JPH08130006A - Negative electrode, its manufacture and lithium secondary battery - Google Patents

Negative electrode, its manufacture and lithium secondary battery

Info

Publication number
JPH08130006A
JPH08130006A JP6287312A JP28731294A JPH08130006A JP H08130006 A JPH08130006 A JP H08130006A JP 6287312 A JP6287312 A JP 6287312A JP 28731294 A JP28731294 A JP 28731294A JP H08130006 A JPH08130006 A JP H08130006A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
current collector
alloy
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6287312A
Other languages
Japanese (ja)
Inventor
Yoshinori Takada
善典 高田
Mitsuhiro Marumoto
光弘 丸本
Kenichi Kizu
賢一 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6287312A priority Critical patent/JPH08130006A/en
Publication of JPH08130006A publication Critical patent/JPH08130006A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a lithium secondary battery with high charge/discharge capacity and long cycle life, capable of providing a negative electrode in which a negative active material is uniformly spread in a 50μm or less thin layer, increasing the amount of a positive active material, and easily forming the negative electrode with a large area such as a tape-shape. CONSTITUTION: A negative electrode for a lithium secondary battery has a negative electrode alloy layer 2 formed on a current collector 1 by electrolytic deposition. The current collector is immersed in a molten salt containing a component forming the negative electrode allay, and the negative electrode alloy is electrolytically deposited on the current collector by electrolysis of the molten salt. The negative electrode is arranged on one side of a separator containing an electrolyte and a positive electrode is arranged on the other side. A necessary amount of a negative active material is compactly contained in a battery and the amount of a positive active material is increased, and a lithium secondary battery with high reliability based on the negative electrode alloy layer in which dispersion of quality and deformation such as irregularity are decreased and adhesion is increased can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、充放電容量や充放電の
サイクル寿命に優れるLi二次電池を形成しうる負極に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode capable of forming a Li secondary battery having excellent charge / discharge capacity and charge / discharge cycle life.

【0002】[0002]

【従来の技術】従来、AlやSn、PbやBi等のLi
合金化金属とLi、及びLiと反応しない骨材金属を用
いてなる粉末をバインダー樹脂に分散させて集電体上に
塗布してなる負極を、電解液含有のセパレータを介し正
極に対して配置した構造のLi二次電池が知られてい
た。かかるLi合金系負極は、Liと反応せず結晶の粒
界に集積するか共晶を形成するかして骨材として機能す
る骨材金属を10〜40重量%添加して、前記粉末の微
粉化による充放電の不能化を防止し、従って充放電のサ
イクル寿命の長期化を目的としたものである。
2. Description of the Related Art Conventionally, Li such as Al, Sn, Pb and Bi has been used.
A negative electrode formed by dispersing a powder made of an alloying metal, Li, and an aggregate metal that does not react with Li in a binder resin and applying the powder on a current collector is arranged with respect to the positive electrode via a separator containing an electrolytic solution. A Li secondary battery having the above structure was known. Such a Li alloy-based negative electrode is obtained by adding 10 to 40% by weight of an aggregate metal that functions as an aggregate by not reacting with Li and accumulating at grain boundaries of crystals or forming a eutectic to obtain a fine powder of the powder. The purpose of this is to prevent the charge / discharge from becoming impossible due to the increase in the charge / discharge rate, and thus to extend the cycle life of the charge / discharge.

【0003】すなわち前記のLi合金系負極において、
Al等のLi合金化金属は、充電時に負極に析出するL
iを吸収して合金化し、それにより電解液との反応によ
るLiの消費を抑制して起電力や充放電容量に優れるL
i二次電池の形成を可能とする一方で、かかる合金化に
より体積が飛躍的に膨張する。ちなみにLiとの合金化
による体積膨張は、Li3Alの場合で97%、Li3
iの場合で177%、Li4.4Pbの場合で234%、
Li4.4Sの場合で676%にも及ぶ。前記のLi合金
化金属とLiとからなる合金は、硬くて脆い金属間化合
物であるため、放電時におけるLiの放出に伴う体積の
収縮と共に、充放電の繰返しによる体積の膨張と収縮で
クラックが発生・成長して微粉化し、充放電が不能とな
る。前記のLi合金系負極は、かかる問題を骨材金属の
添加で予防したものである。
That is, in the above Li alloy type negative electrode,
Li alloying metal such as Al is L deposited on the negative electrode during charging.
L that excels in electromotive force and charge / discharge capacity by absorbing i and alloying it, thereby suppressing the consumption of Li due to reaction with the electrolytic solution
While allowing the formation of a secondary battery, the volume is dramatically expanded by the alloying. By the way, the volume expansion due to alloying with Li is 97% in the case of Li 3 Al and Li 3 B
i is 177%, Li 4.4 Pb is 234%,
It reaches 676% in the case of Li 4.4 S. Since the alloy consisting of the Li alloyed metal and Li is a hard and brittle intermetallic compound, the volume shrinks due to the release of Li at the time of discharge, and the cracks due to the volume expansion and contraction due to repeated charge and discharge. It is generated and grows into fine powder, which makes charging and discharging impossible. The above Li alloy-based negative electrode prevents such a problem by adding an aggregate metal.

【0004】しかしながら、集電体上に当該合金粉末を
付設して負極とする方式では、充放電容量に優れるLi
二次電池の形成に不利な問題点があった。すなわち高い
放電容量のLi二次電池の形成には、電池内における高
い充放電容量の正極活物質の増量をはかって正極を大面
積化し、一方、負極活物質が過少では放電容量の低下を
招くことから少量で大きな充放電容量を示す負極が有利
であり、従って負極活物質を薄層展開して大面積化した
負極が有利であると考えられるが、上記の粉末をバイン
ダーに分散させたペーストの塗布方式では、ドクターブ
レード法にても目的の薄層を均一性よく形成しにくく、
50μm以下の均一薄層を形成することが困難であり、
負極の活物質量が正極のそれに対して過剰に存在するこ
ととなって充放電容量を向上させることが困難な問題点
があった。
However, in the method in which the alloy powder is attached to the current collector to form the negative electrode, Li which is excellent in charge and discharge capacity is used.
There is a disadvantage in forming the secondary battery. That is, in order to form a Li secondary battery having a high discharge capacity, the area of the positive electrode is increased by increasing the amount of the positive electrode active material having a high charge / discharge capacity in the battery, while if the amount of the negative electrode active material is too small, the discharge capacity is reduced. Therefore, it is considered that a negative electrode showing a large charge and discharge capacity in a small amount is advantageous, and therefore a negative electrode in which a negative electrode active material is spread in a thin layer to have a large area is advantageous, but a paste prepared by dispersing the above powder in a binder. In the coating method, it is difficult to form the target thin layer with good uniformity even by the doctor blade method,
It is difficult to form a uniform thin layer of 50 μm or less,
There is a problem that it is difficult to improve the charge / discharge capacity because the amount of the active material of the negative electrode exists in excess of that of the positive electrode.

【0005】[0005]

【発明が解決しようとする課題】本発明は、負極活物質
が50μm以下等の薄層に均一に展開された負極を得
て、電池内での正極活物質の増量をはかることができ、
テープ状物等の大面積負極も容易に形成できて充放電容
量や充放電のサイクル寿命に優れるLi二次電池を得る
ことを課題とする。
According to the present invention, it is possible to obtain a negative electrode in which the negative electrode active material is uniformly spread in a thin layer of 50 μm or less, and to increase the amount of the positive electrode active material in the battery.
An object of the present invention is to obtain a Li secondary battery that can easily form a large area negative electrode such as a tape-like material and is excellent in charge / discharge capacity and charge / discharge cycle life.

【0006】[0006]

【課題を解決するための手段】本発明は、集電体上に電
析方式で付設してなる負極合金層を有することを特徴と
するLi二次電池用の負極、及び負極合金の形成成分を
含有する塩の溶融液に集電体を浸漬して、当該溶融塩の
電解により集電体上に負極合金を電析させることを特徴
とするLi二次電池用の負極の製造方法、並びに電解液
含有のセパレータの片側に前記の負極を有し、他方側に
正極を有することを特徴とするLi二次電池を提供する
ものである。
DISCLOSURE OF THE INVENTION The present invention has a negative electrode for a Li secondary battery characterized by having a negative electrode alloy layer provided on a current collector by an electrodeposition method, and a component for forming a negative electrode alloy. A method for producing a negative electrode for a Li secondary battery, which comprises immersing a current collector in a molten solution of a salt containing and electrolytically depositing a negative electrode alloy on the current collector by electrolysis of the molten salt, and It is intended to provide a Li secondary battery having the above-mentioned negative electrode on one side of a separator containing an electrolytic solution and having a positive electrode on the other side.

【0007】[0007]

【実施態様の例示】負極合金層は、Al−Mn合金、P
b−Fe合金などにより形成される。
[Exemplary Embodiment] The negative electrode alloy layer is made of Al-Mn alloy, P
It is formed of a b-Fe alloy or the like.

【0008】[0008]

【作用】溶融塩等の電析方式により負極合金を集電体上
に50μm厚以下等に薄層展開でき、テープ状等の大面
積負極を容易に形成することができる。従って正極に対
して過不足のない必要量の負極活物質を電池内にコンパ
クトに収納し、正極活物質の増量をはかり得て電池の充
放電容量を向上させることができる。また溶融塩法によ
れば、通常の溶融法では溶製できない熱力学的に非平衡
な相も形成でき、Li合金化金属と骨材金属との多種多
様な組合せ、例えば通常の場合には合金化しない低融点
金属と高融点金属からなる合金化が可能になって負極合
金の電極電位を適宜に調節することが可能になる。
The negative electrode alloy can be spread in a thin layer of 50 μm or less on the current collector by an electrodeposition method using a molten salt or the like, and a large area negative electrode such as a tape can be easily formed. Therefore, the required amount of the negative electrode active material, which is sufficient for the positive electrode, can be compactly housed in the battery, and the amount of the positive electrode active material can be increased to improve the charge / discharge capacity of the battery. The molten salt method can also form thermodynamically non-equilibrium phases that cannot be melted by the ordinary melting method, and various combinations of Li alloying metal and aggregate metal, such as alloys in the usual case, can be used. It becomes possible to form an alloy of a low-melting point metal and a high-melting point metal that do not change, so that the electrode potential of the negative electrode alloy can be adjusted appropriately.

【0009】[0009]

【実施例】本発明の負極は、集電体上に電析方式で付設
してなる負極合金層を有するものであり、Li二次電池
の形成に用いるものである。その例を、図1、図2に示
した。1が集電体、2が負極合金層である。図例から明
らかな如く本発明において負極合金層は、集電体の両面
に設けられていてもよいし、片面に設けられていてもよ
い。
EXAMPLE A negative electrode of the present invention has a negative electrode alloy layer formed on a current collector by an electrodeposition method, and is used for forming a Li secondary battery. Examples thereof are shown in FIGS. 1 and 2. 1 is a current collector and 2 is a negative electrode alloy layer. As is apparent from the drawings, in the present invention, the negative electrode alloy layer may be provided on both sides of the current collector, or may be provided on one side.

【0010】集電体としては、例えば銅、アルミニウ
ム、銀などの導電性に優れるものが用いられる。集電体
の厚さは、負極の使用目的等に応じて適宜に決定され、
一般には100μm以下、就中、薄型化の点より5〜5
0μm、特に10〜30μmとされる。集電体は、例えば
Ni、Co、Fe、あるいはAg、Cu、Mg、Ca、
Ba、Pt、Pd、Crなどからなる保護、あるいは電
析の促進などの適宜な目的の被覆層を有していてもよ
い。
As the current collector, for example, one having excellent conductivity such as copper, aluminum or silver is used. The thickness of the current collector is appropriately determined according to the intended use of the negative electrode,
Generally 100 μm or less, especially 5 to 5 from the viewpoint of thinning.
It is set to 0 μm, particularly 10 to 30 μm. The current collector is, for example, Ni, Co, Fe, or Ag, Cu, Mg, Ca,
It may have a coating layer made of Ba, Pt, Pd, Cr or the like for the purpose of protection or for promoting the electrodeposition.

【0011】負極を形成する合金としては、Liと合金
化する金属及びLiと反応しない骨材金属を成分とする
もの、さらには必要に応じてLiも成分とするものなど
があげられ、その種類については特に限定はない。Li
電池の負極で公知の合金のいずれも用いうる。
Examples of the alloy forming the negative electrode include those containing a metal alloying with Li and an aggregate metal not reacting with Li as a component, and also containing Li as a component, if necessary. There is no particular limitation. Li
Any of the known alloys can be used in the battery negative electrode.

【0012】前記のLiと合金化する金属の例として
は、Al、Pb、Sn、In、Bi、Ag、Ba、C
a、Hg、Pd、Pt、Sr、Te、Mg、Si、C
d、Zn、Laなどがあげられる。また骨材金属の例と
しては、Mn、Ni、Co、Feなどがあげられる。
Examples of the metal alloyed with Li are Al, Pb, Sn, In, Bi, Ag, Ba and C.
a, Hg, Pd, Pt, Sr, Te, Mg, Si, C
Examples thereof include d, Zn and La. Examples of the aggregate metal include Mn, Ni, Co, Fe and the like.

【0013】前記の如く負極を形成する合金は、Li合
金化金属と骨材金属、及び必要に応じてのLiを成分と
する適宜な組合せ体からなっていてもよいが、ちなみに
その負極形成合金の具体例としては、Al−Mn、Al
−Si、Al−Cu、Al−Ge、Al−Cr、Al−
Fe、Al−Co、Al−Ni、Al−Zn、Al−M
o、Pb−Fe、Pb−Ni、Pb−Cr、Pb−S
i、Pb−Zn、Pb−Co、Bi−Fe、Bi−Z
n、Bi−Co、Sn−Ni、Sn−Fe、Sn−Al
−Feなどがあげられる。
As described above, the alloy forming the negative electrode may be composed of a Li alloying metal, an aggregate metal, and, if necessary, an appropriate combination containing Li as a component. Specific examples of Al-Mn, Al
-Si, Al-Cu, Al-Ge, Al-Cr, Al-
Fe, Al-Co, Al-Ni, Al-Zn, Al-M
o, Pb-Fe, Pb-Ni, Pb-Cr, Pb-S
i, Pb-Zn, Pb-Co, Bi-Fe, Bi-Z
n, Bi-Co, Sn-Ni, Sn-Fe, Sn-Al
-Fe and the like can be mentioned.

【0014】本発明の負極の製造は、例えば負極合金の
形成成分を含有する塩の溶融液に集電体を浸漬して、当
該溶融塩の電解により集電体上に負極合金を電析させる
方法などにより行うことができる。
In the production of the negative electrode of the present invention, for example, a current collector is immersed in a molten solution of a salt containing a forming component of a negative electrode alloy, and the negative electrode alloy is electrodeposited on the current collector by electrolysis of the molten salt. It can be performed by a method or the like.

【0015】負極合金の形成成分を含有する塩として
は、形成目的の負極合金に応じて適宜なものを用いう
る。その例としては、Al等の負極合金を形成する成分
を含有する塩化物系、硝酸塩系、酸性硫酸塩系、フッ化
物系、アルカリ炭酸塩系のものなどがあげられる。
As the salt containing the forming component of the negative electrode alloy, an appropriate salt can be used depending on the negative electrode alloy to be formed. Examples thereof include chloride-based, nitrate-based, acidic sulfate-based, fluoride-based, and alkali carbonate-based materials containing a component such as Al that forms a negative electrode alloy.

【0016】電析用の溶融塩の形成は、負極合金の形成
成分を含有する塩を加熱溶融させることにより調製する
ことができる。その場合、用いる塩の組合せや配合割合
を変える方式などにより電析する負極合金の組成を制御
することができる。
The molten salt for electrodeposition can be formed by heating and melting the salt containing the components for forming the negative electrode alloy. In that case, the composition of the negative electrode alloy to be electrodeposited can be controlled by a method such as changing the combination of salts to be used or a mixing ratio.

【0017】負極合金の電析処理は、前記の溶融塩にそ
の溶融浴等を介し電圧を加えて電解させ、かつその溶融
塩に集電体を負極として浸漬することにより行うことが
できる。集電体上に電析させる負極合金の厚さは、印課
電圧や処理速度等の電析条件などに応じて適宜に制御で
き、本発明においては薄層化等の点より50μm以下、
就中5〜25μm、特に10〜20μmとすることが好ま
しい。
The electrodeposition treatment of the negative electrode alloy can be carried out by applying a voltage to the molten salt through a molten bath or the like to cause electrolysis, and immersing the current collector in the molten salt as a negative electrode. The thickness of the negative electrode alloy to be electrodeposited on the current collector can be appropriately controlled according to the electrodeposition conditions such as imprinting voltage and processing speed, and in the present invention, 50 μm or less from the viewpoint of thinning,
Especially, it is preferably 5 to 25 μm, and particularly preferably 10 to 20 μm.

【0018】負極合金の電析処理は、長尺の集電体テー
プを溶融浴に連続的に導入して順次に負極合金を電析さ
せる連続方式や、所定の大きさの集電体を溶融浴に浸漬
して負極合金を電析させてそれを引き上げるバッチ方式
などの適宜な方式で行うことができる。また電析層形成
後にアルゴンガスやヘリウムガス等の冷却不活性ガスを
吹き付けて電析層を急冷処理する方式なども必要に応じ
て採ることができる。急冷処理により、結晶粒の粒界占
積率や原子空孔が多くてリチウムの拡散性に優れ、リチ
ウムの吸放出が助長されて充放電のサイクル寿命を向上
させうる場合もある。
The electrodeposition treatment of the negative electrode alloy is carried out by continuously introducing a long current collector tape into the melting bath and sequentially depositing the negative electrode alloy, or by melting a current collector of a predetermined size. It can be carried out by an appropriate method such as a batch method in which the negative electrode alloy is electrodeposited by being immersed in a bath and then pulled up. Further, a method of spraying a cooling inert gas such as argon gas or helium gas to rapidly cool the electrodeposited layer after forming the electrodeposited layer can be adopted as necessary. By the quenching treatment, the grain boundary space factor of the crystal grains and the number of atomic vacancies are large and lithium diffusivity is excellent, which may facilitate absorption and release of lithium and may improve the cycle life of charge and discharge.

【0019】本発明のLi二次電池は、当該負極と正極
を電解質含有のセパレータを介して配置した構造を有す
るものである。従って前記の点を除き、従来に準じた仕
様のLi二次電池を形成することができる。電池形態な
ども使用目的等に応じて適宜に決定してよく、例えばコ
イン型やボタン型、あるいは捲回体型などのような任意
な形態とすることができる。
The Li secondary battery of the present invention has a structure in which the negative electrode and the positive electrode are arranged via an electrolyte-containing separator. Therefore, except for the above points, it is possible to form a Li secondary battery having specifications according to the related art. The form of the battery may be appropriately determined according to the purpose of use, and may be any form such as coin type, button type, or wound type.

【0020】ちなみに図3にコイン型のLi二次電池を
例示した。3,8は電池缶、4は集電体、5は負極合金
層、6は電解質含有のセパレータ、7は正極、9は絶縁
封止材である。シート状の正極と負極をセパレータを介
して積層したものを捲回したものなどからなる捲回型の
Li二次電池などについても前記コイン型電池に準じて
形成することができる。
Incidentally, FIG. 3 illustrates a coin type Li secondary battery. Reference numerals 3 and 8 denote battery cans, 4 a current collector, 5 a negative electrode alloy layer, 6 an electrolyte-containing separator, 7 a positive electrode, and 9 an insulating sealant. A wound Li secondary battery, which is formed by winding a sheet-shaped positive electrode and a negative electrode laminated via a separator, and the like can also be formed according to the coin-type battery.

【0021】電解質としては、Liイオンの移動を可能
とした適宜なものを用いることができる。その例として
は、塩類電解性ポリマーにリチウム塩を混合してなるも
のの如きポリマー電解質、無機Li固体電解質、ないし
それを樹脂中に分散させてなるものの如き固体電解質、
エステルやエーテル等の有機溶媒にリチウム塩を溶解さ
せてなる非水電解液系のものなどがあげられる。
As the electrolyte, it is possible to use an appropriate electrolyte capable of moving Li ions. Examples thereof include polymer electrolytes such as those obtained by mixing a lithium electrolytic salt with a salt-electrolytic polymer, inorganic Li solid electrolytes, or solid electrolytes such as those obtained by dispersing it in a resin.
Examples include non-aqueous electrolyte-based electrolytes prepared by dissolving a lithium salt in an organic solvent such as ester or ether.

【0022】前記の塩類電解性ポリマーの代表例として
は、ポリエチレンオキシド、ポリホスファゼン、ポリア
ジリジン、ポリエチレンスルフィド、それらの誘導体や
混合物、複合体などがあげられる。従って前記したポリ
マー電解質や固体電解質の場合には、それを電解質含有
のセパレータとしてそのまま用いることもできる。
Typical examples of the salt-electrolytic polymers mentioned above include polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, their derivatives, mixtures and complexes. Therefore, in the case of the above-mentioned polymer electrolyte or solid electrolyte, it can be used as it is as a separator containing an electrolyte.

【0023】一方、前記有機溶媒の代表例としては、プ
ロピレンカーボネート、エチレンカーボネート、ジメチ
ルカーボネート、ジエチルカーボネート、テトラヒドロ
フラン、2−メチルテトラヒドロフラン、ジメトキシエ
タン、ジメチルスルホキシド、スルホラン、γ−ブチロ
ラクトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。
On the other hand, typical examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone and 1,2-dimethoxy. Ethane, diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like.

【0024】有機溶媒等に溶解させるリチウム塩の代表
例としては、LiI、LiCF3SO3、Li(CF2
22、LiBF4、LiClO4、LiAlCl4、L
iPF6、LiAsF6などがあげられる。電解液におけ
るリチウム塩の濃度は0.1〜3モル/リットルが一般
的であるが、これに限定されない。
Typical examples of the lithium salt dissolved in an organic solvent or the like include LiI, LiCF 3 SO 3 and Li (CF 2 S
O 2 ) 2 , LiBF 4 , LiClO 4 , LiAlCl 4 , L
iPF 6, such as LiAsF 6, and the like. The concentration of the lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this.

【0025】なお前記した非水電解液等の形成に際して
は、寿命や放電容量、起電力等の電池特性の向上などを
目的として、必要に応じて2−メチルフラン、チオフェ
ン、ピロール、クラウンエーテル、Li錯イオン形成剤
(大環状化合物等)などの有機添加物を添加することも
できる。
In forming the above-mentioned non-aqueous electrolyte, etc., 2-methylfuran, thiophene, pyrrole, crown ether, if necessary, for the purpose of improving battery characteristics such as life, discharge capacity, electromotive force, etc. An organic additive such as a Li complex ion forming agent (macrocyclic compound or the like) can also be added.

【0026】前記の非水電解液等の場合、セパレータと
しては、電解液を保持するための多孔性絶縁膜、例えば
ポリプロピレンやポリエチレン等のポリオレフィンから
なる多孔性ポリマーフィルムやガラスフィルター、不織
布の如き多孔性素材などが用いられる。多孔性絶縁膜を
介した電解液の保持は、多孔性絶縁膜に電解液を含浸さ
せたり、充填する方式、あるいは電池缶内に電解液を充
填する方式などの適宜な方式で達成してよい。
In the case of the above-mentioned non-aqueous electrolytic solution or the like, the separator may be a porous insulating film for holding the electrolytic solution, for example, a porous polymer film made of polyolefin such as polypropylene or polyethylene, a glass filter, or a porous material such as nonwoven fabric. For example, a sex material is used. The holding of the electrolytic solution through the porous insulating film may be achieved by an appropriate method such as a method of impregnating or filling the porous insulating film with the electrolytic solution, or a method of filling the electrolytic solution into the battery can. .

【0027】多孔性絶縁膜の厚さは、形成目的の電池等
に応じて適宜に決定することができ、一般には500μ
m以下、就中1〜300μm、特に5〜100μmとされ
る。なおセパレータを形成する多孔性絶縁膜は、電解液
の保持能に優れる例えばポリビニレンカーボネートやポ
リビニルピロリドンなどからなるコーティング膜を有し
ていてもよい。
The thickness of the porous insulating film can be appropriately determined depending on the intended battery and the like, and is generally 500 μm.
m or less, especially 1 to 300 μm, especially 5 to 100 μm. The porous insulating film forming the separator may have a coating film made of, for example, polyvinylene carbonate, polyvinylpyrrolidone, or the like, which has an excellent ability to retain the electrolytic solution.

【0028】正極としては、カーボンや金属系のもの、
共役系ポリマー等の有機導電性物質系のものなどの適宜
なものを用いうる。前記金属系正極の例としては、Li
を含有する、Ti、Mo、Cu、Nb、V、Mn、C
r、Ni、Co、P等の金属の複合酸化物、硫化物、セ
レン化物、V25などがあげられ、より具体的には例え
ば、LiMnO2、LiMn24、LiMn2-xx4
LiNiO2、LiNi1-xx2、LiCoO2、Li
CrO2、LiFeO2、LiVO2、LiwCo1-x-yx
y2+z(ただし、Mは1種又は2種以上の遷移金属、
wは0<w≦2、xは0≦x<1、yは0<y<1、z
は−1≦z≦4である。)、あるいはLiないしLi・
Coのリン酸塩及び/又はCoないしLi・Coの酸化物
を成分として1モルのLiあたり0.1モル以上のCo
と0.2モル以上のPを含有するものなどを活物質とす
るものがあげられる。
The positive electrode is made of carbon or metal,
Appropriate materials such as organic conductive material materials such as conjugated polymers can be used. Examples of the metal-based positive electrode include Li
Containing Ti, Mo, Cu, Nb, V, Mn, C
Examples thereof include complex oxides of metals such as r, Ni, Co, P, sulfides, selenides, V 2 O 5, and the like. More specifically, for example, LiMnO 2 , LiMn 2 O 4 , LiMn 2-x M x O 4 ,
LiNiO 2 , LiNi 1-x M x O 2 , LiCoO 2 , Li
CrO 2 , LiFeO 2 , LiVO 2 , Li w Co 1-xy M x
P y O 2 + z (where M is one or more transition metals,
w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y <1, z
Is −1 ≦ z ≦ 4. ), Or Li or Li
0.1 mol or more of Co per 1 mol of Li containing a phosphate of Co and / or an oxide of Co or Li · Co
And those containing 0.2 mol or more of P as an active material.

【0029】正極の形成は、例えば前記活物質等の極形
成材を必要に応じてアセチレンブラックやケッチェンブ
ラック等の導電材料、及びポリテトラフルオロエチレン
やポリエチレン、ポリフッ化ビニリデンやエチレン・プ
ロピレン・ジエン共重合体等の結着剤と共に、キャステ
ィング方式や圧縮成形方式、ロール成形方式やドクター
ブレード方式、圧延方式や熱間押出方式などの適宜な方
式で成形する方法や、各種の蒸着方式や溶融メッキ方
式、溶融塩電析方式などにより膜形成する方法などで行
うことができる。なお正極の厚さは、500μm以下、
就中300μm以下、特に5〜200μmが一般的である
が1mmを超える厚さとするときもあり、その厚さは適宜
に決定することができる。
The positive electrode is formed by using, for example, an electrode forming material such as the above-mentioned active material, if necessary, a conductive material such as acetylene black or Ketjen black, and polytetrafluoroethylene, polyethylene, polyvinylidene fluoride, ethylene / propylene / diene. Along with binders such as copolymers, casting methods, compression molding methods, roll molding methods, doctor blade methods, rolling methods, hot extrusion methods, and other appropriate methods, as well as various vapor deposition methods and hot dipping Method, a method of forming a film by a molten salt electrodeposition method, or the like. The thickness of the positive electrode is 500 μm or less,
In general, it is generally 300 μm or less, particularly 5 to 200 μm, but in some cases, the thickness may exceed 1 mm, and the thickness can be appropriately determined.

【0030】実施例1 幅41mm、厚さ10μmの銅テープの両面及び端面に、
溶融塩を用いた電析方式で厚さ20μmのAl−20%
Mn合金層を連続的に形成し、それより長さ420mmの
切り出し片を採取して負極テープを得た。
Example 1 On both sides and end faces of a copper tape having a width of 41 mm and a thickness of 10 μm,
20μm thick Al-20% by electrodeposition method using molten salt
A Mn alloy layer was continuously formed, and a 420 mm-long cut piece was sampled to obtain a negative electrode tape.

【0031】一方、炭酸リチウムと塩基性炭酸コバルト
とリン酸含有率85%のリン酸水溶液をLi:Co:P
=2:1.5:0.5の原子比で混合し、それをアルミ
ナ製坩堝に入れて900℃で24時間加熱処理し、リチ
ウムのリン酸塩とリチウム・コバルトのリン酸塩とコバ
ルト酸化物の混合物(活物質)を形成し、それをボール
ミルで粉砕して粒径20μm以下の粉末とした。次に、
その粉末46重量部、アセチレンブラック4重量部、ポ
リフッ化ビニリデン2重量部、及びN−メチルピロリド
ン50重量部を混合し、それを幅39mm、厚さ25μm
のAlテープの両面に各厚さ150μmで塗布し、それ
を圧延処理して厚さ100μmとし、それより長さ40
0mmの切り出し片を形成して正極テープを得た。
On the other hand, lithium carbonate, basic cobalt carbonate, and a phosphoric acid aqueous solution having a phosphoric acid content of 85% were added to Li: Co: P.
= 2: 1.5: 0.5, mixed in an atomic ratio, placed in an alumina crucible and heat-treated at 900 ° C for 24 hours to obtain lithium phosphate, lithium-cobalt phosphate and cobalt oxide. A mixture of substances (active material) was formed and pulverized by a ball mill to obtain a powder having a particle size of 20 μm or less. next,
46 parts by weight of the powder, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride and 50 parts by weight of N-methylpyrrolidone are mixed, and the mixture is 39 mm wide and 25 μm thick.
Al tape is coated on both sides with a thickness of 150 μm, and it is rolled to a thickness of 100 μm.
A 0 mm cut piece was formed to obtain a positive electrode tape.

【0032】次に、前記の負極テープと正極テープを、
幅44mm、厚さ25μmの多孔質ポリエチレンフィルム
(セパレータ)を介在させた状態で捲回し(外径13m
m)、それを電池缶に収納し3mlの電解液を注入して単
3型の二次電池を形成した。なお、捲回物の断面積は電
池缶内側の断面積の約90%とし、電解液には1リット
ルのプロピレンカーボネート/ジメトキシエタンの混合
溶媒に1モルのLiClO4を溶解させたものを用い
た。
Next, the above negative electrode tape and positive electrode tape are
Wound with a porous polyethylene film (separator) having a width of 44 mm and a thickness of 25 μm interposed (outer diameter 13 m
m), it was placed in a battery can, and 3 ml of electrolyte was injected to form an AA type secondary battery. The cross-sectional area of the wound material was about 90% of the cross-sectional area of the inside of the battery can, and the electrolyte used was one liter of a mixed solvent of propylene carbonate / dimethoxyethane in which 1 mol of LiClO 4 was dissolved. .

【0033】実施例2 Al−Mn合金層に代えて、厚さ23μmのPb−Fe
合金層を溶融塩より電析形成した負極テープを得、それ
を用いて実施例1に準じLi二次電池を得た。
Example 2 Instead of the Al-Mn alloy layer, Pb-Fe having a thickness of 23 μm was used.
A negative electrode tape in which the alloy layer was electrodeposited from a molten salt was obtained, and using this, a Li secondary battery was obtained according to Example 1.

【0034】比較例1 溶融法によりAl−20%Mn合金を調製してそれをボ
ールミルで粉砕し、その平均粒径5μmの粉末を用いて
銅テープ上に実施例1の正極テープに準じ厚さ70μm
の塗布圧延層を形成して負極テープを得、それを用いて
実施例1に準じLi二次電池を得た。ただし、正極テー
プにおける活物質の塗布圧延層の厚さを70μmとし
た。
Comparative Example 1 An Al-20% Mn alloy was prepared by a melting method, crushed by a ball mill, and powder having an average particle diameter of 5 μm was used to form a copper tape on a thickness similar to that of the positive electrode tape of Example 1. 70 μm
The coated and rolled layer of 1 was formed to obtain a negative electrode tape, and using this, a Li secondary battery was obtained according to Example 1. However, the thickness of the coated and rolled layer of the active material in the positive electrode tape was 70 μm.

【0035】比較例2 Al−Mn合金に代えて、Pb−Fe合金を用いたほか
は比較例1に準じ負極テープを得、それを用いてLi二
次電池を得た。
Comparative Example 2 A negative electrode tape was obtained in accordance with Comparative Example 1 except that a Pb-Fe alloy was used instead of the Al-Mn alloy, and a Li secondary battery was obtained by using the same.

【0036】評価試験 実施例、比較例で得たLi二次電池について、100m
Aの充電電流及び放電電流にて4.1V(充電)〜2.
75V(放電:充電後1時間放置)の間で充放電サイク
ルを50回繰返し、その初期放電容量と50サイクル後
の放電容量維持率を調べた。
Evaluation test 100 m of the Li secondary batteries obtained in Examples and Comparative Examples
4.1 V (charge) to 2.A at the charging current and discharging current of A.
The charge / discharge cycle was repeated 50 times between 75 V (discharge: left for 1 hour after charging), and the initial discharge capacity and the discharge capacity retention rate after 50 cycles were examined.

【0037】前記の結果を表1に示した。The above results are shown in Table 1.

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明によれば、集電体上に負極合金の
薄層を有してテープ状等の大面積負極を容易に形成で
き、必要量の負極活物質を電池内にコンパクトに収納し
て正極活物質の増量をはかることができる。その結果、
品質のバラツキや凹凸化等の変形が少なくて密着性に優
れる負極合金に基づいて充放電容量、充放電のサイクル
寿命に優れる高信頼性のLi二次電池を得ることができ
る。
According to the present invention, a large area negative electrode such as a tape having a thin layer of a negative electrode alloy on a current collector can be easily formed, and a required amount of a negative electrode active material can be made compact in a battery. The positive electrode active material can be stored to increase the amount of the positive electrode active material. as a result,
It is possible to obtain a highly reliable Li secondary battery excellent in charge / discharge capacity and charge / discharge cycle life based on a negative electrode alloy which is excellent in adhesion with little variation such as quality variation and unevenness.

【図面の簡単な説明】[Brief description of drawings]

【図1】負極の実施例の断面図。FIG. 1 is a cross-sectional view of an example of a negative electrode.

【図2】負極の他の実施例の断面図。FIG. 2 is a sectional view of another embodiment of the negative electrode.

【図3】電池例の説明図。FIG. 3 is an explanatory diagram of a battery example.

【符号の説明】[Explanation of symbols]

1,4:集電体 2,5:負極合金層 6:セパレ
ータ 7:正極
1, 4: Current collector 2, 5: Negative electrode alloy layer 6: Separator 7: Positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 集電体上に、電析方式で付設してなる負
極合金層を有することを特徴とするLi二次電池用の負
極。
1. A negative electrode for a Li secondary battery, comprising a negative electrode alloy layer provided on the current collector by an electrodeposition method.
【請求項2】 負極合金の形成成分を含有する塩の溶融
液に集電体を浸漬して、当該溶融塩の電解により集電体
上に負極合金を電析させることを特徴とするLi二次電
池用の負極の製造方法。
2. A Li alloy characterized in that a current collector is immersed in a molten solution of a salt containing a negative electrode alloy forming component, and the negative electrode alloy is electrodeposited on the current collector by electrolysis of the molten salt. Manufacturing method of negative electrode for secondary battery.
【請求項3】 電解液含有のセパレータの片側に請求項
1に記載の負極を有し、他方側に正極を有することを特
徴とするLi二次電池。
3. A Li secondary battery having the negative electrode according to claim 1 on one side of a separator containing an electrolytic solution and the positive electrode on the other side.
JP6287312A 1994-10-27 1994-10-27 Negative electrode, its manufacture and lithium secondary battery Pending JPH08130006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6287312A JPH08130006A (en) 1994-10-27 1994-10-27 Negative electrode, its manufacture and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6287312A JPH08130006A (en) 1994-10-27 1994-10-27 Negative electrode, its manufacture and lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08130006A true JPH08130006A (en) 1996-05-21

Family

ID=17715743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287312A Pending JPH08130006A (en) 1994-10-27 1994-10-27 Negative electrode, its manufacture and lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08130006A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
WO2005103340A1 (en) * 2004-04-19 2005-11-03 Mitsui Mining & Smelting Co., Ltd. Composite foil, method for producing same, current collector using such composite foil, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007273484A (en) * 2007-06-14 2007-10-18 Ube Ind Ltd Nonaqueous secondary battery
WO2009001526A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation All solid polymer battery
JP2009004250A (en) * 2007-06-22 2009-01-08 Panasonic Corp Negative electrode active material and all solid polymer battery
JP2013179081A (en) * 2013-05-23 2013-09-09 Nec Corp Secondary battery, and negative electrode for secondary battery
CN113437247A (en) * 2021-06-25 2021-09-24 中国科学院长春应用化学研究所 Method for electrodepositing active substance on battery current collector by using molten salt
CN113793920A (en) * 2021-08-09 2021-12-14 华中科技大学 Construction method and application of in-situ lithium-aluminum alloy layer on surface of metal lithium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217574A (en) * 2002-01-23 2003-07-31 Nec Corp Negative electrode for secondary battery and secondary battery using the same
JP4701579B2 (en) * 2002-01-23 2011-06-15 日本電気株式会社 Negative electrode for secondary battery
WO2005103340A1 (en) * 2004-04-19 2005-11-03 Mitsui Mining & Smelting Co., Ltd. Composite foil, method for producing same, current collector using such composite foil, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007273484A (en) * 2007-06-14 2007-10-18 Ube Ind Ltd Nonaqueous secondary battery
WO2009001526A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation All solid polymer battery
JP2009004250A (en) * 2007-06-22 2009-01-08 Panasonic Corp Negative electrode active material and all solid polymer battery
CN102623686A (en) * 2007-06-22 2012-08-01 松下电器产业株式会社 All solid-state polymer battery
US8318342B2 (en) 2007-06-22 2012-11-27 Panasonic Corporation All solid-state polymer battery
JP2013179081A (en) * 2013-05-23 2013-09-09 Nec Corp Secondary battery, and negative electrode for secondary battery
CN113437247A (en) * 2021-06-25 2021-09-24 中国科学院长春应用化学研究所 Method for electrodepositing active substance on battery current collector by using molten salt
CN113793920A (en) * 2021-08-09 2021-12-14 华中科技大学 Construction method and application of in-situ lithium-aluminum alloy layer on surface of metal lithium

Similar Documents

Publication Publication Date Title
US5804335A (en) Lithium secondary battery
EP1635417B1 (en) Lithium secondary battery and method for producing same
JPH08171938A (en) Li secondary battery and its positive electrode
EP1711971A1 (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JPH07240201A (en) Negative electrode and lithium secondary battery
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
JP2002075351A (en) Alloy powder for negative electrode of nonaqueous electrolyte secondary battery and method for manufacturing the alloy powder
JPH07296812A (en) Negative electrode and li secondary battery
JPH1092424A (en) Lithium secondary battery negative electrode and lithium secondary battery using it
US5498495A (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JPH08180853A (en) Separator and lithium secondary battery
US20030013018A1 (en) Negative electrode material and battery using the same
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
JPH0896792A (en) Lithium battery
JP3573971B2 (en) Lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JPH0837000A (en) Negative electrode, its manufacturing method, and lithium secondary battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JPH07282800A (en) Negative electrode, manufacture thereof, and lithium secondary battery
JPH0896788A (en) Separator and lithium secondary battery
JP4077423B2 (en) Nonaqueous electrolyte secondary battery
JPH08130034A (en) Lithium secondary battery and separator