JPH0770925A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPH0770925A
JPH0770925A JP20795993A JP20795993A JPH0770925A JP H0770925 A JPH0770925 A JP H0770925A JP 20795993 A JP20795993 A JP 20795993A JP 20795993 A JP20795993 A JP 20795993A JP H0770925 A JPH0770925 A JP H0770925A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
sizing agent
carbon fibers
preferable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20795993A
Other languages
Japanese (ja)
Inventor
Motoi Ito
基 伊藤
Masanobu Kobayashi
正信 小林
Kazuharu Shimizu
一治 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP20795993A priority Critical patent/JPH0770925A/en
Publication of JPH0770925A publication Critical patent/JPH0770925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fibers excellent in adhesiveness to matrix resin by sizing a polycyclic aromatic compound having plural glycidyl ether groups. CONSTITUTION:Preferably, acrylic carbon fibers is subjected to electrolytic oxidation in advance to conduct fiber surface treatment, and then immersed in a liquid containing a sizing agent consisting of a polycyclic aromatic compound having plural glycidyl ether groups, esp. 1,6-naphthalenediglycidyl ether, to impart the carbon fibers with the sizing agent, thus obtaining the objective carbon fibers substantially improved in the adhesiveness to matrix resins (e.g. thermosetting resin such as epoxy resin).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維の製造方法、
特にマトリックス樹脂との接着性の良い炭素繊維の製造
方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing carbon fiber,
In particular, the present invention relates to a method for producing a carbon fiber having good adhesion to a matrix resin.

【0002】[0002]

【従来の技術】炭素繊維は一般に各種マトリックス樹脂
とからなる複合強化材料として利用されているが、炭素
繊維の特性を複合材料に生かすには、樹脂との接着性が
重要であり、この複合材料の剥離強度や剪断強度の改善
を目的として、表面処理方法ならびにサイジング処理方
法の検討が行なわれている。
2. Description of the Related Art Carbon fibers are generally used as a composite reinforcing material composed of various matrix resins, but in order to utilize the characteristics of carbon fibers in a composite material, the adhesiveness with the resin is important. The surface treatment method and the sizing treatment method have been studied for the purpose of improving the peeling strength and the shear strength.

【0003】サイジング剤に関しては、複合材料に用い
るマトリックス樹脂の多くがエポキシ樹脂であるため、
ビスフェノールAジグリシジルエーテル型エポキシ樹脂
に代表されるエポキシ樹脂ならびに変性エポキシ樹脂
(例えば、特公昭57−15229,特公昭62−56
266号公報,特開平04−119171号公報)がサ
イジング剤として用いられている。さらに、エポキシ樹
脂にポリウレタンなどの他成分を取り入れた樹脂系(例
えば、特公昭59−14591号公報,特開昭57−4
7920号公報)などが検討されている。しかし、現状
は、マトリックス樹脂との接着性は十分とは言えず更に
高い接着性を求められているのが実情である。
Regarding the sizing agent, most of the matrix resins used for the composite material are epoxy resins,
Epoxy resins represented by bisphenol A diglycidyl ether type epoxy resins and modified epoxy resins (for example, Japanese Examined Patent Publication Nos. 57-15229 and 62-56).
No. 266 and Japanese Patent Application Laid-Open No. 04-119171) are used as sizing agents. Further, a resin system in which other components such as polyurethane are incorporated in an epoxy resin (for example, Japanese Patent Publication No. 59-14591 and Japanese Patent Laid-Open No. 57-4).
(Japanese Patent No. 7920) is being studied. However, under the present circumstances, it cannot be said that the adhesiveness with the matrix resin is sufficient, and in reality, higher adhesiveness is required.

【0004】[0004]

【発明が解決しようとする課題】本発明の課題は、上記
従来技術では達成し得なかったマトリックス樹脂との接
着力に優れた炭素繊維の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing a carbon fiber having an excellent adhesive force with a matrix resin, which cannot be achieved by the above-mentioned prior art.

【0005】[0005]

【課題を解決するための手段】本発明の炭素繊維の製造
方法は上記課題を解決するため次の構成を有する。すな
わち、複数のグリシジルエーテル基を有する多環芳香族
化合物をサイジングすることを特徴とする炭素繊維の製
造方法である。
The method for producing carbon fiber of the present invention has the following constitution in order to solve the above problems. That is, it is a method for producing a carbon fiber, which comprises sizing a polycyclic aromatic compound having a plurality of glycidyl ether groups.

【0006】本発明の方法により接着性が大幅に向上す
る理由は、明確ではないが次のように考えている。すな
わち、炭素繊維の表層は通常酸化処理によって黒鉛網面
が破壊されて、例えばカルボキシル基や水酸基などの官
能基を有する多環芳香環化合物に変換されている。この
表面構造は多環芳香環を有する化合物との親和性が良い
と考えられ、従って反応性の高い複数のグリシジルエー
テル基を有していると、炭素繊維とマトリックス樹脂間
でカップリング効果を発揮でき、コンポジットとの接着
性が向上するものと考えられる。
The reason why the adhesion of the present invention is significantly improved is not clear, but is considered as follows. That is, in the surface layer of the carbon fiber, the graphite network surface is usually destroyed by the oxidation treatment and converted into a polycyclic aromatic ring compound having a functional group such as a carboxyl group or a hydroxyl group. This surface structure is considered to have good affinity with compounds having polycyclic aromatic rings. Therefore, when it has multiple highly reactive glycidyl ether groups, it exhibits a coupling effect between carbon fiber and matrix resin. It is believed that this is possible and the adhesion with the composite is improved.

【0007】本発明に用いられる炭素繊維としては、ア
クリル系、ピッチ系、レーヨン系等の公知の炭素繊維を
適用できる。好ましくは高強度の炭素長繊維が得られ易
いアクリル系炭素繊維がよい。
As the carbon fibers used in the present invention, known carbon fibers such as acrylic, pitch and rayon fibers can be used. Acrylic carbon fibers are preferable because it is easy to obtain high-strength carbon fibers.

【0008】表面処理は、気相酸化および電解酸化など
種々の表面処理方法が検討されているが、短時間で酸化
処理ができ、酸化程度のコントロールが容易な電解酸化
が好ましい。電解処理の電解液としては酸性、アルカリ
性いずれも採用できるが、特に樹脂マトリックスとの接
着力向上効果に優れたアルカリ性電解液が好ましい。酸
性電解質としては、水溶液中で酸性を示すものであれば
よく、具体的には硫酸、硝酸、塩酸、燐酸、ホウ酸、炭
酸等の無機酸、酢酸、酪酸、シュウ酸、アクリル酸、マ
レイン酸等の有機酸、硫酸アンモニウム、硫酸水素アン
モニウム等の塩が挙げられる。好ましくは強酸性を示す
硫酸、硝酸が良い。アルカリ性電解液としてはpHが7
〜14、好ましくはpH10〜14の強アルカリ水溶液
がよい。電解液としては水溶液中でアルカリ性を示すも
のであればよく、具体的には水酸化ナトリウム、水酸化
カリウム、水酸化バリウム等の水酸化物、アンモニア、
または、炭酸ナトリウム、炭酸水素ナトリウム等の無機
塩類、酢酸ナトリウム、安息香酸ナトリウム等の有機塩
類の水溶液、さらにこれらのカリウム塩、バリウム塩あ
るいは他の金属塩、およびアンモニウム塩、またヒドラ
ジン等の有機化合物が挙げられるが、好ましくは樹脂と
の硬化阻害を起こすアルカリ金属を含まない炭酸アンモ
ニウム、炭酸水素アンモニウム等の有機アルカリが好ま
しい。さらに好ましくは強アルカリ性を示す水酸化テト
ラアルキルアンモニウム類が良い。
For the surface treatment, various surface treatment methods such as gas phase oxidation and electrolytic oxidation have been studied, but electrolytic oxidation is preferable because it can be oxidized in a short time and the degree of oxidation can be easily controlled. As the electrolytic solution for the electrolytic treatment, either acidic or alkaline can be adopted, but an alkaline electrolytic solution which is particularly excellent in the effect of improving the adhesive strength with the resin matrix is preferable. The acidic electrolyte may be any one that exhibits acidity in an aqueous solution, and specifically, inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid and carbonic acid, acetic acid, butyric acid, oxalic acid, acrylic acid and maleic acid. And organic acids such as ammonium sulfate, ammonium hydrogensulfate, and the like. Sulfuric acid and nitric acid which show strong acidity are preferable. PH of alkaline electrolyte is 7
-14, preferably a strong alkaline aqueous solution having a pH of 10-14 is preferable. Any electrolytic solution may be used as long as it exhibits alkalinity in an aqueous solution, and specifically, hydroxides such as sodium hydroxide, potassium hydroxide and barium hydroxide, ammonia,
Alternatively, an aqueous solution of an inorganic salt such as sodium carbonate or sodium hydrogen carbonate, an organic salt such as sodium acetate or sodium benzoate, a potassium salt thereof, a barium salt or another metal salt, and an ammonium salt, or an organic compound such as hydrazine. However, it is preferable to use an organic alkali such as ammonium carbonate or ammonium hydrogen carbonate that does not contain an alkali metal that causes curing inhibition with the resin. More preferably, tetraalkylammonium hydroxides having strong alkalinity are preferable.

【0009】電解液の濃度としては、0.01〜5モル
/l、好ましくは0.05〜1モル/lがよい。電解温
度としては0〜100℃、好ましくは室温がよい。
The concentration of the electrolytic solution is 0.01 to 5 mol / l, preferably 0.05 to 1 mol / l. The electrolysis temperature is 0 to 100 ° C., preferably room temperature.

【0010】処理電気量は被処理炭素繊維の焼成温度に
合わせて最適化することが好ましく、高弾性率糸はより
大きな電気量が必要である。高弾性率炭素繊維の場合、
発達した表面の黒鉛構造を破壊するエネルギーが必要と
なるために高い通電電気量が必要となる。従って、1回
当たりの処理量を低くし処理回数を多くする必要があ
る。具体的には、1回当たりの通電電気量が2〜100
C/g(炭素繊維1g当りのクーロン数)、好ましくは
2〜80C/gである。2C/g未満では、表層の結晶
性の低下が十分に進まず、かつ処理回数を多くする必要
があり生産性が悪化する。一方、100C/gを超える
場合には炭素繊維基質の強度低下が大きくなる。また、
結晶性の低下を適度な範囲に維持する観点からは、トー
タルの電気量は2〜1000C、好ましくは20〜50
0C/gの範囲で最適化するのがよい。電解電圧は好ま
しくは0.5〜25V、より好ましくは安全を考慮して
20V未満がよい。処理時間は電気量、電解質濃度によ
り最適化すべきであるが、生産性の面から数秒〜10
分、好ましくは10秒〜2分程度がよい。電解処理方法
としてはバッチ式、連続式いずれでもよいが、生産性が
よくバラツキが小さくできる連続式が好ましい。通電方
法としては直接通電、間接通電のいずれも採用すること
ができるが、電解処理時の毛羽立ち、電気スパーク等が
抑えられる間接通電が好ましい。また、電解処理方法
は、電解槽を必要槽数並べて1度通糸しても、1槽の電
解槽に必要回数通糸してもよい。更に、電解槽の陽極長
は5〜100mm、陰極長は300mm 〜1000mm、好ましくは
350mm 〜900mm がよい。通常、表面処理に続いて水洗、
乾燥処理を行なうが、水洗、乾燥処理を省いても問題は
ない。また、酸性電解質中で電解処理したのち、アルカ
リ性水溶液中で洗浄または電解処理しても接着性の向上
効果が得られ好ましい。
The quantity of electricity to be treated is preferably optimized in accordance with the firing temperature of the carbon fiber to be treated, and a high elastic modulus yarn requires a larger quantity of electricity. For high modulus carbon fiber,
A high amount of electricity is required because energy is required to destroy the developed graphite structure. Therefore, it is necessary to reduce the amount of processing per time and increase the number of times of processing. Specifically, the energization amount per time is 2 to 100.
C / g (the number of coulombs per 1 g of carbon fiber), preferably 2 to 80 C / g. When it is less than 2 C / g, the crystallinity of the surface layer is not sufficiently lowered, and the number of treatments needs to be increased, resulting in deterioration of productivity. On the other hand, when it exceeds 100 C / g, the strength of the carbon fiber substrate is greatly reduced. Also,
From the viewpoint of maintaining the decrease in crystallinity in an appropriate range, the total amount of electricity is 2 to 1000C, preferably 20 to 50C.
It is preferable to optimize in the range of 0 C / g. The electrolysis voltage is preferably 0.5 to 25 V, and more preferably less than 20 V in consideration of safety. The treatment time should be optimized depending on the amount of electricity and the concentration of electrolyte, but from the aspect of productivity, it is several seconds to 10 seconds.
Minute, preferably about 10 seconds to 2 minutes. The electrolytic treatment method may be either a batch method or a continuous method, but a continuous method is preferable because it has good productivity and small variations. As the energization method, either direct energization or indirect energization can be adopted, but indirect energization is preferable because it suppresses fuzzing, electric sparks and the like during electrolytic treatment. In the electrolytic treatment method, the required number of electrolytic baths may be lined up and passed once, or may be passed through one electrolytic bath a required number of times. Further, the electrolytic cell has an anode length of 5 to 100 mm and a cathode length of 300 mm to 1000 mm, preferably
350mm to 900mm is good. Usually, surface treatment followed by washing with water,
Drying is performed, but there is no problem even if washing and drying are omitted. In addition, after the electrolytic treatment in an acidic electrolyte, washing or electrolytic treatment in an alkaline aqueous solution is preferable because the effect of improving the adhesiveness can be obtained.

【0011】さらに、X線光電子分光法(ESCA)に
より測定される炭素繊維の表面酸素濃度O/Cが0.2
0以下であり、かつ化学修飾ESCAにより測定される
表面水酸基濃度OH/Cが0.2%以上あるいは表面カルボ
キシル基濃度COOH/Cが0.2%以上2.0%以下の炭素
繊維と組み合わせると特に効果が著しい。O/Cが0.
2を超えると樹脂の官能基と炭素繊維最表面との化学結
合は強固になるものの、本来炭素繊維基質自身が有する
強度よりもかなり低い強度を有する酸化物層が炭素繊維
表層を被うことになるため、結果として得られるコンポ
ジットの接着特性は低いものとなってしまい好ましくな
い。また、OH/Cが0.2%未満かつCOOH/Cが0.2%未
満であると本発明のサイジング剤との反応性および反応
量が不足し好ましくない。一方、COOH/Cが2.0%を超
えると上述のO/Cの場合と同様に本来炭素繊維基質自
身が有する強度よりもかなり低い強度を有する酸化物層
が炭素繊維表層が被うことになり好ましくない。
Further, the surface oxygen concentration O / C of the carbon fiber measured by X-ray photoelectron spectroscopy (ESCA) is 0.2.
When combined with a carbon fiber having a surface hydroxyl group concentration OH / C of 0.2% or more or a surface carboxyl group concentration COOH / C of 0.2% or more and 2.0% or less, which is 0 or less and measured by chemically modified ESCA Especially effective. O / C is 0.
If it exceeds 2, the chemical bond between the functional group of the resin and the outermost surface of the carbon fiber becomes strong, but the carbon fiber surface layer is covered with an oxide layer having a strength considerably lower than that of the carbon fiber substrate itself. Therefore, the resulting composite has poor adhesive properties, which is not preferable. If OH / C is less than 0.2% and COOH / C is less than 0.2%, the reactivity and reaction amount with the sizing agent of the present invention are insufficient, which is not preferable. On the other hand, when COOH / C exceeds 2.0%, the carbon fiber surface layer is covered with an oxide layer having a strength considerably lower than the strength originally possessed by the carbon fiber substrate itself as in the case of O / C described above. It is not preferable.

【0012】本発明に於けるサイジング剤は、好ましく
は一様に被覆またはコーティングされているのがよい。
The sizing agent in the present invention is preferably uniformly coated or coated.

【0013】また、本発明に用いるサイジング剤は、複
数のグリシジルエーテル基を有し骨格が多環芳香族化合
物とするものであり、例えば、ナフタレン、アントラセ
ン、フェナントレン、クリセン、ピレン、ナフタセン、
トリフェニレン、1,2−ベンズアントラセン、ベンゾ
ピレン等が挙げられる。好ましくは、骨格の小さいナフ
タレン、アントラセン、フェナントレン、ピレンが良
い。グリシジルエーテル基は複数必要であり、これが2
つ未満であると炭素繊維とマトリックス樹脂とのカップ
リング効果が現れない。このようなサイジング剤として
最も好ましい例は1,6−ナフタレンジグリシジルエー
テル等である。
The sizing agent used in the present invention is a polycyclic aromatic compound having a plurality of glycidyl ether groups and having a skeleton as a polycyclic aromatic compound. For example, naphthalene, anthracene, phenanthrene, chrysene, pyrene, naphthacene,
Examples include triphenylene, 1,2-benzanthracene, and benzopyrene. Naphthalene, anthracene, phenanthrene, and pyrene having a small skeleton are preferable. Multiple glycidyl ether groups are required, and this is 2
If it is less than 3, the effect of coupling the carbon fiber and the matrix resin does not appear. The most preferable example of such a sizing agent is 1,6-naphthalenediglycidyl ether.

【0014】また、本発明におけるエポキシ基を有する
多環芳香族化合物のエポキシ当量は、接着性の向上効果
を十分なものとする観点から、100〜250、さらに
は110〜200が好ましい。
Further, the epoxy equivalent of the polycyclic aromatic compound having an epoxy group in the present invention is preferably 100 to 250, more preferably 110 to 200, from the viewpoint of sufficiently improving the adhesiveness.

【0015】また、エポキシ基を有する多環芳香族化合
物の分子量は、樹脂粘度が高くなって集束剤としての取
扱い性が悪化するのを防ぐ観点から、250〜600、
さらには250〜400が好ましい。
The molecular weight of the polycyclic aromatic compound having an epoxy group is 250 to 600, from the viewpoint of preventing the resin viscosity from increasing and the handleability as a sizing agent from deteriorating.
Furthermore, 250-400 is preferable.

【0016】本発明のサイジング剤は、樹脂との接着性
改善幅を大とし、一方、サイジング剤の消費量が過大に
ならないようにする観点から、炭素繊維単位重量当たり
0.1〜5%、さらには0.2〜2%付与するのが好ま
しい。
The sizing agent of the present invention has a large degree of improvement in adhesiveness with a resin, and on the other hand, from the viewpoint of preventing the consumption amount of the sizing agent from becoming excessive, 0.1 to 5% per unit weight of carbon fiber, Further, it is preferable to add 0.2 to 2%.

【0017】また、乾燥温度と乾燥時間は化合物の付着
量によって調整されるが、乾燥温度は、サイジング剤の
溶媒除去を短時間で完全にし、コンポジットの接着特性
を良好なものとする一方、サイジング剤の硬化が進み炭
素繊維束が固くなり拡がり性が悪化し、良好なコンポジ
ットの成形ができなくなるのを防ぐ観点から、150〜
350℃さらには180〜250℃が好ましい。
Further, the drying temperature and the drying time are adjusted by the amount of the compound attached. The drying temperature completes the removal of the solvent of the sizing agent in a short time and makes the adhesive property of the composite good, while the sizing is performed. From the viewpoint of preventing the curing of the agent, the carbon fiber bundles becoming hard and the spreadability deteriorated, and good composite molding being impossible,
It is preferably 350 ° C, more preferably 180 to 250 ° C.

【0018】さらに、サイジング剤母液の温度、浸漬方
法、浸漬時間、浸漬時の張力等は繊維束の内部まで均一
に付着するように調整するのが好ましい。
Furthermore, the temperature of the sizing agent mother liquor, the dipping method, the dipping time, the tension during dipping and the like are preferably adjusted so that the sizing agent mother liquor is uniformly attached to the inside of the fiber bundle.

【0019】サイジング剤に使用する溶媒は、水、メタ
ノール、エタノール、ジメチルホルムアミド、ジメチル
アセトアミド、アセトン等が挙げられる。取扱いが容易
で防災の観点から水が好ましい。従って、水に不溶、若
しくは難溶のエポキシ化合物には乳化剤、界面活性剤等
を添加し水分散性にして用いるのが良い。
Examples of the solvent used for the sizing agent include water, methanol, ethanol, dimethylformamide, dimethylacetamide and acetone. Water is preferable from the viewpoint of easy handling and disaster prevention. Therefore, it is preferable to add an emulsifier, a surfactant or the like to an epoxy compound which is insoluble or hardly soluble in water to make it water-dispersible.

【0020】サイジング付与方法として、ディップ法、
スプレー法等があるが、付着が容易なディップ法が好ま
しい。また、サイジング剤付与時に炭素繊維を超音波で
加振させても良い。
As a sizing method, a dip method,
Although there is a spray method or the like, a dipping method is preferable because of its easy adhesion. Further, the carbon fibers may be vibrated by ultrasonic waves when the sizing agent is applied.

【0021】マトリックス樹脂は、エポキシ樹脂等の熱
硬化性樹脂が好ましい。特に、マトリックス樹脂の反応
性が向上し、サイジング効果が相対的に小さくなるのを
防ぐ観点から、硬化温度が200℃以下であるビスフェ
ノール型エポキシ樹脂主成分の樹脂(例えば、特公平4
−80054号公報)や耐熱性を向上させたN,N,
N′,N′−テトラグリシジルジアミノジフェニルメタ
ン主成分の樹脂(例えば、特公昭63−60056号公
報、特開昭63−162732号公報に記載されている
もの)が良い。更には硬化温度150℃以下の樹脂は、
接着性向上効果が顕著であり好ましい。
The matrix resin is preferably a thermosetting resin such as an epoxy resin. In particular, from the viewpoint of improving the reactivity of the matrix resin and preventing the sizing effect from becoming relatively small, a resin containing a bisphenol type epoxy resin as a main component and having a curing temperature of 200 ° C. or lower (for example, Japanese Patent Publication No.
-80054) and N, N, with improved heat resistance.
A resin containing N ', N'-tetraglycidyldiaminodiphenylmethane as a main component (for example, those described in JP-B-63-60056 and JP-A-63-162732) is preferable. Furthermore, for resins with a curing temperature of 150 ° C or lower,
The adhesiveness-improving effect is remarkable, which is preferable.

【0022】[0022]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。なお、実施例中、表面酸素濃度(O/C)、
表面水酸基濃度(OH/C)、表面カルボキシル基濃度(CO
OH/C)、板端剥離強度(EDS)は次の方法に従って測
定した。
EXAMPLES The present invention will be described in more detail below with reference to examples. In the examples, the surface oxygen concentration (O / C),
Surface hydroxyl group concentration (OH / C), surface carboxyl group concentration (CO
OH / C) and plate edge peel strength (EDS) were measured according to the following methods.

【0023】〈表面酸素濃度O/C〉表面酸素濃度O/
Cは、次の手順に従ってESCAにより求めた。先ず、
溶媒でサイジング剤などを除去した炭素繊維束をカット
してステンレス製の試料支持台上に拡げて並べた後、光
電子脱出角度を90゜とし、X線源としてMgKα1, 2
を用い、試料チャンバー内を1×108 Torrの真空度に
保つ。測定時の帯電に伴うピークの補正として、まずC
1Sの主ピークの結合エネルギー値B.E.を284.6eVに合わ
せる。C1Sピーク面積は、282 〜296 eVの範囲で直線の
ベースラインを引くことにより求め、O1Sピーク面積
は、 528〜540 eVの範囲で直線のベースラインを引くこ
とにより求めた。表面酸素濃度O/Cは、上記O1Sピー
ク面積とC1Sピーク面積の比を、装置固有の感度補正値
で割ることにより算出した原子数比で表した。なお、本
実施例では島津製作所(株)製ESCA−750を用
い、上記装置固有の感度補正値は2.85であった。
<Surface oxygen concentration O / C> Surface oxygen concentration O / C
C was determined by ESCA according to the following procedure. First,
After cutting the carbon fiber bundle from which the sizing agent was removed with a solvent and spreading and arranging them on a stainless steel sample support, the photoelectron escape angle was set to 90 ° and the X-ray source was MgKα 1, 2
Is used to maintain the inside of the sample chamber at a vacuum degree of 1 × 10 8 Torr. As a correction of the peak due to charging at the time of measurement, first C
The binding energy value BE of the main peak of 1S is set to 284.6 eV. The C 1S peak area was determined by drawing a linear baseline in the range of 282 to 296 eV, and the O 1S peak area was determined by drawing a linear baseline in the range of 528 to 540 eV. The surface oxygen concentration O / C was represented by the atomic number ratio calculated by dividing the ratio of the O 1S peak area and the C 1S peak area by the sensitivity correction value specific to the apparatus. In this example, ESCA-750 manufactured by Shimadzu Corporation was used, and the sensitivity correction value peculiar to the above apparatus was 2.85.

【0024】〈表面水酸基濃度OH/C〉表面水酸基濃度OH
/Cは、次の手順に従って化学修飾ESCAにより求め
た。先ず、溶媒でサイジング剤などを除去した炭素繊維
束をカットして白金製の試料支持台上に拡げて並べ、
0.04モル/lの無水3弗化酢酸気体を含んだ乾燥窒
素ガス中に室温で10分間さらし、化学修飾処理した
後、X線光電子分光装置に光電子脱出角度を35゜とし
てマウントし、X線源としてAlKα1,2 を用い、試料
チャンバー内を1×108 Torrの真空度に保つ。測定時
の帯電に伴うピークの補正として、まずC1Sの主ピーク
の結合エネルギー値B.E.を284.6 eVに合わせる。C1S
ーク面積[C1S]は、 282〜296 eVの範囲で直線のベー
スラインを引くことにより求め、F1Sピーク面積
[F1S]は、 682〜695 eVの範囲で直線のベースライン
を引くことにより求めた。また、同時に化学修飾処理し
たポリビニルアルコールのC1Sピーク分割から反応率r
を求めた。
<Surface hydroxyl group concentration OH / C> Surface hydroxyl group concentration OH
/ C was determined by chemically modified ESCA according to the following procedure. First, the carbon fiber bundle from which the sizing agent and the like have been removed with a solvent is cut and spread on a platinum sample support table and arranged,
The sample was exposed to dry nitrogen gas containing 0.04 mol / l anhydrous trifluoroacetic acid gas at room temperature for 10 minutes, chemically modified, and then mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35 °. AlKα 1,2 is used as a radiation source, and the inside of the sample chamber is maintained at a vacuum degree of 1 × 10 8 Torr. As a correction of the peak due to charging during measurement, first, the binding energy value BE of the main peak of C 1S is set to 284.6 eV. C 1S peak area [C 1S ] is obtained by drawing a linear baseline in the range of 282 to 296 eV, and F 1S peak area [F 1S ] is drawn in the range of 682 to 695 eV. I asked for it. Further, the reaction rate r from C 1S peak division of polyvinyl alcohol was treated at the same time chemically modified
I asked.

【0025】表面水酸基濃度OH/Cは、下式により算出し
た値で表した。 OH/C={ [F1S]/r(3k[ C1S]
−2[ F1S] )}×100(%) なお、kは装置固有のC1Sピーク面積に対するF1Sピー
ク面積の感度補正値であり、本実施例では、米国SSI
社製モデルSSX−100−206を用い、上記装置固
有の感度補正値は3.919であった。
The surface hydroxyl group concentration OH / C is represented by the value calculated by the following formula. OH / C = {[F 1S ] / r (3k [C 1S ]
−2 [F 1S ])} × 100 (%) k is a sensitivity correction value of the F 1S peak area with respect to the C 1S peak area peculiar to the apparatus.
Using the model SSX-100-206 manufactured by the same company, the sensitivity correction value peculiar to the above apparatus was 3.919.

【0026】〈表面カルボキシル基濃度COOH/C〉表面カ
ルボキシル基濃度COOH/Cは、次の手順に従って化学修飾
ESCAにより求めた。先ず、溶媒でサイジング剤など
を除去した炭素繊維束をカットして白金製の試料支持台
上に拡げて並べ、0.02モル/lの3弗化エタノール
気体,0.001モル/lのジシクロヘキシルカルボジ
イミド気体及び0.04モル/lのピリジン気体を含む
空気中に60℃で8時間さらし、化学修飾処理した後、
X線光電子分光装置に光電子脱出角度を35゜としてマ
ウントし、X線源としてAlKα1,2 を用い、試料チャ
ンバー内を1×108 Torrの真空度に保つ。測定時の帯
電に伴うピークの補正として、まずC1Sの主ピークの結
合エネルギー値B.E.を284.6 eVに合わせる。C1Sピーク
面積[C1S]は、282 〜296eV の範囲で直線のベースラ
インを引くことにより求め、F1Sピーク面積[F1S
は、 682〜695eVの範囲で直線のベースラインを引くこ
とにより求めた。また、同時に化学修飾処理したポリア
クリル酸のC1Sピーク分割から反応率rを、O1Sピーク
分割からジシクロヘキシルカルボジイミド誘導体の残存
率mを求めた。
<Surface carboxyl group concentration COOH / C> The surface carboxyl group concentration COOH / C was determined by chemical modification ESCA according to the following procedure. First, a carbon fiber bundle from which a sizing agent and the like was removed with a solvent was cut and spread on a platinum sample support table and arranged, and 0.02 mol / l trifluoroethanol gas and 0.001 mol / l dicyclohexyl were used. After being exposed to air containing carbodiimide gas and 0.04 mol / l pyridine gas at 60 ° C. for 8 hours to perform chemical modification treatment,
The sample was mounted on an X-ray photoelectron spectrometer with a photoelectron escape angle of 35 °, AlKα 1,2 was used as an X-ray source, and the inside of the sample chamber was maintained at a vacuum degree of 1 × 10 8 Torr. As a correction of the peak due to charging during measurement, first, the binding energy value BE of the main peak of C 1S is set to 284.6 eV. The C 1S peak area [C 1S ] is obtained by drawing a straight base line in the range of 282 to 296 eV, and the F 1S peak area [F 1S ] is obtained.
Was determined by drawing a linear baseline in the range 682-695 eV. At the same time, the reaction rate r was obtained from the C 1S peak division of the polyacrylic acid chemically modified, and the residual rate m of the dicyclohexylcarbodiimide derivative was obtained from the O 1S peak division.

【0027】表面カルボキシル基濃度COOH/Cは、下式に
より算出した値で表した。COOH/C={[ F1S] /r (3
k[ C1S] −( 2+13m)[F1S])}× 100(%) なお、kは装置固有のC1Sピーク面積に対するF1Sピー
ク面積の感度補正値であり、本実施例では、米国SSI
社製モデルSSX−100−206を用い、上記装置固
有の感度補正値は3.919であった。
The surface carboxyl group concentration COOH / C is represented by a value calculated by the following formula. COOH / C = {[F 1S ] / r (3
k [C 1S ] − (2 + 13 m) [F 1S ])} × 100 (%) Note that k is a sensitivity correction value of the F 1S peak area with respect to the C 1S peak area unique to the apparatus, and in the present embodiment, the US SSI is used.
Using the model SSX-100-206 manufactured by the same company, the sensitivity correction value peculiar to the above apparatus was 3.919.

【0028】〈板端剥離強度EDS〉 コンポジット試験片の作成 先ず円周約2.7mの鋼製ドラムに炭素繊維と組み合わ
せる樹脂をシリコーン塗布ペーパー上にコーティングし
た樹脂フィルムを巻き、次に該樹脂フィルム上にクリー
ルから引き出した炭素繊維をトラバースを介して巻き取
り、配列して、さらにその繊維の上から前記樹脂フィル
ムを再度かぶせて後、加圧ロールで回転加圧して樹脂を
繊維内に含浸せしめ、巾300mm、長さ2.7mの一方
向プリプレグを作製する。
<Plate Edge Peeling Strength EDS> Preparation of Composite Test Specimens First, a steel drum having a circumference of about 2.7 m is wrapped with a resin film obtained by coating a silicone-coated paper with a resin to be combined with carbon fibers, and then the resin film. The carbon fiber drawn from the creel is wound up through the traverse, arranged, and the resin film is re-covered on the fiber, and then rotationally pressed by a pressure roll to impregnate the resin into the fiber. A unidirectional prepreg with a width of 300 mm and a length of 2.7 m is prepared.

【0029】このとき、繊維間への樹脂含浸を良くする
ためにドラムは60〜70℃に加熱し、またプリプレグ
の繊維目付はドラムの回転数とトラバースの送り速度を
調整することによって繊維目付約200 g/m2 、樹脂量
約35重量%のプリプレグを作製した。
At this time, the drum is heated to 60 to 70 ° C. to improve the resin impregnation between the fibers, and the fiber areal weight of the prepreg is adjusted by adjusting the rotational speed of the drum and the traverse feed speed. A prepreg having 200 g / m 2 and a resin amount of about 35% by weight was prepared.

【0030】このように作製したプリプレグを裁断、
(+25°/−25°/+25°/−25°/90°)
s の構成で積層し、オートクレーブを用いて135℃、
3kgf/cm2 下で2時間加熱硬化して、EDS測定用とし
て肉厚約2mmの硬化板を作製した。
The prepreg thus produced is cut,
(+ 25 ° / -25 ° / + 25 ° / -25 ° / 90 °)
Laminated in the composition of s , and use an autoclave at 135 ℃,
It was heat-cured under 3 kgf / cm 2 for 2 hours to prepare a cured plate having a wall thickness of about 2 mm for EDS measurement.

【0031】EDSの測定 試験片は巾25.4mm、長さ230mmとし、測定は通常
の引張試験治具を用いて、試験長127mmに設定し、歪
速度1mm/minで測定した。剥離強度は試験片の側面で剥
離が開始した時点の荷重を試験片の断面積で割ることに
より算出した。なお、樹脂は特公平4−80054号公
報開示の実施例1に従って次のように調製した。すなわ
ち、油化シェルエポキシ社製エピコート1001を3.5kg
(35重量部)、油化シェルエポキシ社製エピコート828
を2.5kg (25重量部)と大日本インキ化学工業社製エピ
クロンN740 を 3.0kg(30重量部)、油化シェルエポキ
シ社製エピコート152 を1.5kg (15重量部)および電気
化学工業社製デンカホルマール#20を 0.8kg( 8重量
部)、 150℃で2時間融解混合した後、60℃まで冷却し
て、ジシアンジアミド0.3kg ( 3重量部)とジクロロフ
ェニルジメチルウレア0.5kg ( 5重量部)を添加し、30
分間攪拌して樹脂組成物を得た。これを離型紙にコーテ
ィングし樹脂フィルムとしたものを用いた。
Measurement of EDS The test piece had a width of 25.4 mm and a length of 230 mm, and the measurement was carried out at a strain rate of 1 mm / min by setting a test length of 127 mm using an ordinary tensile test jig. The peel strength was calculated by dividing the load at the time when peeling started on the side surface of the test piece by the cross-sectional area of the test piece. The resin was prepared as follows according to Example 1 disclosed in Japanese Patent Publication No. 4-80054. In other words, 3.5 kg of Epicoat 1001 manufactured by Yuka Shell Epoxy Co., Ltd.
(35 parts by weight), Yuka Shell Epoxy Epicoat 828
2.5 kg (25 parts by weight), 3.0 kg (30 parts by weight) of Epichron N740 manufactured by Dainippon Ink and Chemicals, 1.5 kg (15 parts by weight) of Epicoat 152 manufactured by Yuka Shell Epoxy and Denka manufactured by Denki Kagaku Kogyo 0.8 kg (8 parts by weight) of formal # 20 was melt mixed at 150 ° C for 2 hours, cooled to 60 ° C, and 0.3 kg (3 parts by weight) of dicyandiamide and 0.5 kg (5 parts by weight) of dichlorophenyldimethylurea were added. And then 30
The resin composition was obtained by stirring for a minute. A release paper was coated with this to form a resin film.

【0032】(実施例1)アクリロニトリル(AN)9
9.4モル%とメタクリル酸0.6モル%からなる共重
合体を用いて、乾湿式紡糸方法により単繊維デニール1
d,フィラメント数12000のアクリル系繊維を得
た。得られた繊維束を240〜280℃の空気中で、延
伸比1.05で加熱し、耐炎化繊維に転換し、ついで窒
素雰囲気中300〜900℃の温度領域での昇温速度を
200℃/分とし10%の延伸を行なった後、1300
℃まで焼成した。得られた炭素繊維の目付は0.802
g/m、比重は1.80であった。
Example 1 Acrylonitrile (AN) 9
Single-fiber denier 1 by dry-wet spinning method using a copolymer consisting of 9.4 mol% and methacrylic acid 0.6 mol%
d, an acrylic fiber having 12000 filaments was obtained. The obtained fiber bundle is heated in the air of 240 to 280 ° C. at a draw ratio of 1.05 to be converted into flame resistant fiber, and then the temperature rising rate in a temperature range of 300 to 900 ° C. in a nitrogen atmosphere is 200 ° C. / Min and after stretching 10%, 1300
Bake to ℃. The weight of the obtained carbon fiber is 0.802.
The g / m and the specific gravity were 1.80.

【0033】濃度0.1モル/lの水酸化テトラエチル
アンモニウム(TEAH)水溶液を電解液として、1回
当たりの通電電気量を10クーロン/gとし、4回繰り
返すことにより該炭素繊維を総電気量40クーロン/g
で処理した。その際、電解液が黒色に変色した。この電
解処理を施された炭素繊維を続いて水洗し、150℃の
加熱空気中で乾燥した。得られた炭素繊維のO/Cは
0.14で、OH/C、COOH/Cはそれぞれ1.3%、0.7
%であった。
Using a tetraethylammonium hydroxide (TEAH) aqueous solution having a concentration of 0.1 mol / l as an electrolytic solution, the amount of electricity supplied per time was set at 10 coulomb / g, and the carbon fiber was subjected to a total amount of electricity by repeating 4 times. 40 coulomb / g
Processed in. At that time, the electrolytic solution turned black. The electrolytically treated carbon fiber was subsequently washed with water and dried in heated air at 150 ° C. The O / C of the obtained carbon fiber was 0.14, and OH / C and COOH / C were 1.3% and 0.7, respectively.
%Met.

【0034】続いて、樹脂成分が1重量%になるように
1,6−ナフタレンジグリシジルエーテルをジメチルホ
ルムアミド(DMF)で希釈してサイジング剤母液を調
整し、浸漬法により炭素繊維にサイジング剤付与、21
0℃で乾燥を行なった。付着量は0.4%であった。得
られた炭素繊維のEDSは31kgf/mm2 であった。
Subsequently, 1,6-naphthalene diglycidyl ether was diluted with dimethylformamide (DMF) so that the resin component was 1% by weight to prepare a sizing agent mother liquor, and the sizing agent was applied to the carbon fibers by a dipping method. , 21
Drying was performed at 0 ° C. The adhered amount was 0.4%. The EDS of the obtained carbon fiber was 31 kgf / mm 2 .

【0035】評価結果を表1に示す。The evaluation results are shown in Table 1.

【0036】[0036]

【表1】 (実施例2)電解液を濃度0.05モル/lの硫酸水溶
液に変更し、通電電気量5クーロン/g処理を1回で行
なった以外は、実施例1と同様に処理して炭素繊維を得
た。付着量は0.2%であった。得られた炭素繊維のO
/Cは0.08で、OH/C、COOH/Cはそれぞれ0.2%、
1.2%であった。サイジング剤の付着量は0.2%
で、EDSは27kgf/mm2 であった。評価結果を表1に
併せて示す。
[Table 1] (Example 2) Carbon fiber was treated in the same manner as in Example 1 except that the electrolytic solution was changed to an aqueous solution of sulfuric acid having a concentration of 0.05 mol / l and the treatment was carried out once with an energization amount of 5 coulomb / g. Got The adhered amount was 0.2%. O of the obtained carbon fiber
/ C is 0.08, OH / C and COOH / C are 0.2%,
It was 1.2%. Adhesion amount of sizing agent is 0.2%
The EDS was 27 kgf / mm 2 . The evaluation results are also shown in Table 1.

【0037】(比較例1)サイジング剤母液を樹脂成分
の含まないDMF液に変更した以外は、実施例1と同様
に処理して炭素繊維を得た。EDSは24kgf/mm2 であ
った。評価結果を表1に併せて示す。
Comparative Example 1 Carbon fiber was obtained by the same treatment as in Example 1 except that the sizing agent mother liquor was changed to a DMF liquid containing no resin component. The EDS was 24 kgf / mm 2 . The evaluation results are also shown in Table 1.

【0038】(比較例2〜3)サイジング剤の成分に多
環芳香族化合物でないビスフェノールA型ジグリシジル
エーテル(EP−828:油化シェル)およびフェノー
ルノボラック型グリシジルエーテル(EP−154:油
化シェル)に変更した以外は実施例1と同様にして炭素
繊維を得た。付着量はそれぞれ0.4,0.4%で、E
DSはそれぞれ25,25kgf/mm2 であり、サイジング
剤によるEDSの向上効果は認められない。評価結果を
表1に併せて示す。
(Comparative Examples 2 to 3) Bisphenol A type diglycidyl ether (EP-828: oiled shell) and phenol novolac type glycidyl ether (EP-154: oiled shell) which are not polycyclic aromatic compounds are used as components of the sizing agent. A carbon fiber was obtained in the same manner as in Example 1 except that the carbon fiber was changed to). The adhered amount is 0.4 and 0.4% respectively, and E
The DS is 25 and 25 kgf / mm 2 , respectively, and the effect of improving the EDS by the sizing agent is not recognized. The evaluation results are also shown in Table 1.

【0039】[0039]

【発明の効果】本発明により、従来技術では達成し得な
かった、マトリックス樹脂との接着性に優れた、すなわ
ち、EDSが27kgf/mm2 以上と大幅に向上した炭素繊
維を製造することができる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to produce a carbon fiber having an excellent adhesiveness with a matrix resin, that is, an EDS of 27 kgf / mm 2 or more, which has not been achieved by the prior art. .

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // D06M 101:40 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // D06M 101: 40

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】複数のグリシジルエーテル基を有する多環
芳香族化合物をサイジングすることを特徴とする炭素繊
維の製造方法。
1. A method for producing a carbon fiber, which comprises sizing a polycyclic aromatic compound having a plurality of glycidyl ether groups.
【請求項2】複数のグリシジルエーテル基を有する多環
芳香族化合物の骨格が、ナフタレン、アントラセン、フ
ェナントレン、ピレンであることを特徴とする請求項1
記載の炭素繊維の製造方法。
2. The skeleton of the polycyclic aromatic compound having a plurality of glycidyl ether groups is naphthalene, anthracene, phenanthrene, or pyrene.
A method for producing the described carbon fiber.
JP20795993A 1993-08-23 1993-08-23 Production of carbon fiber Pending JPH0770925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20795993A JPH0770925A (en) 1993-08-23 1993-08-23 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20795993A JPH0770925A (en) 1993-08-23 1993-08-23 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPH0770925A true JPH0770925A (en) 1995-03-14

Family

ID=16548365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20795993A Pending JPH0770925A (en) 1993-08-23 1993-08-23 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPH0770925A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07214551A (en) * 1994-01-28 1995-08-15 Toray Ind Inc Carbon fiber reinforced resin composite material and prepreg

Similar Documents

Publication Publication Date Title
JP3003513B2 (en) Carbon fiber and method for producing the same
KR100333246B1 (en) Carbon fiber and its manufacturing method
JP3807066B2 (en) Sizing agent for carbon fiber, carbon fiber sized by the same, and composite material comprising the same
JP3656864B2 (en) Carbon fiber, method for producing the same, and prepreg using the carbon fiber
JP2010057462A (en) Prepreg for fishing rod tip, fiber-reinforced composite material for fishing rod tip, solid body for fishing rod tip, tubular body for fishing rod tip, and fishing rod tip
JP3003521B2 (en) Carbon fiber and method for producing the same
EP0070162A2 (en) Continuous carbon filament fiber bundles
JP3755255B2 (en) Carbon fiber and method for producing the same
JP2007016364A (en) Carbon fiber bundle
JPH0770925A (en) Production of carbon fiber
JP2005256226A (en) Sizing-coated carbon fiber and method for producing the same
JPH0665787B2 (en) Carbon fiber strand sizing method
JP2004277907A (en) Carbon fiber and method for producing the same
JP4547969B2 (en) Hot water cleaning apparatus and carbon fiber bundle processing method using the same
JP3012885B2 (en) Method for producing surface-modified carbon fiber
JP3136883B2 (en) Carbon fiber reinforced resin composite and prepreg
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JP3557686B2 (en) Carbon fiber and method for producing the same
JPH0284527A (en) Treatment of carbon fiber
JPH0544155A (en) Surface treatment of carbon fiber
JP2005281464A (en) Polyamide-coated carbon fiber and its production method
JPH01168963A (en) Surface treatment of carbon yarn
JPH04281067A (en) Surface treatment of carbon fiber
JPH0434569B2 (en)
JPH0931841A (en) Surface treatment of carbon fiber