウムのリン酸塩とリチ
ウム・コバルトのリン酸塩とコバルト酸化物の混合物
(活物質)を形成し、それをボールミルで粉砕して分粒
したのち、その粒径20μm以下の粉末46重量部、ア
セチレンブラック4重量部、ポリフッ化ビニリデン2重
量部、及びN−メチルピロリドン50重量部を混合して
調製したものである。
The above-mentioned paste for forming the positive electrode layer was composed of lithium carbonate, basic cobalt carbonate and phosphoric acid content of 85%.
Li: Co: P = 2: 1.5: 0.5
And mix it in an atomic ratio of 90, put it in an alumina crucible and
After heat treatment at 0 ° C for 24 hours, a mixture (active material) of lithium phosphate, lithium-cobalt phosphate and cobalt oxide is formed, which is crushed by a ball mill and sized, and then the particles are It was prepared by mixing 46 parts by weight of powder having a diameter of 20 μm or less, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride, and 50 parts by weight of N-methylpyrrolidone.

【0036】次に、前記のセパレータを介在させた状態
で負極テープと正極テープを捲回して電池缶に収納し3
mlの電解液を注入して単3型の二次電池を形成した。な
お捲回物の断面積は電池缶内側の断面積の約90%と
し、電解液には1リットルのプロピレンカーボネート/
ジメトキシエタン混合溶媒に1モルのLiClO4を溶解
させたものを用いた。
Next, the negative electrode tape and the positive electrode tape are wound with the separator interposed therebetween and housed in a battery can.
The AA type secondary battery was formed by injecting ml of the electrolytic solution. The cross-sectional area of the wound material is about 90% of the cross-sectional area inside the battery can, and 1 liter of propylene carbonate /
A solution obtained by dissolving 1 mol of LiClO 4 in a dimethoxyethane mixed solvent was used.

【0037】実施例2 Alに代えてBiの蒸着膜を設けたセパレータを用いた
ほかは実施例1に準じてLi二次電池を得た。
Example 2 A Li secondary battery was obtained in the same manner as in Example 1 except that a separator provided with a vapor deposited film of Bi was used instead of Al.

【0038】比較例 セパレータとして、厚さ30μmの多孔性ポリエチレン
フィルムの単体物からなるものを用いたほかは実施例1
に準じてLi二次電池を得た。
Comparative Example Example 1 except that a single porous polyethylene film having a thickness of 30 μm was used as the separator.
A Li secondary battery was obtained according to.

【0039】評価試験 実施例、比較例で得たLi二次電池について、100m
Aの充電電流及び放電電流にて4.2V(充電)〜2.
75V(放電:充電後1時間放置)の間で充放電サイク
ルを50回繰返したのちの放電容量維持率を調べた。
Evaluation test: For the Li secondary batteries obtained in the examples and comparative examples, 100 m
4.2 V (charge) to 2. A at the charging current and discharging current of A.
The charge / discharge cycle was repeated 50 times at 75 V (discharge: left for 1 hour after charging), and the discharge capacity retention ratio was examined.

【0040】前記の結果を次表に示した。 The above results are shown in the following table.

【0041】[0041]

【発明の効果】本発明によれば、Liイオン透過金属膜
介在型のセパレータとしたので、その金属膜が負極表面
状態の経時変化に由来する負極表面凸部への局所的電流
集中を緩和する機能を果し、負極の局所的粉体化、デン
ドライトの発生を防止できて、高容量で充放電のサイク
ル寿命に優れる高信頼性のLi二次電池を得ることがで
きる。
According to the present invention, since the Li ion permeable metal film intervening type separator is used, the metal film alleviates the local current concentration on the negative electrode surface convex portion due to the change of the negative electrode surface state over time. It is possible to obtain a highly reliable Li secondary battery that fulfills the function, can prevent local powderization of the negative electrode, and can prevent the generation of dendrite, and has a high capacity and an excellent cycle life of charge and discharge.

【図面の簡単な説明】[Brief description of drawings]

【図1】電池の実施例の断面図。FIG. 1 is a cross-sectional view of a battery embodiment.

【図2】セパレータの実施例の断面図。FIG. 2 is a cross-sectional view of an example of a separator.

【符号の説明】[Explanation of symbols]

2,6:集電体 3:正極層 4:セパレータ 41,43:Liイオン透過性の金属膜 42,44,45:多孔性絶縁膜 5:Li合金負極層 2, 6: Current collector 3: Positive electrode layer 4: Separator 41, 43: Li ion permeable metal film 42, 44, 45: Porous insulating film 5: Li alloy negative electrode layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Liイオン透過性の金属膜の両側に、電
解液保持性の多孔性絶縁膜を有することを特徴とするL
i二次電池形成用のセパレータ。
1. An L-ion-permeable metal film having a porous electrolyte film having electrolyte retention on both sides thereof.
i A separator for forming a secondary battery.
【請求項2】 金属膜がアルミニウム、ビスマス、イン
ジウム、錫、又は鉛からなり、多孔性絶縁膜が多孔性ポ
リオレフィンフィルムからなる請求項1に記載のセパレ
ータ。
2. The separator according to claim 1, wherein the metal film is made of aluminum, bismuth, indium, tin, or lead, and the porous insulating film is made of a porous polyolefin film.
【請求項3】 Li塩の有機溶媒溶液からなる電解液を
保持する請求項1又は2に記載のセパレータの片側に正
極層を有し、他方側にLi合金負極層を有することを特
徴とするLi二次電池。
3. The separator according to claim 1, which holds an electrolytic solution composed of an organic solvent solution of a Li salt, has a positive electrode layer on one side and a Li alloy negative electrode layer on the other side. Li secondary battery.
JP6336052A 1994-12-21 1994-12-21 Separator and lithium secondary battery Pending JPH08180853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6336052A JPH08180853A (en) 1994-12-21 1994-12-21 Separator and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6336052A JPH08180853A (en) 1994-12-21 1994-12-21 Separator and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08180853A true JPH08180853A (en) 1996-07-12

Family

ID=18295211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6336052A Pending JPH08180853A (en) 1994-12-21 1994-12-21 Separator and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08180853A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063687A1 (en) * 2000-02-24 2001-08-30 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte secondary cell
JP2010219012A (en) * 2009-03-19 2010-09-30 Toyota Motor Corp Separator for battery, battery using this, vehicle using this, and battery mounted equipment
WO2011021644A1 (en) * 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2011070712A1 (en) * 2009-12-11 2011-06-16 株式会社日立製作所 Lithium-ion battery and method for producing same
WO2014209992A1 (en) * 2013-06-28 2014-12-31 Intel Corporation Detection mechanism
US20150171398A1 (en) * 2013-11-18 2015-06-18 California Institute Of Technology Electrochemical separators with inserted conductive layers
CN110165308A (en) * 2018-02-13 2019-08-23 中国科学院大连化学物理研究所 Application of porous ion conducting membrane with negative charges in alkaline zinc-based battery
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
WO2021079784A1 (en) 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 Aluminum foil, lithium secondary battery negative electrode, lithium secondary battery separator, and lithium secondary battery
CN113661594A (en) * 2019-04-18 2021-11-16 株式会社Lg新能源 Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same
US11527802B2 (en) 2011-07-11 2022-12-13 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961654B2 (en) * 2000-02-24 2012-06-27 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
US6777135B2 (en) 2000-02-24 2004-08-17 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte secondary cell
WO2001063687A1 (en) * 2000-02-24 2001-08-30 Japan Storage Battery Co., Ltd. Nonaqueous electrolyte secondary cell
JP2010219012A (en) * 2009-03-19 2010-09-30 Toyota Motor Corp Separator for battery, battery using this, vehicle using this, and battery mounted equipment
WO2011021644A1 (en) * 2009-08-19 2011-02-24 三菱化学株式会社 Separator for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2011065984A (en) * 2009-08-19 2011-03-31 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101375422B1 (en) * 2009-12-11 2014-03-17 가부시키가이샤 히타치세이사쿠쇼 Lithium-ion battery and method for producing same
JP2011124104A (en) * 2009-12-11 2011-06-23 Hitachi Ltd Lithium-ion battery, and method for producing same
WO2011070712A1 (en) * 2009-12-11 2011-06-16 株式会社日立製作所 Lithium-ion battery and method for producing same
US11527802B2 (en) 2011-07-11 2022-12-13 California Institute Of Technology Electrochemical systems with ionically conductive and electronically insulating separator
WO2014209992A1 (en) * 2013-06-28 2014-12-31 Intel Corporation Detection mechanism
US20150171398A1 (en) * 2013-11-18 2015-06-18 California Institute Of Technology Electrochemical separators with inserted conductive layers
US10714724B2 (en) 2013-11-18 2020-07-14 California Institute Of Technology Membranes for electrochemical cells
CN110165308A (en) * 2018-02-13 2019-08-23 中国科学院大连化学物理研究所 Application of porous ion conducting membrane with negative charges in alkaline zinc-based battery
CN113661594A (en) * 2019-04-18 2021-11-16 株式会社Lg新能源 Electrolyte membrane for all-solid-state battery and all-solid-state battery comprising same
WO2021079784A1 (en) 2019-10-25 2021-04-29 パナソニックIpマネジメント株式会社 Aluminum foil, lithium secondary battery negative electrode, lithium secondary battery separator, and lithium secondary battery

Similar Documents

Publication Publication Date Title
EP1635417B1 (en) Lithium secondary battery and method for producing same
JPH08171938A (en) Li secondary battery and its positive electrode
EP0794585A1 (en) Secondary lithium cell
US7507502B2 (en) Negative electrode having intermetallic compound that occludes/desorbs lithium as an active material layer on collector for non-aqueous secondary battery and non-aqueous secondary battery using the same
US20090136851A1 (en) Negative electrode and negative active material for rechargeable lithium battery, and rechargeable lithium battery including same
JP7140812B2 (en) Negative electrode layer for all-solid secondary battery, all-solid secondary battery including the same, and manufacturing method thereof
JPH07240201A (en) Negative electrode and lithium secondary battery
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JP2002270156A (en) Lithium secondary battery electrode and lithium secondary battery
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JPH07296812A (en) Negative electrode and li secondary battery
JPH08180853A (en) Separator and lithium secondary battery
US7097938B2 (en) Negative electrode material and battery using the same
JPH0896792A (en) Lithium battery
EP4053938A1 (en) Negative electrode for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
JP4288400B2 (en) Method for producing secondary battery electrolyte, secondary battery electrolyte, secondary battery production method, and secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
KR101876665B1 (en) Magnesium electrode and magnesium secondary battery and hybrid battery including the same
JP4919451B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JP2004111329A (en) Lithium secondary battery and negative electrode therefor
JPH0837000A (en) Negative electrode, its manufacturing method, and lithium secondary battery
JP2003263979A (en) Nonaqueous electrolyte secondary battery and its manufacturing method