JPH08171938A - Li secondary battery and its positive electrode - Google Patents

Li secondary battery and its positive electrode

Info

Publication number
JPH08171938A
JPH08171938A JP6334030A JP33403094A JPH08171938A JP H08171938 A JPH08171938 A JP H08171938A JP 6334030 A JP6334030 A JP 6334030A JP 33403094 A JP33403094 A JP 33403094A JP H08171938 A JPH08171938 A JP H08171938A
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
solid electrolyte
lithium
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6334030A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Marumoto
光弘 丸本
Yoshinori Takada
善典 高田
Kenichi Kizu
賢一 木津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6334030A priority Critical patent/JPH08171938A/en
Publication of JPH08171938A publication Critical patent/JPH08171938A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a Li secondary battery, where negative electrode activity is held for a long time and a cycle life for charge and discharge and a charging and discharging capacity are excellently kept for a long time. CONSTITUTION: A positive electrode 3 to which a compound containing an element to form a solid electrolyte is added is provided on one side of a separator 4 to hold electrolyte to which a compound containing element to form a Li-ion permeable solid electrolyte after compounded with lithium is added, and a negative electrode 5 which has a solid electrolyte film on the surface is provided on the other side of the separator 4. A Li secondary battery excellent in reliability is thus obtained, where sufficient solid electrolyte forming components are held via the positive electrode and refilled into electrolyte for a long time and the solid electrolyte film on the surface of the negative electrode is recovered for a long time.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、負極活性を長期に持続
して充放電のサイクル寿命や充放電容量に優れるLi二
次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Li secondary battery that maintains negative electrode activity for a long period of time and is excellent in charge / discharge cycle life and charge / discharge capacity.

【0002】[0002]

【従来の技術】従来、Li二次電池としては、LiAs
6のジメトキシエタン溶液からなる電解液等を保持す
るセパレータの片側に正極を有し、他方側にリチウム又
はリチウム合金からなる金属テープの表面にLiF等か
らなるLiイオン透過性の固体電解質膜を設けた負極を
有するものが知られていた。
2. Description of the Related Art Conventionally, LiAs has been used as a Li secondary battery.
A separator holding an electrolytic solution or the like made of a dimethoxyethane solution of F 6 has a positive electrode on one side, and a Li ion permeable solid electrolyte film made of LiF or the like on the surface of a metal tape made of lithium or a lithium alloy on the other side. Those having a provided negative electrode have been known.

【0003】負極における当該固体電解質膜は、金属テ
ープと電解液が接触して充放電時にそれらの反応生成物
が負極表面に堆積して負極活性が落ち充放電の繰返しで
放電容量が漸次低下することを防止して高放電容量化し
たLi二次電池のサイクル寿命の長期化を目的とする。
しかしながら前記のLi二次電池にあっては、固体電解
質膜を設けた負極における前記効果の持続性に劣り、電
池のサイクル寿命に劣る問題点があった。かかる電池寿
命の短期化問題は、起電力や充放電容量の向上を目的に
リチウムやリチウムリッチな合金を用いるほど著しい。
In the solid electrolyte membrane of the negative electrode, the metal tape and the electrolytic solution come into contact with each other, and the reaction products thereof are deposited on the surface of the negative electrode during charging and discharging, the negative electrode activity decreases, and the discharge capacity gradually decreases due to repeated charging and discharging. The purpose of this is to prolong the cycle life of a Li secondary battery having a high discharge capacity by preventing this.
However, the Li secondary battery described above has a problem that the above-mentioned effect of the negative electrode provided with the solid electrolyte membrane is inferior in sustainability and the cycle life of the battery is inferior. The problem of shortening the battery life is more remarkable as lithium or a lithium-rich alloy is used for the purpose of improving electromotive force and charge / discharge capacity.

【0004】[0004]

【発明が解決しようとする課題】本発明者らは、前記の
問題点を克服するために鋭意研究を重ねた結果、放電時
のLiの電析による負極表面の膨張で固体電解質膜がセ
パレータとの間で押圧され、それにより発生した引張応
力で脆くて壊れやすい固体電解質膜にクラックが発生
し、金属テープが露出して電解液と接触し反応生成物が
発生して上記した負極活性の低下問題、ひいては負極活
性の低下を防止する効果が持続しない前記の問題点が生
じることを究明した。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted extensive studies to overcome the above-mentioned problems, and as a result, the solid electrolyte membrane became a separator due to the expansion of the negative electrode surface due to the electrodeposition of Li during discharge. The solid electrolyte membrane, which is fragile and fragile due to the tensile stress generated by pressing between the two, causes cracks in the solid electrolyte membrane, the metal tape is exposed and contacts with the electrolyte to generate reaction products, and the above-mentioned negative electrode activity decreases. It was clarified that a problem, and eventually, the above-mentioned problem that the effect of preventing the decrease of the negative electrode activity does not last occurs.

【0005】そのため、電解液にリチウムと化合してL
iイオン透過性の固体電解質を形成する元素を含有する
化合物を添加して固体電解質膜を負極上に再生する手段
を試みたが、当該化合物の消費が予想外に早く、当該化
合物の電解液への溶解度も低いこともあって満足できる
サイクル寿命の長期化をはかることができなかった。
Therefore, when L is combined with lithium in the electrolytic solution,
An attempt was made to regenerate the solid electrolyte membrane on the negative electrode by adding a compound containing an element that forms an i-ion permeable solid electrolyte, but the consumption of the compound was unexpectedly fast, and it was added to the electrolytic solution of the compound. It was not possible to attain a satisfactory long cycle life because of the low solubility of the.

【0006】従って本発明は、負極活性を長期に持続し
て充放電のサイクル寿命や充放電容量の長期維持性に優
れるLi二次電池を得ることを目的とする。
[0006] Therefore, an object of the present invention is to obtain a Li secondary battery which maintains negative electrode activity for a long period of time and is excellent in charge / discharge cycle life and long-term maintenance of charge / discharge capacity.

【0007】[0007]

【課題を解決するための手段】本発明は、リチウムと化
合してLiイオン透過性の固体電解質を形成する元素を
含有する化合物を添加した電解液を保持するセパレータ
の片側に、前記固体電解質を形成する元素を含有する化
合物を添加した正極を有し、前記セパレータの他方側に
前記の固体電解質の膜を表面に設けた負極を有すること
を特徴とするLi二次電池を提供するものである。
According to the present invention, the solid electrolyte is provided on one side of a separator holding an electrolytic solution containing a compound containing an element which combines with lithium to form a Li ion permeable solid electrolyte. A Li secondary battery having a positive electrode to which a compound containing an element to be formed is added, and a negative electrode having a surface of the solid electrolyte film on the other side of the separator. .

【0008】[0008]

【作用】リチウムと化合してLiイオン透過性の固体電
解質を形成する元素を含有する化合物を正極に添加する
方式により、充分な量の当該化合物を電池内に保持させ
ることができ、かつ溶解度平衡に基づいて当該化合物を
電解液中に順次補給することができて負極表面における
当該固体電解質の膜を長期に再生することができ、負極
活性を長期に持続して充放電のサイクル寿命や充放電容
量の長期維持性に優れるLi二次電池を形成することが
できる。
By a method of adding to the positive electrode a compound containing an element that combines with lithium to form a Li-ion permeable solid electrolyte, a sufficient amount of the compound can be retained in the battery, and the solubility equilibrium is maintained. Based on the above, the compound can be sequentially replenished in the electrolytic solution, the film of the solid electrolyte on the surface of the negative electrode can be regenerated for a long time, the negative electrode activity can be maintained for a long time, and the cycle life of charge / discharge and charge / discharge It is possible to form a Li secondary battery having excellent long-term capacity retention.

【0009】[0009]

【実施例】本発明のLi二次電池は、リチウムと化合し
てLiイオン透過性の固体電解質を形成する元素を含有
する化合物を添加した電解液を保持するセパレータの片
側に、前記固体電解質を形成する元素を含有する化合物
を添加した正極を有し、前記セパレータの他方側に前記
の固体電解質の膜を表面に設けた負極を有するものであ
る。その例を図1に示した。
EXAMPLE A Li secondary battery of the present invention comprises a solid electrolyte on one side of a separator that holds an electrolyte solution containing a compound containing an element that combines with lithium to form a Li ion permeable solid electrolyte. It has a positive electrode to which a compound containing an element to be formed is added, and a negative electrode having the surface of the solid electrolyte membrane on the other side of the separator. An example thereof is shown in FIG.

【0010】図1に例示した電池は、コイン型のものを
示したものである。図中、1,7は電池缶、2,6はN
i板からなる集電体、3は正極層、4は電解液を保持す
るセパレータ、5は負極層、51はその固体電解質膜、
8は絶縁封止材である。シート状の正極と負極をセパレ
ータを介して積層したものを捲回したものなどからなる
捲回型のLi二次電池などについても前記コイン型電池
に準じて形成することができる。
The battery illustrated in FIG. 1 is of a coin type. In the figure, 1 and 7 are battery cans and 2 and 6 are N
Current collector made of i plate, 3 positive electrode layer, 4 separator holding electrolyte solution, 5 negative electrode layer, 51 solid electrolyte membrane thereof,
Reference numeral 8 is an insulating sealing material. A wound Li secondary battery, which is formed by winding a sheet-shaped positive electrode and a negative electrode laminated via a separator, and the like can also be formed according to the coin-type battery.

【0011】電解液や正極に添加する、リチウムと化合
してLiイオン透過性の固体電解質を形成する元素を含
有する化合物は、負極表面の固体電解質膜に応じて適宜
に決定される。その例としては、固体電解質膜がLi3
PO4である場合のNaH2PO4、LiFである場合の
KF、LiTi2(PO43である場合のTi2(C
243とNaH2PO4、Li2MnCl4である場合の
MnCl2、Li2Sである場合のSやNa2S、LiC
lである場合のNaCl、Li2CO3である場合のCa
CO3などがあげられる。なお電解液に添加する当該化
合物は、例えばH3PO 4やHF、HClやH2CO3など
の液体であってもよい。
Compound with lithium added to the electrolyte or positive electrode
To form a solid electrolyte permeable to Li ions.
The compound to have is appropriately selected according to the solid electrolyte membrane on the surface of the negative electrode.
Is determined. As an example, the solid electrolyte membrane is Li3
POFourIf NaH2POFour, LiF
KF, LiTi2(POFour)3Ti if2(C
2HFour)3And NaH2POFour, Li2MnClFourIf
MnCl2, Li2S or Na when it is S2S, LiC
NaCl, Li when it is 12CO3If it is
CO3And so on. It should be noted that addition to the electrolytic solution
For example, H3PO FourOr HF, HCl or H2CO3Such
It may be a liquid.

【0012】従って当該化合物としては、負極表面の固
体電解質膜を形成する元素の1種又は2種以上を含有す
る塩などを、当該元素がリチウムと化合することで当該
固体電解質が形成される組合せで1種又は2種以上が用
いられる。なお正極に添加した当該化合物は、電解液中
の当該化合物の消費により溶解度平衡に基づいて電解液
中に順次溶出され、その補給に基づいて当該元素が負極
表面でLiイオンと化合し、当該固体電解質膜が負極表
面上に再生される。
Therefore, as the compound, a combination in which a salt containing one or more of the elements forming the solid electrolyte membrane on the surface of the negative electrode is combined with lithium to form the solid electrolyte is formed. 1 type (s) or 2 or more types are used. Note that the compound added to the positive electrode is sequentially eluted into the electrolytic solution based on the solubility equilibrium due to consumption of the compound in the electrolytic solution, and the element is combined with Li ions on the negative electrode surface based on the replenishment, and the solid The electrolyte membrane is regenerated on the negative electrode surface.

【0013】当該化合物の正極への添加量は、電池を形
成する他部材の寿命などにより適宜に決定される。一般
には、当該化合物の電解液中への好ましい溶解度が通例
1/106〜1/102モル/リットル、就中1/105
〜1/103モル/リットルであることから、0.05
〜5重量%、就中0.1〜2重量%の添加量とされる。
The amount of the compound added to the positive electrode is appropriately determined depending on the life of other members forming the battery. Generally, the preferred solubility of the compound in the electrolyte is usually 1/10 6 to 1/10 2 mol / liter, especially 1/10 5
~ 1/10 3 mol / liter, so 0.05
-5% by weight, preferably 0.1-2% by weight.

【0014】本発明においてLi二次電池は、電解液を
保持するセパレータの片側に正極を有し、他方側に固体
電解質膜を表面に設けた負極を有して、その電解液と正
極とが上記した如く、リチウムと化合してLiイオン透
過性の前記固体電解質を形成する元素を含有する化合物
を含有するものであればよく、その他の点については特
に限定はなく適宜に決定することができる。
In the present invention, the Li secondary battery has a positive electrode on one side of a separator holding an electrolytic solution and a negative electrode having a solid electrolyte membrane on the surface on the other side, and the electrolytic solution and the positive electrode are separated from each other. As described above, any compound may be used as long as it contains a compound containing an element that combines with lithium to form the Li ion permeable solid electrolyte, and other points are not particularly limited and can be appropriately determined. .

【0015】従って前記の点を除き、従来に準じた仕様
のLi二次電池を形成でき、電池形態なども使用目的等
に応じて適宜に決定してよく、例えばコイン型やボタン
型、あるいは捲回体型などのような任意な形態とするこ
とができる。また正極や負極の形態についても、電池形
態などに応じて適宜に決定でき、図1に例示の如く正極
層3や負極層5が集電体2,6に付設された正極や負極
の形態、あるいはその集電体を有しない正極等の形態な
どとすることができる。
Therefore, except for the above points, it is possible to form a Li secondary battery having specifications conforming to the conventional one, and the battery form and the like may be appropriately determined according to the purpose of use, for example, coin type, button type, or winding type. It may have any shape such as a revolving type. The form of the positive electrode and the negative electrode can be appropriately determined according to the form of the battery, and the form of the positive electrode and the negative electrode in which the positive electrode layer 3 and the negative electrode layer 5 are attached to the current collectors 2 and 6 as illustrated in FIG. Alternatively, it may be in the form of a positive electrode or the like without the current collector.

【0016】ちなみに正極については、カーボンや金属
系のもの、共役系ポリマー等の有機導電性物質系のもの
などの適宜なものを用いて任意な形態に形成することが
でき、公知物のいずれも用いうる。その場合、リチウム
と化合してLiイオン透過性の固体電解質を形成する元
素を含有する化合物の添加は、例えば正極層や集電体層
の如き正極を形成する層への配合方式や、付設方式など
の適宜な方式により達成することができる。前記の配合
方式は、正極活物質を成形して正極とする場合、特に正
極活物質をバインダ等を介し正極層として集電体に付設
して正極とする場合などに好ましく適用することができ
る。
Incidentally, the positive electrode can be formed in an arbitrary shape by using an appropriate material such as a carbon or metal material, or an organic conductive material material such as a conjugated polymer, and any known material can be used. Can be used. In that case, the compound containing an element that combines with lithium to form a Li-ion permeable solid electrolyte may be added to a layer forming a positive electrode such as a positive electrode layer or a current collector layer, or may be added. It can be achieved by an appropriate method such as. The above-described compounding method can be preferably applied to a case where a positive electrode active material is molded into a positive electrode, particularly when the positive electrode active material is attached to a current collector as a positive electrode layer via a binder or the like to form a positive electrode.

【0017】金属系の正極活物質の例としては、Liを
含有する、Ti、Mo、Cu、Nb、V、Mn、Cr、
Ni、Fe、Co、P等の金属の複合酸化物、硫化物、
セレン化物、V25などがあげられる。具体的には例え
ば、LiMnO2、LiMn24、LiMn2-xx4
LiNiO2、LiNiMO2、LiCoO2、LiCr
2、LiFeO2、LiVO2、LiwCo1-x-yxy
2+z(ただし、Mは1種又は2種以上の遷移金属、wは
0<w≦2、xは0≦x<1、yは0<y<1、zは−
1≦z≦4である。)、あるいはLiないしLi・Co
のリン酸塩及び/又はCoないしLi・Coの酸化物を成
分として1モルのLiあたり0.1モル以上のCoと
0.2モル以上のPを含有するものなどがあげられる。
Examples of metallic positive electrode active materials include Li, Ti, Mo, Cu, Nb, V, Mn, and Cr.
Composite oxides, sulfides of metals such as Ni, Fe, Co and P,
Examples thereof include selenide and V 2 O 5 . Specifically, for example, LiMnO 2 , LiMn 2 O 4 , LiMn 2-x M x O 4 ,
LiNiO 2 , LiNiMO 2 , LiCoO 2 , LiCr
O 2 , LiFeO 2 , LiVO 2 , Li w Co 1-xy M x P y O
2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y <1, and z is −
1 ≦ z ≦ 4. ), Or Li or Li · Co
And the like, which contains 0.1 mol or more of Co and 0.2 mol or more of P per mol of Li containing the phosphate and / or the oxide of Co or Li · Co as components.

【0018】負極についても、リチウム又はリチウム合
金を用いてテープや負極層の集電体付設物などの任意な
形態に形成することができ、公知物のいずれも用いう
る。そのリチウム合金としては、Liと、例えばAl、
Pb、Sn、In、Bi、Ag、Ba、Ca、Hg、Pd、
Pt、Sr、Te等の金属との2元又は3元以上の合金
に、必要に応じてSi、Cd、Zn、La等を添加したも
のなどがあげられる。
The negative electrode can also be formed in any desired form such as a tape or a current collector attached material for the negative electrode layer using lithium or a lithium alloy, and any known material can be used. As the lithium alloy, Li and, for example, Al,
Pb, Sn, In, Bi, Ag, Ba, Ca, Hg, Pd,
Examples include alloys of binary or ternary or more with metals such as Pt, Sr and Te, to which Si, Cd, Zn, La and the like are added, if necessary.

【0019】前記リチウム合金の具体例としては、例え
ばAl、Bi、Sn又はIn等とLiとの金属間化合物
などからなるLi合金、LiとPbの合金にLa等を添加
して機械的特性を改善したもの、あるいはAg、Al、
Mg、Zn又はCaの少なくとも1種からなるX成分を
含むLi−X−Te系合金などがあげられる。リチウム
合金におけるリチウム以外の成分の含有量は、原子比に
基づいて40%以下、就中5〜30%、特に10〜20
%が好ましい。
Specific examples of the lithium alloy include, for example, a Li alloy made of an intermetallic compound of Al, Bi, Sn or In with Li and an alloy of Li and Pb with La or the like to improve mechanical properties. Improved or Ag, Al,
Examples thereof include a Li-X-Te-based alloy containing an X component composed of at least one of Mg, Zn, and Ca. The content of components other than lithium in the lithium alloy is 40% or less based on the atomic ratio, preferably 5 to 30%, particularly 10 to 20.
% Is preferred.

【0020】充放電のサイクル寿命、高起電力性、高放
電容量性、高エネルギー密度性などの点より特に好まし
く用いうるリチウム合金は、Li−Ag−Te系合金か
らなるLi:Ag:Teの原子比が80〜150:1〜
20:0.001〜30のものなどであり、Liを80
原子%以上含有するものである。
A lithium alloy which can be particularly preferably used in terms of charge / discharge cycle life, high electromotive force, high discharge capacity, high energy density and the like is Li: Ag: Te composed of Li-Ag-Te alloy. Atomic ratio 80-150: 1-
20: 0.001 to 30 and the like, 80% Li
It contains at least atomic%.

【0021】正極、負極の形成は、例えば前記活物質等
の極形成材を必要に応じてアセチレンブラックやケッチ
ェンブラック等の導電材料、及びポリテトラフルオロエ
チレンやポリエチレン、ポリフッ化ビニリデンやエチレ
ン・プロピレン・ジエン共重合体等のバインダと共に、
キャスティング方式や圧縮成形方式、ロール成形方式や
ドクターブレード方式、圧延方式や熱間押出方式などの
適宜な方式で成形する方法や、各種の蒸着方式や溶融メ
ッキ方式などにより膜形成する方法などで行うことがで
きる。
For forming the positive electrode and the negative electrode, for example, a conductive material such as acetylene black or Ketjen black may be used as the electrode forming material such as the above-mentioned active material, and polytetrafluoroethylene, polyethylene, polyvinylidene fluoride or ethylene / propylene. -With a binder such as a diene copolymer,
Casting method, compression molding method, roll molding method, doctor blade method, rolling method, hot extrusion method, or other appropriate method, or various vapor deposition or hot dip coating methods, etc. be able to.

【0022】なおLi二次電池の高起電力化、高充放電
容量化の点より、正極活物質の量を多くし、正極や負極
の電極面積を大きくすることが有利である。従って同容
積の電池を基準とした場合には、負極を薄肉化して電極
面積の維持をはかりつつ体積を縮小化すること、ないし
負極活物質の減量が有利であり、この点よりリチウム合
金の場合にはリチウムがリッチなほど有利である。
From the viewpoint of increasing the electromotive force and charging / discharging capacity of the Li secondary battery, it is advantageous to increase the amount of the positive electrode active material and increase the electrode areas of the positive electrode and the negative electrode. Therefore, when a battery of the same volume is used as a standard, it is advantageous to reduce the volume while maintaining the electrode area by thinning the negative electrode, or to reduce the amount of the negative electrode active material. The richer the lithium, the better.

【0023】上記したように正極や負極は、正極層や負
極層を集電体に付設したものなどとして形成できるが、
その正極層や負極層の形成は、例えばテープ形態等の集
電体を付設ベースに用いて極形成材を塗布する方式など
の適宜な方式で得ることができる。集電体としては、例
えば銅、アルミニウム、銀等の導電性に優れる金属など
からなる導電性支持基材が用いられる。集電体の厚さ
は、電極の使用目的等に応じて適宜に決定され、一般に
は100μm以下、就中、薄型化の点より5〜50μm、
特に10〜30μmとされる。また正極層や負極層の厚
さは、500μm以下、就中300μm以下、特に5〜2
00μmが一般的であるが1mmを超える厚さとするとき
もあり、その厚さは適宜に決定することができる。
As described above, the positive electrode and the negative electrode can be formed by attaching the positive electrode layer and the negative electrode layer to the current collector.
The positive electrode layer and the negative electrode layer can be formed by an appropriate method such as a method in which a collector in the form of a tape is used as an attached base to apply the electrode forming material. As the current collector, for example, a conductive support substrate made of a metal having excellent conductivity such as copper, aluminum or silver is used. The thickness of the current collector is appropriately determined according to the purpose of use of the electrode and the like, and is generally 100 μm or less, especially 5 to 50 μm from the viewpoint of thinning,
Particularly, it is set to 10 to 30 μm. The thickness of the positive electrode layer and the negative electrode layer is 500 μm or less, preferably 300 μm or less, especially 5 to 2
The thickness is generally 00 μm, but in some cases the thickness exceeds 1 mm, and the thickness can be appropriately determined.

【0024】前記した電極の大面積化や負極の薄肉化等
を目的に溶融メッキ方式を適用する場合などには、特に
集電体上に負極層を形成する場合には導電性支持基材の
上に必要に応じて拡散バリア層や濡れ促進材層等を設け
たものなども用いられる。拡散バリア層は、溶融メッキ
時にそのメッキ成分が導電性支持基材を侵食することの
防止を目的とし、その形成には例えばニッケルやコバル
ト、鉄などのメッキ成分と反応しにくい適宜な導体を用
いることができる。
When the hot dip plating method is applied for the purpose of increasing the area of the electrode or reducing the thickness of the negative electrode, etc., particularly when the negative electrode layer is formed on the current collector, the conductive support substrate If necessary, a diffusion barrier layer, a wetting promoting material layer, or the like may be provided thereon. The diffusion barrier layer is for the purpose of preventing the plating component from eroding the conductive supporting base material during hot dipping, and for that formation, an appropriate conductor that is hard to react with the plating component such as nickel, cobalt, or iron is used. be able to.

【0025】拡散バリア層の上に必要に応じて設けられ
る濡れ促進材層は、溶融メッキ時におけるメッキ液の濡
れを促進して凹凸化などの電極表面性状の悪化を防止
し、溶融メッキによる平坦かつ均一なコーティング層を
形成して良質の活物質層が形成されやすくすることを目
的とする。濡れ促進材層の形成には、メッキ成分と親和
性の適宜な導体、好ましくはメッキ成分と反応しやすく
てその化学親和性に優れるものを用いうる。その例とし
ては銀、銅、亜鉛、マグネシウム、アルミニウム、カル
シウム、バリウム、ビスマス、インジウム、鉛、白金、
パラジウム、スズなどがあげられる。
The wetting promoting material layer, which is provided on the diffusion barrier layer as needed, promotes the wetting of the plating solution during the hot dip plating to prevent the deterioration of the surface properties of the electrode such as unevenness, and flattening by the hot dip plating. Moreover, it is intended to form a uniform coating layer to facilitate formation of a high-quality active material layer. For forming the wetting promoting material layer, a conductor having an appropriate affinity for the plating component, preferably a conductor which easily reacts with the plating component and has an excellent chemical affinity can be used. Examples are silver, copper, zinc, magnesium, aluminum, calcium, barium, bismuth, indium, lead, platinum,
Examples include palladium and tin.

【0026】拡散バリア層や濡れ促進材層の形成は、例
えば電気メッキ方式、無電解メッキ方式、物理的ないし
化学的蒸着方式などの適宜な方式で行うことができる。
拡散バリア層、濡れ促進材層の厚さは0.01〜5μm
が一般的である。また溶融メッキ層の形成は、例えば集
電体テープをアルゴンガスやヘリウムガス等の不活性ガ
スの雰囲気下にある溶融メッキ浴に導入してそのコーテ
ィング層を形成する方式や、コーティング層形成後その
コーティング層を急冷処理する方式などにより行うこと
ができる。負極の場合における溶融メッキ層の特に好ま
しい厚さは、5〜50μm、就中10〜25μmである。
The diffusion barrier layer and the wetting promoter layer can be formed by an appropriate method such as an electroplating method, an electroless plating method, and a physical or chemical vapor deposition method.
The thickness of the diffusion barrier layer and the wetting promoting material layer is 0.01 to 5 μm.
Is common. The hot-dip plating layer may be formed by, for example, introducing a current collector tape into a hot-dip plating bath under an atmosphere of an inert gas such as argon gas or helium gas to form the coating layer, or after forming the coating layer. It can be performed by a method such as quenching the coating layer. In the case of the negative electrode, the particularly preferable thickness of the hot-dip plated layer is 5 to 50 μm, especially 10 to 25 μm.

【0027】負極の表面に、電解液との接触防止を目的
に設けられるLiイオン透過性の固体電解質膜について
は上記に例示したが、その形成は例えばリチウムと化合
してLiイオン透過性の固体電解質を形成する元素を含
有する化合物を溶解させた、上記の電解液に準じた溶液
に負極を浸漬する溶液浸漬方式、炭酸ガスや希薄HFガ
ス、希薄HClガスや希薄H2Sガス等に暴露して負極
の表層を固体電解質膜に変質させる気相反応方式、各種
スパッタリング法、パルスプラズマ法、クラスタイオン
蒸着の如きイオンプレーティング法などの低温で蒸着処
理を施して蒸着膜からなる固体電解質膜を形成する低温
蒸着方式などにより行うことができる。
The Li-ion permeable solid electrolyte membrane provided on the surface of the negative electrode for the purpose of preventing contact with the electrolytic solution has been exemplified above, but its formation is combined with lithium, for example, to form a Li-ion permeable solid. Solution immersion method in which a compound containing an element forming an electrolyte is dissolved, and the negative electrode is immersed in a solution conforming to the above electrolytic solution, exposed to carbon dioxide gas, diluted HF gas, diluted HCl gas, diluted H 2 S gas, etc. Then, the solid electrolyte membrane is formed by subjecting the negative electrode surface layer to a solid electrolyte membrane by vapor deposition reaction, various sputtering methods, pulse plasma methods, ion plating methods such as cluster ion deposition, and performing vapor deposition at low temperature. Can be performed by a low temperature vapor deposition method or the like.

【0028】図2に、表面の一部に固体電解質膜51を
設けた負極5を例示した。固体電解質膜は少なくとも負
極の電解液と接触する部分に設けられ、従って固体電解
質膜は負極の全面又は一部に設けることができる。負極
表面に設ける固体電解質膜の厚さについては特に限定は
ない。一般には、1μm以下、就中0.5μm以下、特に
0.01〜0.1μmの厚さとされる。
FIG. 2 illustrates the negative electrode 5 having the solid electrolyte membrane 51 provided on a part of its surface. The solid electrolyte membrane is provided at least in a portion of the negative electrode that comes into contact with the electrolytic solution, and thus the solid electrolyte membrane can be provided on the entire surface or a part of the negative electrode. The thickness of the solid electrolyte membrane provided on the negative electrode surface is not particularly limited. Generally, the thickness is 1 μm or less, preferably 0.5 μm or less, particularly 0.01 to 0.1 μm.

【0029】正極と負極の間に介在させるセパレータ
は、電解液を保持してその電解質を介し正・負極間での
電池反応を可能とするものである。従ってセパレータと
しては、電解液を保持する能力を有する適宜なものを用
いることができる。一般には例えば、ポリプロピレンや
ポリエチレン等からなる多孔性ポリマーフィルムやガラ
スフィルター、不織布の如き多孔性素材からなる多孔性
絶縁膜が用いられる。その場合、電解液の保持は、多孔
性絶縁膜に電解液を含浸させたり、充填する方式、ある
いは電池缶内に電解液を充填する方式などの適宜な方式
で達成することができる。
The separator interposed between the positive electrode and the negative electrode holds the electrolytic solution and enables the battery reaction between the positive electrode and the negative electrode via the electrolyte. Therefore, as the separator, an appropriate separator having the ability to hold the electrolytic solution can be used. Generally, for example, a porous polymer film made of polypropylene or polyethylene, a glass filter, or a porous insulating film made of a porous material such as a nonwoven fabric is used. In that case, the holding of the electrolytic solution can be achieved by an appropriate method such as a method of impregnating or filling the porous insulating film with the electrolytic solution, or a method of filling the electrolytic solution into the battery can.

【0030】また本発明においては、前記のセパレータ
と負極の固体電解質膜との間に陽イオン交換膜を介在さ
せることもできる。その陽イオン交換膜は、セパレータ
が保持する電解液が負極と接触することの防止を目的と
し、セパレータと密着一体化していてもよい。陽イオン
交換膜としては、リチウムイオンを透過する適宜なもの
を用いうる。好ましく用いうる陽イオン交換膜は、リチ
ウムイオンを他の陽イオンよりも優位に透過させるもの
であり、就中リチウムイオンを選択的に透過させるもの
である。その例としては、スチレン・ジビニルベンゼン
共重合体系のもの、スチレン・ブタジエン共重合体系の
もの、スチレン・ジビニルベンゼン・ポリ塩化ビニル共
重合体系のものなどがあげられる。
Further, in the present invention, a cation exchange membrane may be interposed between the separator and the solid electrolyte membrane of the negative electrode. The cation exchange membrane may be in close contact with and integrated with the separator for the purpose of preventing the electrolytic solution held by the separator from coming into contact with the negative electrode. As the cation exchange membrane, an appropriate one that transmits lithium ions can be used. A cation exchange membrane that can be preferably used is one that allows lithium ions to permeate more dominantly than other cations, and in particular, one that selectively permeates lithium ions. Examples thereof include those of the styrene / divinylbenzene copolymer system, those of the styrene / butadiene copolymer system, those of the styrene / divinylbenzene / polyvinyl chloride copolymer system, and the like.

【0031】セパレータや必要に応じて用いられる陽イ
オン交換膜の厚さは、形成目的の電池等に応じて適宜に
決定することができ、一般にはそれぞれ500μm以
下、就中1〜300μm、特に5〜100μmとされる。
The thickness of the separator and the cation exchange membrane used as necessary can be appropriately determined according to the battery to be formed, etc., and is generally 500 μm or less, preferably 1 to 300 μm, especially 5 μm. ˜100 μm.

【0032】セパレータに保持させる電解液としては、
Liイオンを含有する適宜なものを用いうる。その例と
しては、エステルやエーテル等の有機溶媒にリチウム塩
を溶解させてなる非水電解液系のものなどがあげられ
る。
As the electrolytic solution held by the separator,
Appropriate ones containing Li ions can be used. As an example thereof, a non-aqueous electrolyte solution-based one obtained by dissolving a lithium salt in an organic solvent such as ester or ether can be mentioned.

【0033】前記有機溶媒の代表例としては、プロピレ
ンカーボネート、エチレンカーボネート、ジメチルカー
ボネート、ジエチルカーボネート、テトラヒドロフラ
ン、2−メチルテトラヒドロフラン、ジメトキシエタ
ン、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。
Typical examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone, 1,2-dimethoxyethane, Diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like.

【0034】用いる有機溶媒は、電解液に添加するリチ
ウムと化合してLiイオン透過性の固体電解質を形成す
る元素を含有する化合物の溶解度等に応じて、従って負
極表面の固体電解質膜に応じて適宜に決定される。ちな
みに、ジエチルカーボネートはLiFやLi2CO3など
の固体電解質に対して、プロピレンカーボネートはLi
3PO4やLi2S、LiClなどの固体電解質に対して
通例好ましく用いられる。
The organic solvent used depends on, for example, the solubility of a compound containing an element that forms a Li ion permeable solid electrolyte when combined with lithium added to the electrolytic solution, and thus on the solid electrolyte membrane on the surface of the negative electrode. It is determined appropriately. By the way, diethyl carbonate is a solid electrolyte such as LiF and Li 2 CO 3, whereas propylene carbonate is Li
Usually, it is preferably used for solid electrolytes such as 3 PO 4 , Li 2 S and LiCl.

【0035】リチウム塩の代表例としては、LiI、L
iCF3SO3、Li(CF2SO22、LiBF4、Li
ClO4、LiAlCl4、Li2GeF6、LiPF6、Li
SCN、LiAsF6などがあげられる。電解液におけ
るリチウム塩濃度は0.1〜3モル/リットルが一般的
であるが、これに限定されない。
Typical examples of lithium salts include LiI and L
iCF 3 SO 3, Li (CF 2 SO 2) 2, LiBF 4, Li
ClO 4 , LiAlCl 4 , Li 2 GeF 6 , LiPF 6 , Li
Examples include SCN and LiAsF 6 . The concentration of lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this.

【0036】なお電解液の形成に際しては、寿命や放電
容量、起電力等の電池特性の向上などを目的として、必
要に応じて2−メチルフラン、チオフェン、ピロール、
クラウンエーテル、Li錯イオン形成剤(大環状化合物
等)などの有機添加物を添加することもできる。
In forming the electrolytic solution, 2-methylfuran, thiophene, pyrrole, and the like may be added, if necessary, for the purpose of improving battery characteristics such as life, discharge capacity and electromotive force.
Organic additives such as crown ethers and Li complex ion forming agents (macrocyclic compounds, etc.) can also be added.

【0037】実施例1 幅41mm、厚さ10μmのCuテープ上に厚さ2μmのN
iの電気メッキ層とその上に厚さ0.1μmのAgの電
気メッキ層を有する集電体テープを高純度アルゴン雰囲
気中にて、リチウムの溶融メッキ浴に2m/分の速度で
連続的に導入し通過させ、絞り治具にて両面におけるコ
ーティング厚をそれぞれ25μmに調節し、そのテープ
より長さ420mmのピースを切り出して負極テープを得
た。
Example 1 On a Cu tape having a width of 41 mm and a thickness of 10 μm, N having a thickness of 2 μm was formed.
A current collector tape having an electroplating layer of i and an electroplating layer of Ag having a thickness of 0.1 μm was continuously applied to a hot-dip bath of lithium at a rate of 2 m / min in a high-purity argon atmosphere. The film was introduced and passed through, and the coating thickness on both surfaces was adjusted to 25 μm with a drawing jig, and a piece having a length of 420 mm was cut out from the tape to obtain a negative electrode tape.

【0038】一方、幅39mm、厚さ25μmのAlテー
プの両面に、正極層形成用のペーストをドクターブレー
ド方式で塗布して厚さ150μmの正極層を形成したの
ち、圧延機により表裏の正極層を各100μmに圧縮
し、それより長さ400mmのピースを切り出してそのピ
ースの片端における長さ20mm部分の正極層を剥離し、
その部分にリード線を溶接して、正極テープを得た。
On the other hand, a positive electrode layer forming paste was applied on both sides of an Al tape having a width of 39 mm and a thickness of 25 μm by a doctor blade method to form a positive electrode layer having a thickness of 150 μm, and then the positive and negative electrode layers on the front and back sides were rolled. Is compressed to 100 μm each, and a piece having a length of 400 mm is cut out from the piece, and the positive electrode layer having a length of 20 mm at one end of the piece is peeled off.
A lead wire was welded to the portion to obtain a positive electrode tape.

【0039】なお前記の正極層形成用のペーストは、炭
酸リチウムと塩基性炭酸コバルトとリン酸含有率85%
のリン酸水溶液をLi:Co:P=2:1.5:0.5
の原子比で混合し、それをアルミナ製坩堝に入れて90
0℃で24時間加熱処理し、リチウムのリン酸塩とリチ
ウム・コバルトのリン酸塩とコバルト酸化物の混合物
(活物質)を形成し、それをボールミルで粉砕して分粒
したのち、その粒径20μm以下の粉末46重量部、ア
セチレンブラック4重量部、ポリフッ化ビニリデン2重
量部、リン酸水素ナトリウム0.5重量部及びN−メチ
ルピロリドン50重量部を混合して調製したものであ
る。
The above-mentioned paste for forming the positive electrode layer was composed of lithium carbonate, basic cobalt carbonate and phosphoric acid content of 85%.
Li: Co: P = 2: 1.5: 0.5
And mix it in an atomic ratio of 90, put it in an alumina crucible and
After heat treatment at 0 ° C for 24 hours, a mixture (active material) of lithium phosphate, lithium-cobalt phosphate and cobalt oxide is formed, which is crushed by a ball mill and sized, and then the particles are It was prepared by mixing 46 parts by weight of powder having a diameter of 20 μm or less, 4 parts by weight of acetylene black, 2 parts by weight of polyvinylidene fluoride, 0.5 part by weight of sodium hydrogen phosphate and 50 parts by weight of N-methylpyrrolidone.

【0040】次に、厚さ25μmの多孔性ポリプロピレ
ンフィルムからなるセパレータを介在させた状態で前記
の負極テープと正極テープを捲回して電池缶に収納し3
mlの電解液を注入して単3型の二次電池を形成した。捲
回物の断面積は電池缶内側の断面積の約90%とした。
また、電解液には1リットルのプロピレンカーボネート
/ジメトキシエタン混合溶媒に1モルのLiClO4を溶
解させたものを用いた。なお電池形成後の電解液には、
正極中のリン酸水素ナトリウムが溶出してその存在が認
められ、負極にはLi3PO4膜の形成が認められた。
Next, the negative electrode tape and the positive electrode tape were wound with a separator made of a porous polypropylene film having a thickness of 25 μm interposed, and the wound tape was housed in a battery can.
The AA type secondary battery was formed by injecting ml of the electrolytic solution. The cross-sectional area of the wound product was about 90% of the cross-sectional area inside the battery can.
The electrolyte used was 1 liter of propylene carbonate / dimethoxyethane mixed solvent in which 1 mol of LiClO 4 was dissolved. In addition, the electrolytic solution after forming the battery,
Sodium hydrogen phosphate in the positive electrode was eluted and its presence was observed, and formation of a Li 3 PO 4 film was observed in the negative electrode.

【0041】実施例2 リン酸水素ナトリウムに代えてフッ化カリウムを用いた
ほかは実施例1に準じてLi二次電池を得た。なお負極
表面に形成された膜はLiF膜であった。
Example 2 A Li secondary battery was obtained in the same manner as in Example 1 except that potassium fluoride was used instead of sodium hydrogenphosphate. The film formed on the surface of the negative electrode was a LiF film.

【0042】実施例3 負極テープにおける溶融メッキ層としてリチウム層に代
えて、原子比がLi:Ag:Te=90:10:0.1
のLi−Ag−Te合金層としたほかは実施例1に準じ
てLi二次電池を得た。
Example 3 Instead of the lithium layer as the hot dip layer in the negative electrode tape, the atomic ratio was Li: Ag: Te = 90: 10: 0.1.
A Li secondary battery was obtained in the same manner as in Example 1 except that the Li-Ag-Te alloy layer was used.

【0043】比較例1 リン酸水素ナトリウムを添加しない正極テープを用いた
ほかは、従って電解液にもリン酸水素ナトリウムを含ま
ないものとしたほかは実施例1に準じてLi二次電池を
得た。
Comparative Example 1 A Li secondary battery was obtained in the same manner as in Example 1 except that a positive electrode tape containing no sodium hydrogen phosphate was used and therefore the electrolyte solution did not contain sodium hydrogen phosphate. It was

【0044】比較例2 リン酸水素ナトリウムを添加しない正極テープを用いた
ほかは、従って電解液にもリン酸水素ナトリウムを含ま
ないものとしたほかは実施例3に準じてLi二次電池を
得た。
Comparative Example 2 A Li secondary battery was obtained in the same manner as in Example 3 except that a positive electrode tape containing no sodium hydrogen phosphate was used, and therefore the electrolyte solution did not contain sodium hydrogen phosphate. It was

【0045】評価試験 実施例、比較例で得たLi二次電池について、100m
Aの充電電流及び放電電流にて4.3V(充電)〜2.
75V(放電:充電後1時間放置)の間で充放電サイク
ルを50回繰返したのちの放電容量維持率を調べた。
Evaluation test: For the Li secondary batteries obtained in Examples and Comparative Examples, 100 m
A charge current and discharge current of 4.3 V (charge) to 2.
The charge / discharge cycle was repeated 50 times at 75 V (discharge: left for 1 hour after charging), and the discharge capacity retention ratio was examined.

【0046】前記の結果を次表に示した。 The above results are shown in the following table.

【0047】[0047]

【発明の効果】本発明によれば、正極を介し充分量の固
体電解質形成成分を電池内に保持して電解液中に長期に
わたり補給し、負極表面の固体電解質膜を長期に再生で
きて負極活性を長期に持続し、負極が起電力や放電容量
やエネルギー密度に優れる、リチウム又はリチウムリッ
チなリチウム合金からなる場合にも、充放電のサイクル
寿命、充放電容量、信頼性に優れるLi二次電池を得る
ことができる。
EFFECTS OF THE INVENTION According to the present invention, a sufficient amount of the solid electrolyte forming component is held in the battery via the positive electrode and replenished in the electrolytic solution for a long time, and the solid electrolyte membrane on the surface of the negative electrode can be regenerated for a long time. Li secondary that has long-lasting activity and the negative electrode is excellent in electromotive force, discharge capacity, and energy density and is made of lithium or a lithium-rich lithium alloy, which has excellent charge / discharge cycle life, charge / discharge capacity, and reliability. You can get a battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】電池の実施例の断面図。FIG. 1 is a cross-sectional view of a battery embodiment.

【図2】負極例の断面図。FIG. 2 is a sectional view of an example of a negative electrode.

【符号の説明】[Explanation of symbols]

1,7:電池缶 2,6:集電体 3:正極層 4:セパレータ 5:負極層(51:固体電解質膜) 1, 7: Battery can 2, 6: Current collector 3: Positive electrode layer 4: Separator 5: Negative electrode layer (51: Solid electrolyte membrane)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムと化合してLiイオン透過性の
固体電解質を形成する元素を含有する化合物を添加した
電解液を保持するセパレータの片側に、前記固体電解質
を形成する元素を含有する化合物を添加した正極を有
し、前記セパレータの他方側に前記の固体電解質の膜を
表面に設けた負極を有することを特徴とするLi二次電
池。
1. A compound containing an element forming a solid electrolyte is provided on one side of a separator holding an electrolyte solution containing a compound containing an element forming a Li ion permeable solid electrolyte by combining with lithium. A Li secondary battery having an added positive electrode and a negative electrode having a surface of the solid electrolyte film on the other side of the separator.
【請求項2】 リチウムと化合してLiイオン透過性の
固体電解質を形成する元素を含有する化合物を添加して
なる正極層を有することを特徴とするLi二次電池の形
成に用いる正極。
2. A positive electrode used for forming a Li secondary battery, which has a positive electrode layer formed by adding a compound containing an element that combines with lithium to form a Li ion-permeable solid electrolyte.
【請求項3】 正極活物質を含有する正極層を集電体に
付設した形態を有する請求項2に記載の正極。
3. The positive electrode according to claim 2, which has a form in which a positive electrode layer containing a positive electrode active material is attached to a current collector.
JP6334030A 1994-12-15 1994-12-15 Li secondary battery and its positive electrode Pending JPH08171938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6334030A JPH08171938A (en) 1994-12-15 1994-12-15 Li secondary battery and its positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6334030A JPH08171938A (en) 1994-12-15 1994-12-15 Li secondary battery and its positive electrode

Publications (1)

Publication Number Publication Date
JPH08171938A true JPH08171938A (en) 1996-07-02

Family

ID=18272724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6334030A Pending JPH08171938A (en) 1994-12-15 1994-12-15 Li secondary battery and its positive electrode

Country Status (1)

Country Link
JP (1) JPH08171938A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186850A (en) * 1997-09-12 1999-03-30 Toyota Motor Corp Manufacture of electrode for lithium ion secondary battery
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
JP2003338321A (en) * 2002-05-20 2003-11-28 Central Res Inst Of Electric Power Ind Secondary battery
US6723470B2 (en) 2000-01-18 2004-04-20 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
WO2007049871A1 (en) 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics
CN100334757C (en) * 2002-07-26 2007-08-29 威伦斯技术公司 Alkali metal hydrogen phosphates as precursors for phosphate-containning electrochemical active materials
JP4578684B2 (en) * 1998-11-10 2010-11-10 パナソニック株式会社 Lithium secondary battery
JP2012123956A (en) * 2010-12-07 2012-06-28 Hitachi Ltd Lithium secondary battery
JP2013243127A (en) * 2012-04-27 2013-12-05 Ricoh Co Ltd Nonaqueous electrolyte electricity storage element
JPWO2012073747A1 (en) * 2010-11-30 2014-05-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US20140349166A1 (en) * 2011-11-30 2014-11-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2019135346A1 (en) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Positive electrode material and battery
WO2019146236A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Positive electrode material and battery
WO2019146296A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Positive electrode material and battery using same
WO2020174868A1 (en) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Positive electrode material, and battery
US11411247B2 (en) 2018-01-05 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186850A (en) * 1997-09-12 1999-03-30 Toyota Motor Corp Manufacture of electrode for lithium ion secondary battery
JP4578684B2 (en) * 1998-11-10 2010-11-10 パナソニック株式会社 Lithium secondary battery
US6528033B1 (en) 2000-01-18 2003-03-04 Valence Technology, Inc. Method of making lithium-containing materials
US6716372B2 (en) 2000-01-18 2004-04-06 Valence Technology, Inc. Lithium-containing materials
US6723470B2 (en) 2000-01-18 2004-04-20 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US6884544B2 (en) 2000-01-18 2005-04-26 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US7001690B2 (en) 2000-01-18 2006-02-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US7438992B2 (en) 2000-01-18 2008-10-21 Valence Technology, Inc. Lithium-based active materials and preparation thereof
US7767332B2 (en) 2002-03-06 2010-08-03 Valence Technology, Inc. Alkali/transition metal phosphates and related electrode active materials
US6815122B2 (en) 2002-03-06 2004-11-09 Valence Technology, Inc. Alkali transition metal phosphates and related electrode active materials
JP2003338321A (en) * 2002-05-20 2003-11-28 Central Res Inst Of Electric Power Ind Secondary battery
CN100334757C (en) * 2002-07-26 2007-08-29 威伦斯技术公司 Alkali metal hydrogen phosphates as precursors for phosphate-containning electrochemical active materials
EP1952459A1 (en) * 2005-10-26 2008-08-06 LG Chem, Ltd. Secondary battery of improved life characteristics
WO2007049871A1 (en) 2005-10-26 2007-05-03 Lg Chem, Ltd. Secondary battery of improved life characteristics
EP1952459A4 (en) * 2005-10-26 2012-02-01 Lg Chemical Ltd Secondary battery of improved life characteristics
JPWO2012073747A1 (en) * 2010-11-30 2014-05-19 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP5888512B2 (en) * 2010-11-30 2016-03-22 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode, manufacturing method thereof, and non-aqueous electrolyte secondary battery
JP2012123956A (en) * 2010-12-07 2012-06-28 Hitachi Ltd Lithium secondary battery
US20140349166A1 (en) * 2011-11-30 2014-11-27 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2013243127A (en) * 2012-04-27 2013-12-05 Ricoh Co Ltd Nonaqueous electrolyte electricity storage element
US11524902B2 (en) 2018-01-05 2022-12-13 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery
US11498849B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11784345B2 (en) 2018-01-05 2023-10-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11760649B2 (en) 2018-01-05 2023-09-19 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11591236B2 (en) 2018-01-05 2023-02-28 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11560320B2 (en) 2018-01-05 2023-01-24 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
WO2019135346A1 (en) * 2018-01-05 2019-07-11 パナソニックIpマネジメント株式会社 Positive electrode material and battery
US11515565B2 (en) 2018-01-05 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. Battery
US11411247B2 (en) 2018-01-05 2022-08-09 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11427477B2 (en) 2018-01-05 2022-08-30 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
US11498850B2 (en) 2018-01-05 2022-11-15 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material and battery
JPWO2019146296A1 (en) * 2018-01-26 2021-01-07 パナソニックIpマネジメント株式会社 Positive electrode material and batteries using it
US11682764B2 (en) 2018-01-26 2023-06-20 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery using same
JPWO2019146236A1 (en) * 2018-01-26 2021-01-07 パナソニックIpマネジメント株式会社 Positive electrode material and battery
CN111566853B (en) * 2018-01-26 2024-04-19 松下知识产权经营株式会社 Positive electrode material and battery using same
CN111566853A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Positive electrode material and battery using same
US11637287B2 (en) 2018-01-26 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive electrode material and battery using same
US11652235B2 (en) 2018-01-26 2023-05-16 Panasonic Intellectual Property Management Co., Ltd. Battery
WO2019146236A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Positive electrode material and battery
US11749803B2 (en) 2018-01-26 2023-09-05 Panasonic Intellectual Property Management Co., Ltd. Cathode material and battery
CN111566851A (en) * 2018-01-26 2020-08-21 松下知识产权经营株式会社 Positive electrode material and battery
WO2019146296A1 (en) * 2018-01-26 2019-08-01 パナソニックIpマネジメント株式会社 Positive electrode material and battery using same
US11949064B2 (en) 2018-11-29 2024-04-02 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material, battery, and method for producing battery
US11955599B2 (en) 2018-11-29 2024-04-09 Panasonic Intellectual Property Management Co., Ltd. Negative electrode material and battery
WO2020174868A1 (en) * 2019-02-28 2020-09-03 パナソニックIpマネジメント株式会社 Positive electrode material, and battery

Similar Documents

Publication Publication Date Title
JPH08171938A (en) Li secondary battery and its positive electrode
US10547088B2 (en) High Coulombic efficiency cycling of metal batteries
EP2786441B1 (en) Method for lithiating anodes
JP7140812B2 (en) Negative electrode layer for all-solid secondary battery, all-solid secondary battery including the same, and manufacturing method thereof
JPH07176323A (en) Electrolytic solution and negative electrode for li secondary battery
CN102132443A (en) Nonaqueous secondary battery
JP2002373707A (en) Lithium secondary battery and method of manufacturing the same
KR20080053925A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
JPH07240201A (en) Negative electrode and lithium secondary battery
JP4352719B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM ION SECONDARY BATTERY AND LITHIUM ION SECONDARY BATTERY USING THE SAME
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
US5498495A (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JPH07296812A (en) Negative electrode and li secondary battery
JP3877170B2 (en) Non-aqueous secondary battery negative electrode, method for producing the same, and non-aqueous secondary battery using the negative electrode
JPH08180853A (en) Separator and lithium secondary battery
JPH0896792A (en) Lithium battery
US20220376236A1 (en) Negative electrode for lithium secondary battery, manufacturing thereof, and lithium secondary battery using same
JP4288400B2 (en) Method for producing secondary battery electrolyte, secondary battery electrolyte, secondary battery production method, and secondary battery
JP2013161652A (en) Secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JP4919451B2 (en) Non-aqueous secondary battery and manufacturing method thereof
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
KR101876665B1 (en) Magnesium electrode and magnesium secondary battery and hybrid battery including the same
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JPH0837000A (en) Negative electrode, its manufacturing method, and lithium secondary battery