JPH07296812A - Negative electrode and li secondary battery - Google Patents

Negative electrode and li secondary battery

Info

Publication number
JPH07296812A
JPH07296812A JP6113807A JP11380794A JPH07296812A JP H07296812 A JPH07296812 A JP H07296812A JP 6113807 A JP6113807 A JP 6113807A JP 11380794 A JP11380794 A JP 11380794A JP H07296812 A JPH07296812 A JP H07296812A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
secondary battery
amorphous
amorphous lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6113807A
Other languages
Japanese (ja)
Inventor
Mitsuhiro Marumoto
光弘 丸本
Yoshinori Takada
善典 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP6113807A priority Critical patent/JPH07296812A/en
Publication of JPH07296812A publication Critical patent/JPH07296812A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an Li secondary battery which is excellent in cycle life and capable of being charged quickly with large currents and hence providing high outputs by having a negative electrode which resists dendrite growth and is excellent in energy density and in electromotive force. CONSTITUTION:An Li secondary battery negative electrode, which has a layer (1) of amorphous lithium and/or an amorphous lithium alloy at least on its surface, and various forms of high cycle-life Li secondary batteries, each having such a negative electrode and therefore showing negative electrode characteristics such as energy density and electromotive force which are equivalent to those achieved by metal lithium, and being excellent in operating voltage and in discharge capacity, etc., can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、デンドライトが成長し
にくくてサイクル寿命に優れ、急速充電できて高出力が
得られるLi二次電池及びその負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery and a negative electrode thereof, which are difficult to grow dendrites, have excellent cycle life, and can be rapidly charged to obtain high output.

【0002】[0002]

【従来の技術】従来、負極に金属リチウムを用いてなる
非水電解液型のLi二次電池が知られていた。かかる電
池は、エネルギー密度や起電力に優れる利点を有するも
のの、充電時に負極表面に金属リチウムが樹枝状に析出
したデンドライトが成長しやすく、そのデンドライトで
正負極間が短絡したり、負極よりデンドライトが脱落し
て不活性化し負極の効率低下や劣化を招き、電池のサイ
クル寿命を低下させて実用性に乏しい問題点があった。
2. Description of the Related Art Conventionally, a non-aqueous electrolyte type Li secondary battery using metallic lithium as a negative electrode has been known. Although such a battery has an advantage of excellent energy density and electromotive force, a dendrite in which metal lithium is dendriticly deposited on the negative electrode surface during charging is easily grown, and the dendrite short-circuits between the positive and negative electrodes, or the dendrite is more negative than the negative electrode. There is a problem in that it falls off and becomes inactive, resulting in a decrease in efficiency and deterioration of the negative electrode, a decrease in the cycle life of the battery, and poor practicality.

【0003】前記に鑑みて、Al、Bi、Pb、Sn、
In等とLiとのリチウム合金を負極に用いる方式も提
案されている。しかしながら、金属リチウムからなる負
極に比べて電池の作動電圧が低下し、エネルギー密度も
小さくなる問題点があった。
In view of the above, Al, Bi, Pb, Sn,
A method using a lithium alloy of In or the like and Li for the negative electrode has also been proposed. However, the operating voltage of the battery is lower than that of the negative electrode made of metallic lithium, and the energy density is also low.

【0004】[0004]

【発明が解決しようとする課題】本発明は、デンドライ
トが成長しにくくてエネルギー密度や起電力に優れる負
極を得て、サイクル寿命に優れ、大電流による急速充電
ができて高出力を得ることができるLi二次電池を得る
ことを課題とする。
DISCLOSURE OF THE INVENTION According to the present invention, it is possible to obtain a negative electrode which is difficult for dendrite to grow and is excellent in energy density and electromotive force, and which has excellent cycle life and can be rapidly charged by a large current to obtain a high output. An object is to obtain a Li secondary battery that can be used.

【0005】[0005]

【課題を解決するための手段】本発明は、アモルファス
リチウム又は/及びアモルファスリチウム合金からなる
層を少なくとも表面に有することを特徴とするLi二次
電池用の負極、及びかかる負極を有することを特徴とす
るLi二次電池を提供するものである。
DISCLOSURE OF THE INVENTION The present invention is characterized by having a layer of amorphous lithium or / and an amorphous lithium alloy on at least the surface thereof, and a negative electrode for a Li secondary battery, and having such a negative electrode. The Li secondary battery is provided.

【0006】[0006]

【実施態様の例示】負極は、アモルファスリチウム又は
/及びアモルファスリチウム合金のテープや粉末成形
物、あるいはスラリー塗布方式、溶着ないし蒸着方式等
により導電性支持基材の表面に当該アモルファスリチウ
ム等の層を付設したものなどとして形成される。また導
電性支持基材としては、銅、ニッケル、ステンレス、ア
ルミニウム、銀等の金属からなるシートやネット、カー
ボンファイバやその織布の如き複合物等からなる炭素質
基材などが用いられる。リチウム合金としては、リチウ
ム以外の成分の含有量が原子比に基づいて40%以下、
特に20%以下のものが用いられる。Li二次電池は、
電解質含有の多孔質絶縁膜を介して正極と負極を配置し
たものなどとして形成される。
[Exemplary Embodiment] A negative electrode is formed by forming a layer of amorphous lithium or the like on the surface of a conductive supporting substrate by a tape or powder molding of amorphous lithium or / and an amorphous lithium alloy, or a slurry coating method, a welding or vapor deposition method, or the like. It is formed as an attached one. Further, as the conductive supporting base material, a sheet or net made of a metal such as copper, nickel, stainless steel, aluminum or silver, a carbonaceous base material made of a composite material such as carbon fiber or its woven cloth, and the like are used. As a lithium alloy, the content of components other than lithium is 40% or less based on the atomic ratio,
In particular, 20% or less is used. Li secondary battery,
It is formed as a structure in which a positive electrode and a negative electrode are arranged via a porous insulating film containing an electrolyte.

【0007】[0007]

【作用】アモルファスリチウム又は/及びアモルファス
リチウム合金を負極の活物質とすることにより、充電時
に負極の表面にデンドライト成長の特異点となる結晶粒
界等の活性ポイントが形成されにくくてLiイオンの析
出が均一化され、かつアモルファス構造に基づく高い原
子空孔密度により析出したリチウムが負極内部に効率よ
く拡散して負極表面の特定箇所に活性ポイントが集中す
ることも防止され、これによりデンドライトの発生が抑
制される。その結果、エネルギー密度や起電力に優れる
負極を得ることができ、この負極を用いて充電効率、作
動電圧、放電容量、サイクル寿命、出力に優れるLi二
次電池を形成することができる。
[Function] By using amorphous lithium and / or amorphous lithium alloy as the negative electrode active material, it is difficult to form active points such as crystal grain boundaries that are peculiar points of dendrite growth on the surface of the negative electrode during charging, and Li ions are deposited. Is also homogenized, and lithium deposited due to the high atomic vacancy density based on the amorphous structure is efficiently diffused inside the negative electrode, and active points are prevented from concentrating on a specific portion of the negative electrode surface, which causes dendrite generation. Suppressed. As a result, a negative electrode having excellent energy density and electromotive force can be obtained, and by using this negative electrode, a Li secondary battery having excellent charging efficiency, operating voltage, discharge capacity, cycle life, and output can be formed.

【0008】[0008]

【実施例】本発明の負極は、アモルファスリチウム又は
/及びアモルファスリチウム合金からなる層を少なくと
も表面に有するものであり、Li二次電池の形成に用い
るものである。従って本発明の負極は、例えば当該アモ
ルファスリチウム等のテープや粉末成形物、あるいは導
電性支持基材の表面に当該アモルファスリチウム等の層
を付設したものなどの適宜な形態物として形成すること
ができる。その例を図1、図2に示した。
EXAMPLES The negative electrode of the present invention has a layer made of amorphous lithium and / or an amorphous lithium alloy on at least the surface thereof, and is used for forming a Li secondary battery. Therefore, the negative electrode of the present invention can be formed in a suitable form such as a tape or powder molded product of the amorphous lithium or the like, or a layer of the amorphous lithium or the like attached to the surface of the conductive support substrate. . Examples thereof are shown in FIGS. 1 and 2.

【0009】図1に例示の負極1は、アモルファスリチ
ウム又は/及びアモルファスリチウム合金からなる粉末
を粉末成形したものからなる。図2に例示の負極2は、
導電性支持基材22の表面に当該アモルファスリチウム
等からなる負極活性層21を付設したものからなる。な
お当該アモルファスリチウム等からなる層は、導電性支
持基材の両面に設けられていてもよいし、片面又は両面
に部分的に設けられていてもよい。
The negative electrode 1 illustrated in FIG. 1 is formed by powder molding a powder of amorphous lithium or / and an amorphous lithium alloy. The negative electrode 2 illustrated in FIG.
The conductive support substrate 22 is provided with the negative electrode active layer 21 made of amorphous lithium or the like on the surface thereof. The layer made of amorphous lithium or the like may be provided on both sides of the conductive support substrate, or may be partially provided on one side or both sides.

【0010】アモルファスリチウム、アモルファスリチ
ウム合金の形成は、例えば融液冷却方式、液体急冷方
式、アトマイズ方式、真空蒸着方式、スパッタリング方
式、プラズマCVD方式、光CVD方式、熱CVD方式
などの適宜な方式で形成することができる。
Amorphous lithium and amorphous lithium alloys can be formed by an appropriate method such as a melt cooling method, a liquid quenching method, an atomizing method, a vacuum deposition method, a sputtering method, a plasma CVD method, a photo CVD method, a thermal CVD method. Can be formed.

【0011】アモルファスを形成するためのリチウム合
金としては、Liと、例えばAl、Pb、Sn、In、Bi、
Ag、Ba、Ca、Hg、Pd、Pt、Sr、Teなどの金
属との2元又は3元以上の合金に、必要に応じてSi、
Cd、Zn、La等を添加したものなどがあげられ、公知
物のいずれも用いうる。
As a lithium alloy for forming an amorphous material, Li and, for example, Al, Pb, Sn, In, Bi,
Binary or ternary or more alloys with metals such as Ag, Ba, Ca, Hg, Pd, Pt, Sr and Te, and Si, if necessary,
Examples thereof include those to which Cd, Zn, La, etc. have been added, and any known material can be used.

【0012】ちなみに、前記リチウム合金の具体例とし
ては、例えばAl、Bi、Sn又はIn等とLiとの金
属間化合物などからなるLi合金、LiとPbの合金にL
a等を添加して機械的特性を改善したもの、あるいはA
g、Al、Mg、Zn又はCaの少なくとも1種からな
るX成分を含むLi−X−Te系合金などがあげられ
る。
By the way, as a specific example of the lithium alloy, for example, a Li alloy composed of an intermetallic compound of Al, Bi, Sn, In or the like and Li, or an alloy of Li and Pb is L.
A with improved mechanical properties by adding a, or A
Examples thereof include a Li-X-Te-based alloy containing an X component composed of at least one of g, Al, Mg, Zn, and Ca.

【0013】リチウム合金におけるリチウム以外の成分
の含有量は、原子比に基づいて40%以下、就中5〜3
0%、特に10〜20%が好ましい。その含有量が40
%を超えると負極活物質としてのエネルギー密度の低下
が著しい場合があり、20%を超えると起電力が低下す
る場合がある。また5%未満では合金化による特性の改
善効果に乏しい場合がある。
The content of components other than lithium in the lithium alloy is 40% or less based on the atomic ratio, especially 5 to 3
0%, especially 10 to 20% is preferable. Its content is 40
If it exceeds 20%, the energy density of the negative electrode active material may significantly decrease, and if it exceeds 20%, the electromotive force may decrease. If it is less than 5%, the effect of improving the properties due to alloying may be poor.

【0014】充放電のサイクル寿命、高起電力性、高放
電容量性、高エネルギー密度性などの点より特に好まし
く用いうるリチウム合金は、Li−Ag−Te系合金か
らなるLi:Ag:Teの原子比が80〜150:1〜
20:0.001〜30のものなどであり、Liを80
原子%以上含有するものである。
A lithium alloy which can be particularly preferably used from the viewpoints of charge / discharge cycle life, high electromotive force, high discharge capacity, high energy density, etc. is Li: Ag: Te composed of Li-Ag-Te alloy. Atomic ratio 80-150: 1-
20: 0.001 to 30 and the like, 80% Li
It contains at least atomic%.

【0015】本発明において負極は任意な形態とするこ
とができ、その形成は例えば、1種又は2種以上のアモ
ルファスリチウム又は/及びアモルファスリチウム合金
の粉末を必要に応じポリフッ化ビニリデンやエチレン・
プロピレン・ジエン共重合体の如き適宜な結着剤を用い
て粉末成形する方法、又は結着剤と分散媒等を用いて調
製したスラリーを注形する方法や導電性支持基材に塗布
する方法、あるいは上記したアモルファス形成方式で導
電性支持基材の表面に当該アモルファスリチウム等から
なる層を溶着ないし蒸着層等として設ける方法などの適
宜な方法で行うことができる。
In the present invention, the negative electrode may be in any form, and for example, one or two or more kinds of amorphous lithium or / and amorphous lithium alloy powder may be used for the formation of polyvinylidene fluoride or ethylene.
A method of powder molding using an appropriate binder such as propylene / diene copolymer, a method of casting a slurry prepared using a binder and a dispersion medium, or a method of applying it to a conductive supporting substrate. Alternatively, it can be carried out by an appropriate method such as a method of forming a layer made of the amorphous lithium or the like on the surface of the conductive support base material as a welding or vapor deposition layer by the above-mentioned amorphous forming method.

【0016】前記において当該アモルファスリチウム等
の粉末としては、形成目的の負極形態等に応じて適宜な
粒径のものを用いてよい。負極特性等の点より好ましく
用いうる粉末は、平均粒径に基づき1〜100μm以
下、就中5〜80μm、特に10〜50μmのものであ
る。なお結着剤の使用量は強度等に応じて適宜に決定し
てよく、一般には形成負極の機械的強度や電極特性等の
点より当該アモルファスリチウム等の粉末の0.1〜3
0重量%、就中1〜20重量%、特に2〜15重量%が
好ましい。
In the above, as the powder of the amorphous lithium or the like, those having an appropriate particle size may be used according to the form of the negative electrode to be formed. The powder which can be preferably used from the viewpoint of negative electrode characteristics and the like is one having a particle size of 1 to 100 μm or less, especially 5 to 80 μm, especially 10 to 50 μm based on the average particle size. The amount of the binder used may be appropriately determined depending on the strength and the like. Generally, from the viewpoint of mechanical strength of the formed negative electrode, electrode characteristics, etc., 0.1 to 3 of the powder of amorphous lithium or the like is used.
0% by weight, especially 1 to 20% by weight, especially 2 to 15% by weight is preferable.

【0017】導電性支持基材についても、形成目的の負
極形態等に応じて適宜なものを用いてよい。その例とし
ては、銅、ニッケル、ステンレス、アルミニウム、銀等
の金属からなるシートやネット、カーボンファイバやそ
の織布の如き複合物等からなる炭素質基材などがあげら
れる。シート状の負極形成を目的とする場合、その導電
性支持基材としては一般に、1〜500μm、就中5〜
300μm、特に10〜100μmの厚さのものが用いら
れる。その場合、導電性支持基材上に設ける当該アモル
ファスリチウム等からなる層の厚さは任意で、電極の使
用目的等に応じて適宜に決定してよく、一般には5〜8
00μm、就中10〜500μm、特に20〜300μm
とされる。
As the conductive supporting substrate, any suitable one may be used depending on the form of the negative electrode to be formed. Examples thereof include a sheet or net made of a metal such as copper, nickel, stainless steel, aluminum or silver, and a carbonaceous substrate made of a composite such as carbon fiber or its woven cloth. When the purpose is to form a sheet-shaped negative electrode, the conductive supporting base material is generally 1 to 500 μm, especially 5 to 5 μm.
A thickness of 300 μm, particularly 10 to 100 μm, is used. In that case, the thickness of the layer made of amorphous lithium or the like provided on the conductive supporting substrate is arbitrary and may be appropriately determined depending on the purpose of use of the electrode, etc., and generally 5 to 8
00μm, especially 10-500μm, especially 20-300μm
It is said that

【0018】本発明の負極は、Li二次電池を形成する
ためのものであるが、そのLi二次電池の形成について
は、かかる負極を用いる点を除いて特に限定はなく、電
解質と正極を用いて従来に準じて行うことができる。従
ってLi二次電池の形態なども使用目的等に応じて適宜
に決定することができ、例えばコイン型やボタン型、あ
るいは捲回体型などのように、電解質含有の多孔質絶縁
膜を介して正極と負極を配置した形態等の適宜な形態と
することができる。
The negative electrode of the present invention is for forming a Li secondary battery, but there is no particular limitation on the formation of the Li secondary battery except that such a negative electrode is used. It can be performed according to conventional methods. Therefore, the form of the Li secondary battery can be appropriately determined according to the purpose of use and the like. For example, like a coin type, a button type, or a wound type, a positive electrode is provided through a porous insulating film containing an electrolyte. A suitable form such as a form in which the negative electrode and the negative electrode are arranged can be adopted.

【0019】ちなみに、図3にコイン型のものを例示し
た。3は負極缶、4,8は集電用のニッケル板、5は負
極、6は電解質層(多孔質絶縁膜からなるセパレー
タ)、7は正極、9は正極缶、10は絶縁封止材であ
る。なお前記した捲回体型のものは、テープ状ないしシ
ート状の正・負極を多孔質絶縁膜からなるセパレータを
介し捲回して正・負極部を形成する缶体に収容したもの
である。前記したシート状等の正・負極の厚さは任意で
あるが、数〜数百μm程度の厚さのものとすることもで
きる。
Incidentally, a coin type is illustrated in FIG. 3 is a negative electrode can, 4 and 8 are nickel plates for collecting current, 5 is a negative electrode, 6 is an electrolyte layer (a separator made of a porous insulating film), 7 is a positive electrode, 9 is a positive electrode can, and 10 is an insulating sealing material. is there. The above-mentioned wound body type is one in which a tape-shaped or sheet-shaped positive / negative electrode is housed in a can body which is wound around a separator made of a porous insulating film to form a positive / negative electrode portion. The thickness of the positive and negative electrodes such as the above-mentioned sheet is arbitrary, but it may be about several to several hundreds of μm.

【0020】電解質としては、Liイオンの移動を可能
とした適宜なものを用いることができる。その例として
は、塩類電解性ポリマーにリチウム塩を混合してなるも
のの如きポリマー電解質、無機Li固体電解質、ないし
それを樹脂中に分散させてなるものの如き固体電解質、
エステルやエーテル等の有機溶媒にリチウム塩を溶解さ
せてなる非水電解液系のものなどがあげられる。
As the electrolyte, it is possible to use an appropriate electrolyte capable of moving Li ions. Examples thereof include polymer electrolytes such as those obtained by mixing a lithium salt with a salt-electrolytic polymer, inorganic Li solid electrolytes, or solid electrolytes such as those obtained by dispersing it in a resin,
Examples include non-aqueous electrolyte-based electrolytes prepared by dissolving a lithium salt in an organic solvent such as ester or ether.

【0021】前記の塩類電解性ポリマーの代表例として
は、ポリエチレンオキシド、ポリホスファゼン、ポリア
ジリジン、ポリエチレンスルフィド、それらの誘導体や
混合物、複合体などがあげられる。なお固体電解質の場
合には、それが正・負極間のセパレータを兼ねうる利点
を有している。
Typical examples of the above salt-electrolytic polymers include polyethylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, their derivatives, mixtures and complexes. The solid electrolyte has the advantage that it can also serve as a separator between the positive and negative electrodes.

【0022】また前記有機溶媒の代表例としては、プロ
ピレンカーボネート、エチレンカーボネート、ジメチル
カーボネート、ジエチルカーボネート、テトラヒドロフ
ラン、2−メチルテトラヒドロフラン、ジメトキシエタ
ン、ジメチルスルホキシド、スルホラン、γ−ブチロラ
クトン、1,2−ジメトキシエタン、ジエチルエーテ
ル、1,3−ジオキソラン、蟻酸メチル、酢酸メチル、
N,N−ジメチルホルムアミド、アセトニトリル、それ
らの混合物などがあげられる。
Typical examples of the organic solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dimethylsulfoxide, sulfolane, γ-butyrolactone and 1,2-dimethoxyethane. , Diethyl ether, 1,3-dioxolane, methyl formate, methyl acetate,
Examples thereof include N, N-dimethylformamide, acetonitrile, a mixture thereof and the like.

【0023】リチウム塩の代表例としては、LiI、Li
CF3SO3、Li(CF2SO22、LiBF4、LiClO
4、LiAlCl4、LiPF4、LiPF6、LiAsF3、Li
AsF6などがあげられる。電解液におけるリチウム塩濃
度は0.1〜3モル/リットルが一般的であるが、これ
に限定されない。なお前記した非水電解液等の形成に際
しては、寿命や放電容量、起電力等の電池特性の向上な
どを目的として、必要に応じて2−メチルフラン、チオ
フェン、ピロール、クラウンエーテル、Li錯イオン形
成剤(大環状化合物等)などの有機添加物を添加するこ
ともできる。
Typical examples of the lithium salt are LiI and Li.
CF 3 SO 3 , Li (CF 2 SO 2 ) 2 , LiBF 4 , LiClO
4 , LiAlCl 4 , LiPF 4 , LiPF 6 , LiAsF 3 , Li
AsF 6 and the like. The concentration of lithium salt in the electrolytic solution is generally 0.1 to 3 mol / liter, but is not limited to this. In the formation of the above-mentioned non-aqueous electrolyte solution, 2-methylfuran, thiophene, pyrrole, crown ether, Li complex ions are added as necessary for the purpose of improving battery characteristics such as life, discharge capacity and electromotive force. It is also possible to add organic additives such as forming agents (such as macrocyclic compounds).

【0024】正極については、カーボンや金属系のも
の、共役系ポリマー等の有機導電性物質系のものなどの
適宜なものを用いることができる。前記金属系正極の例
としては、Liを含有する、Ti、Mo、Cu、Nb、
V、Mn、Cr、Ni、Co、P等の金属の複合酸化
物、硫化物、セレン化物などがあげられ、その代表的具
体例としては、MnO2、LiCoO2、LiwCo1-x-y
xy2+z(ただし、Mは1種又は2種以上の遷移金
属、wは0<w≦2、xは0≦x<1、yは0<y<
1、zは−1≦z≦4である。)、あるいはLiないし
Li・Coのリン酸塩及び/又はCoないしLi・Coの酸
化物を成分として1モルのLiあたり0.1モル以上の
Coと0.2モル以上のPを含有するものなどを活物質
とするものがあげられる。
As the positive electrode, an appropriate one such as carbon or metal based one, organic conductive material based one such as conjugated polymer or the like can be used. Examples of the metal-based positive electrode include Li, Ti, Mo, Cu, Nb,
Examples thereof include complex oxides of metals such as V, Mn, Cr, Ni, Co and P, sulfides and selenides, and typical examples thereof include MnO 2 , LiCoO 2 , Li w Co 1-xy M.
x P y O 2 + z (where M is one or more transition metals, w is 0 <w ≦ 2, x is 0 ≦ x <1, y is 0 <y <
1 and z are −1 ≦ z ≦ 4. ), Or a phosphate containing Li to Li · Co and / or an oxide of Co to Li · Co and containing 0.1 mol or more of Co and 0.2 mol or more of P per 1 mol of Li. The active material is, for example.

【0025】なおシート状等の正極の形成は、例えば活
物質を必要に応じてアセチレンブラックやケッチェンブ
ラック等の導電材料及びポリテトラフルオロエチレンや
ポリエチレン等の結着剤と共にキャスティング方式や圧
縮成形方式、ロール成形方式、ドクターブレード方式、
各種の蒸着方式や圧延方式、熱間押出方式などの、上記
した負極形成方式に準じた適宜な方式で成形する方法な
どにより行うことができる。従って正極は、導電性支持
基材に正極材を半田付けやろう付け、超音波溶接、スポ
ット溶接、バインダ樹脂による塗布付着等の適宜な方式
で接着してなる補強形態物とすることもできる。
The positive electrode in the form of a sheet is formed, for example, by a casting method or a compression molding method in which an active material is used together with a conductive material such as acetylene black or Ketjen black and a binder such as polytetrafluoroethylene or polyethylene as required. , Roll forming method, doctor blade method,
It can be performed by a method such as various vapor deposition methods, rolling methods, hot extrusion methods and the like, which are formed by an appropriate method according to the above-mentioned negative electrode forming method. Therefore, the positive electrode may be a reinforced form in which the positive electrode material is adhered to the conductive supporting base material by an appropriate method such as soldering, brazing, ultrasonic welding, spot welding, or coating with a binder resin.

【0026】一方、上記した正・負極間に介在させる多
孔質絶縁膜(セパレータ)としては、例えばポリプロピ
レン等からなる多孔性ポリマーフィルムやガラスフィル
ター、不織布などの適宜な多孔性素材を用いることがで
きる。電解質含有の多孔質絶縁膜の形成は、多孔質絶縁
膜に電解質ないし電解液を含浸させたり、充填する方
式、あるいは電池缶内に電解液等を充填する方式などの
適宜な方式で行うことができる。
On the other hand, as the porous insulating film (separator) interposed between the positive electrode and the negative electrode, an appropriate porous material such as a porous polymer film made of polypropylene or the like, a glass filter, a nonwoven fabric or the like can be used. . The electrolyte-containing porous insulating film may be formed by an appropriate method such as a method of impregnating or filling the porous insulating film with an electrolyte or an electrolytic solution, or a method of filling the battery can with the electrolytic solution or the like. it can.

【0027】Li二次電池に対する充電は、一定電流を
連続して通電する方式のほか、適宜なパルス電源を用い
てパルス電流を供給する方式などによっても行うことが
できる。パルス電流による充電方式では、通電・停止が
繰り返されるため電解質の濃度変化が抑制されてデンド
ライトがより成長しにくい利点がある。
The Li secondary battery can be charged by a method of continuously supplying a constant current, or a method of supplying a pulse current by using an appropriate pulse power source. The charging method using a pulse current has the advantage that dendrites are less likely to grow because the concentration change of the electrolyte is suppressed because energization / stopping is repeated.

【0028】実施例1 高純度アルゴン雰囲気(露点度−60℃)下、純リチウ
ムをステンレス製加熱容器中にて約300℃で融解し、
アルゴンガスで内部より加圧してその融液を高速回転下
の一対の銅製双ロールに噴出させて急冷凝固させて得た
アモルファスLiテープを、40mm幅にカットし、それ
をエキスパンドニッケルの両面に片面厚20〜100μ
mとなるように加圧密着させ、長さ270mmにカットし
て負極シートを得た。
Example 1 Pure lithium was melted at about 300 ° C. in a stainless steel heating container under a high-purity argon atmosphere (dew point -60 ° C.),
Amorphous Li tape obtained by pressurizing it from the inside with argon gas and ejecting the melt onto a pair of copper twin rolls under high speed rotation and rapidly solidifying it was cut into a width of 40 mm, which was then applied to both sides of expanded nickel on one side. Thickness 20-100μ
It was pressed and adhered so as to have a length of m and cut into a length of 270 mm to obtain a negative electrode sheet.

【0029】一方、LiCoO246部(重量部、以下
同じ)、アセチレンブラック4部、ポリフッ化ビニリデ
ン1部及びN−メチルピロリドン49部を混合してなる
ペーストを厚さ20μm、幅42mmのアルミニウム箔上
にドクターブレード方式にて片面厚100μmで両面に
塗布し、200℃で1分間仮乾燥後それを圧延し長さ2
50mmにカットして真空下、120℃で3時間本乾燥し
正極シートを得た。
On the other hand, an aluminum foil having a thickness of 20 μm and a width of 42 mm was formed by mixing 46 parts of LiCoO 2 (weight part, the same applies hereinafter), 4 parts of acetylene black, 1 part of polyvinylidene fluoride and 49 parts of N-methylpyrrolidone. Apply a doctor blade method on both sides with a thickness of 100μm on both sides, and temporarily dry at 200 ° C for 1 minute and then roll it to a length of 2
It was cut into 50 mm and dried under vacuum at 120 ° C. for 3 hours to obtain a positive electrode sheet.

【0030】次に、前記の負極シートと正極シートをア
ルゴン雰囲気下、ステンレス又はニッケルメッキ鉄から
なる正・負極缶内に、空孔率40〜45%、厚さ25μ
mのポリプロピレン不織布からなるセパレータを介して
配置し、それに電解液を充填してAAサイズLi二次電
池を形成した。なお前記の電解液は、含水率が20ppm
以下のプロピレンカーボネートと1,2−ジメトキシエ
タンの混合液(体積比:1/1)にLiClO4を1モル
/リットル濃度で添加した溶液からなる。
Next, the negative electrode sheet and the positive electrode sheet were placed in a positive and negative electrode can made of stainless steel or nickel-plated iron under an argon atmosphere and the porosity was 40 to 45% and the thickness was 25 μm.
It was arranged via a separator made of m polypropylene non-woven fabric and filled with an electrolytic solution to form an AA size Li secondary battery. The above electrolyte solution has a water content of 20 ppm.
It consists of a solution prepared by adding LiClO 4 at a concentration of 1 mol / liter to the following mixed solution of propylene carbonate and 1,2-dimethoxyethane (volume ratio: 1/1).

【0031】実施例2 Li、Ag、Teを原子比率でLi:Ag:Te=9
0:10:0.5に配合し、アルゴン雰囲気中で500
℃にて溶解させて合金化して得たLi-Ag-Te合金
を、純リチウムに代えて用いたほかは、実施例1に準じ
て負極シートを得、それを用いてLi二次電池を得た。
Example 2 Li: Ag: Te = 9 in atomic ratio Li: Ag: Te = 9
Formulated at 0: 10: 0.5 and 500 in an argon atmosphere.
A negative electrode sheet was obtained in the same manner as in Example 1 except that the Li-Ag-Te alloy obtained by melting and alloying at 0 ° C was used instead of pure lithium, and a Li secondary battery was obtained using the negative electrode sheet. It was

【0032】実施例3 高純度アルゴン雰囲気(露点度−60℃)下、実施例2
に準じて得たLi-Ag-Te合金をステンレス製加熱容
器中にて約300℃で融解し、その融液出口でアルゴン
ガスを吹き付けて霧状とし、それを急冷凝固させて得た
アモルファスリチウム合金粉末79部を、黒鉛粉末(導
電剤)20部及びフッ素樹脂粉末(結着剤)1部と混合
し、それを厚さ10μm、幅40mmの銅箔の両面に片面
厚20〜100μmとなるように加圧密着させ、長さ2
70mmにカットして負極シートを得、それを用いて実施
例1に準じLi二次電池を得た。
Example 3 Example 2 under a high-purity argon atmosphere (dew point -60 ° C.)
Amorphous lithium obtained by melting the Li-Ag-Te alloy obtained in accordance with 1) in a stainless steel heating container at about 300 ° C, spraying argon gas at the melt outlet to form a mist, and rapidly solidifying it. 79 parts of alloy powder is mixed with 20 parts of graphite powder (conductive agent) and 1 part of fluororesin powder (binder), and the thickness of each side is 20 to 100 μm on both sides of a copper foil having a thickness of 10 μm and a width of 40 mm. And press it tightly, length 2
It was cut into 70 mm to obtain a negative electrode sheet, and by using it, a Li secondary battery was obtained according to Example 1.

【0033】比較例 アモルファスリチウム負極シートに代えて、金属リチウ
ムの圧延テープからなる厚さ100μmの負極シートを
用いたほかは実施例1に準じてAAサイズLi二次電池
を得た。
Comparative Example An AA size Li secondary battery was obtained in the same manner as in Example 1 except that a negative electrode sheet made of rolled metal lithium and having a thickness of 100 μm was used in place of the amorphous lithium negative electrode sheet.

【0034】評価試験 実施例又は比較例で得たAAサイズLi二次電池につい
て電流密度1mA/cm2で、上限(充電)電圧4.2V、
下限(放電)2.7Vの条件で充放電を繰り返し、初期
の電池容量(放電容量)の60%以下の容量となった時
点を寿命の終点としてそのサイクル寿命を調べた。
Evaluation Test Regarding the AA size Li secondary batteries obtained in Examples or Comparative Examples, the current density was 1 mA / cm 2 , the upper limit (charging) voltage was 4.2 V,
The charging / discharging was repeated under the condition of the lower limit (discharging) of 2.7 V, and the cycle life was examined with the time point when the capacity reached 60% or less of the initial battery capacity (discharge capacity) as the end point of the life.

【0035】前記の結果を表に示した。なお表には、負
極の10サイクル目のエネルギー密度も示した。
The above results are shown in the table. The table also shows the energy density of the negative electrode at the 10th cycle.

【0036】[0036]

【発明の効果】本発明によれば、金属リチウムに匹敵す
るエネルギー密度や起電力等の特性を示す上に、デンド
ライトが成長しにくい負極を得ることができ、作動電圧
や放電容量等に優れる高エネルギー密度、高出力の、か
つサイクル寿命の長さに優れ、しかも大電流による急速
充電が可能な種々の形態のLi二次電池を得ることがで
きる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to obtain a negative electrode in which dendrites are hard to grow while exhibiting characteristics such as energy density and electromotive force comparable to those of metallic lithium, and which is excellent in operating voltage and discharge capacity. It is possible to obtain various types of Li secondary batteries having excellent energy density, high output, long cycle life, and capable of rapid charging with a large current.

【図面の簡単な説明】[Brief description of drawings]

【図1】負極例の断面図。FIG. 1 is a cross-sectional view of an example of a negative electrode.

【図2】他の負極例の断面図。FIG. 2 is a sectional view of another example of a negative electrode.

【図3】電池例の説明図。FIG. 3 is an explanatory diagram of a battery example.

【符号の説明】[Explanation of symbols]

1,2,5:負極 21:アモルファス系の負極活性層 22:導電性支持基材 3:負極缶 6:電解質層(多孔質絶縁膜からなるセパレータ) 7:正極 1, 2, 5: Negative electrode 21: Amorphous negative electrode active layer 22: Conductive support base material 3: Negative electrode can 6: Electrolyte layer (separator made of porous insulating film) 7: Positive electrode

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アモルファスリチウム又は/及びアモル
ファスリチウム合金からなる層を少なくとも表面に有す
ることを特徴とするLi二次電池用の負極。
1. A negative electrode for a Li secondary battery, which has a layer made of amorphous lithium and / or an amorphous lithium alloy on at least the surface thereof.
【請求項2】 導電性支持基材上にアモルファスリチウ
ム又は/及びアモルファスリチウム合金からなる層を有
する請求項1に記載の負極。
2. The negative electrode according to claim 1, which has a layer made of amorphous lithium and / or an amorphous lithium alloy on the conductive support substrate.
【請求項3】 請求項1又は2に記載の負極を有するこ
とを特徴とするLi二次電池。
3. A Li secondary battery comprising the negative electrode according to claim 1.
JP6113807A 1994-04-28 1994-04-28 Negative electrode and li secondary battery Pending JPH07296812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6113807A JPH07296812A (en) 1994-04-28 1994-04-28 Negative electrode and li secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6113807A JPH07296812A (en) 1994-04-28 1994-04-28 Negative electrode and li secondary battery

Publications (1)

Publication Number Publication Date
JPH07296812A true JPH07296812A (en) 1995-11-10

Family

ID=14621565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6113807A Pending JPH07296812A (en) 1994-04-28 1994-04-28 Negative electrode and li secondary battery

Country Status (1)

Country Link
JP (1) JPH07296812A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
WO2001078167A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2002003485A1 (en) * 2000-06-30 2002-01-10 Nec Corporation Lithium secondary cell and method for manufacture thereof
JP2002212705A (en) * 2001-01-22 2002-07-31 Sumitomo Electric Ind Ltd Method and system for thin film deposition
US6428933B1 (en) 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
KR20020095448A (en) * 2001-06-14 2002-12-26 닛뽕덴끼 가부시끼가이샤 Lithium secondary battery with an improved negative electrode structure and method of forming the same
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
US6664004B2 (en) 2000-01-13 2003-12-16 3M Innovative Properties Company Electrode compositions having improved cycling behavior
US6699336B2 (en) 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
US6964829B2 (en) 2000-11-06 2005-11-15 Nec Corporation Lithium secondary cell and method for manufacturing same
JP2011026707A (en) * 2010-09-13 2011-02-10 Sumitomo Electric Ind Ltd Thin film manufacturing method and thin film manufacturing apparatus
JP2011070939A (en) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc All-solid type lithium secondary battery
WO2019123951A1 (en) * 2017-12-22 2019-06-27 昭和電工株式会社 Lithium-ion secondary cell
CN113493887A (en) * 2021-06-25 2021-10-12 天津中能锂业有限公司 Method for non-crystallizing surface of metal lithium strip, product and application thereof
CN114883530A (en) * 2021-02-05 2022-08-09 恒大新能源技术(深圳)有限公司 Lithium metal negative electrode, preparation method thereof and lithium secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6436578B2 (en) 1998-03-26 2002-08-20 3M Innovative Properties Company Electrode compositions with high coulombic efficiencies
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
US6428933B1 (en) 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
US6664004B2 (en) 2000-01-13 2003-12-16 3M Innovative Properties Company Electrode compositions having improved cycling behavior
US6699336B2 (en) 2000-01-13 2004-03-02 3M Innovative Properties Company Amorphous electrode compositions
WO2001078167A1 (en) * 2000-04-05 2001-10-18 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary cell
WO2002003485A1 (en) * 2000-06-30 2002-01-10 Nec Corporation Lithium secondary cell and method for manufacture thereof
US6818353B2 (en) 2000-06-30 2004-11-16 Nec Corporation Lithium secondary battery and manufacturing method thereof
US6964829B2 (en) 2000-11-06 2005-11-15 Nec Corporation Lithium secondary cell and method for manufacturing same
JP2002212705A (en) * 2001-01-22 2002-07-31 Sumitomo Electric Ind Ltd Method and system for thin film deposition
KR20020095448A (en) * 2001-06-14 2002-12-26 닛뽕덴끼 가부시끼가이샤 Lithium secondary battery with an improved negative electrode structure and method of forming the same
EP1282179A2 (en) * 2001-07-31 2003-02-05 Nec Corporation Negative electrode for rechargeable battery
EP1282179A3 (en) * 2001-07-31 2005-06-29 Nec Corporation Negative electrode for rechargeable battery
JP2011070939A (en) * 2009-09-25 2011-04-07 Toyota Central R&D Labs Inc All-solid type lithium secondary battery
JP2011026707A (en) * 2010-09-13 2011-02-10 Sumitomo Electric Ind Ltd Thin film manufacturing method and thin film manufacturing apparatus
WO2019123951A1 (en) * 2017-12-22 2019-06-27 昭和電工株式会社 Lithium-ion secondary cell
CN114883530A (en) * 2021-02-05 2022-08-09 恒大新能源技术(深圳)有限公司 Lithium metal negative electrode, preparation method thereof and lithium secondary battery
CN113493887A (en) * 2021-06-25 2021-10-12 天津中能锂业有限公司 Method for non-crystallizing surface of metal lithium strip, product and application thereof

Similar Documents

Publication Publication Date Title
US6794087B2 (en) Lithium battery having evenly coated negative electrode and method of manufacture thereof
US5804335A (en) Lithium secondary battery
JP3982230B2 (en) Secondary battery negative electrode and secondary battery using the same
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JPH07240201A (en) Negative electrode and lithium secondary battery
JP2003303585A (en) Battery
JPH07296812A (en) Negative electrode and li secondary battery
JP3895932B2 (en) Negative electrode for lithium secondary battery and method for producing the same
JPH07326342A (en) Negative electrode for lithium secondary battery, and lithium secondary battery using the same
US5498495A (en) Alloy for negative electrode of lithium secondary battery and lithium secondary battery
JP2001102052A (en) Secondary cell of non-aqueous electrolyte
JP2001250559A (en) Lithium secondary cell
JPH0896792A (en) Lithium battery
JPH08180853A (en) Separator and lithium secondary battery
JPH07245099A (en) Negative electrode for nonaqueous electrolyte type lithium secondary battery
JP2968447B2 (en) Anode alloy for lithium secondary battery and lithium secondary battery
JPH08130006A (en) Negative electrode, its manufacture and lithium secondary battery
JP2019175568A (en) Lithium ion secondary battery
JPH07296799A (en) Carbon negative electrode and li secondary battery
JPH09171829A (en) Positive electrode active material for lithium secondary battery, and lithium secondary battery
JPH0837000A (en) Negative electrode, its manufacturing method, and lithium secondary battery
JPH07249410A (en) Negative electrode and li secondary battery
JP4449089B2 (en) Nonaqueous electrolyte secondary battery
JPH07320725A (en) Negative electrode and lithium secondary battery
JP4140198B2 (en) Lithium secondary battery