JPH0931841A - Surface treatment of carbon fiber - Google Patents

Surface treatment of carbon fiber

Info

Publication number
JPH0931841A
JPH0931841A JP20188195A JP20188195A JPH0931841A JP H0931841 A JPH0931841 A JP H0931841A JP 20188195 A JP20188195 A JP 20188195A JP 20188195 A JP20188195 A JP 20188195A JP H0931841 A JPH0931841 A JP H0931841A
Authority
JP
Japan
Prior art keywords
carbon fiber
treatment
oxidation treatment
oxygen concentration
electrolytic oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20188195A
Other languages
Japanese (ja)
Inventor
Hidehiko Ohashi
英彦 大橋
Shoji Hayashi
省治 林
Tsutomu Fujita
藤田  勉
Yoshitaka Imai
義隆 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP20188195A priority Critical patent/JPH0931841A/en
Publication of JPH0931841A publication Critical patent/JPH0931841A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the adhesion of carbon fiber to a matrix resin by heat treatment of carbon fiber having a specific surface oxygen concentration in an oxygen-contg. atmosphere. SOLUTION: First, carbon fiber is produced by nonflammabilizing treatment and carbonizing treatment of a carbon fiber precursor obtained by wet spinning of a dope prepared by dissolving an acrylonitrile-methacrylic acid copolymer in dimethylformamide. Secondly, using the carbon fiber as anode, the carbon fiber is subjected to electrolytic oxidation treatment in an aqueous solution of ammonium bicarbonate to obtain the carbon fiber >=0.1 in the surface oxygen concentration D/C determined by X-ray photoelectron spectroscopy. Finally, the resultant carbon fiber is heat-treated in an oxygen-contg. atmosphere kept at 360-700 (pref. 400-600) deg.C for 0.1-600s to accomplish the objective surface treatment of the carbon fiber.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素繊維に特にマトリ
ックス樹脂との優れた接着性を付与するとともに、プリ
プレグ作製時の優れた開繊性を付与する炭素繊維の表面
処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for carbon fibers, which imparts excellent adhesiveness to carbon fibers, in particular, to a matrix resin, and imparts excellent openability at the time of preparing a prepreg.

【0002】[0002]

【従来の技術】炭素繊維を補強材とする複合材料は、軽
量で、かつ強度、弾性率に優れていることから、スポー
ツ、レジャー用品の構成部材として、或いは宇宙航空機
用部材として幅広い分野にわたり用途開発され、また実
用化されている。しかしながら、従来、複合材料の補強
材として用いられる炭素繊維は、マトリックス樹脂との
接着性が必ずしも十分ではなく、その繊維表面を活性化
させるため、薬剤酸化処理、気相酸化処理、電解酸化処
理等の表面処理方法が採られている。その中でも、電解
酸化処理法は、操作性の良さ、反応制御の容易さ等の点
から、実用的な表面処理方法である。
2. Description of the Related Art Since a composite material having carbon fiber as a reinforcing material is lightweight and has excellent strength and elastic modulus, it can be used in a wide range of fields as a constituent member of sports and leisure goods or a member for aerospace aircraft. It has been developed and put into practical use. However, conventionally, carbon fibers used as a reinforcing material for composite materials do not always have sufficient adhesiveness with a matrix resin, and in order to activate the fiber surface, chemical oxidation treatment, gas phase oxidation treatment, electrolytic oxidation treatment, etc. The surface treatment method is adopted. Among them, the electrolytic oxidation treatment method is a practical surface treatment method from the viewpoint of good operability and easy reaction control.

【0003】電解酸化処理法としては、従来種々の電解
質が検討され、例えば米国特許第4401533号明細
書には、硫酸塩水溶液中で特定範囲の電流、電圧、処理
時間で、炭素繊維を陽極にして電解酸化する方法が開示
されている。また米国特許第3832297号明細書に
は、アンモニウム化合物を電解質に用い、炭素繊維を陽
極にして電解酸化すること、そしてこのアンモニウム化
合物は250℃以下の温度で分解し繊維には残らないこ
とが開示されている。
As an electrolytic oxidation treatment method, various kinds of electrolytes have hitherto been studied. For example, in US Pat. No. 4,401,533, a carbon fiber is used as an anode in a sulfuric acid aqueous solution at a specific range of current, voltage and treatment time. There is disclosed a method of electrolytic oxidation. U.S. Pat. No. 3,832,297 discloses that an ammonium compound is used as an electrolyte and carbon fiber is used as an anode for electrolytic oxidation, and that the ammonium compound decomposes at a temperature of 250 ° C. or less and does not remain in the fiber. Has been done.

【0004】一方、炭素繊維の高性能化の要望は、年々
高まり、特に航空機用の炭素繊維は、高強度化、高弾性
率化の方向で開発が進められ、最近では30ton/m
2前後の弾性率を有する中弾性炭素繊維が主流となっ
ており、スポーツ、レジャー用品用の炭素繊維でも高弾
性率化の方向で開発が行われ、50ton/mm2以上
の弾性率を有する炭素繊維の開発も行われている。これ
ら高弾性率化に対応して、炭素繊維の表面は、不活性化
の方向に進み、炭素繊維とマトリックス樹脂の界面結合
力が発揮しにくくなっている。したがい、界面結合力を
発揮するためにはより強い表面酸化処理を施す必要があ
る。
On the other hand, the demand for higher performance of carbon fibers has been increasing year by year, and especially carbon fibers for aircraft have been developed in the direction of higher strength and higher elastic modulus, and recently 30 ton / m.
Medium elastic carbon fibers having an elastic modulus of around m 2 are the mainstream, and carbon fibers for sports and leisure products have also been developed in the direction of increasing the elastic modulus and have an elastic modulus of 50 ton / mm 2 or more. Carbon fiber is also being developed. Corresponding to the increase in elastic modulus, the surface of the carbon fiber progresses in the direction of inactivation, and it becomes difficult to exert the interfacial bonding force between the carbon fiber and the matrix resin. Therefore, it is necessary to perform stronger surface oxidation treatment in order to exert the interfacial bonding force.

【0005】しかしながら、強い表面酸化処理を施した
炭素繊維表面には、粘着性のある黒鉛酸化物等が生成
し、これらが炭素繊維/マトリックス樹脂間の接着阻害
因子となって結合力を低下させる。また、黒鉛酸化物は
構成単糸間を接着させ、プリプレグ作製時の開繊性を低
下させる要因となる。この黒鉛酸化物を除去する方法と
して、特開昭62−141171号公報にて、電解酸化
処理後に有機溶媒で洗浄することが、特開昭62−14
1172号公報にて、電解液中に有機溶媒を混入させる
ことが提案されているが、有機溶媒での洗浄には、比較
的長時間を要し、洗浄が十分ではない、高温炉を用いる
焼成工程での有機溶媒の使用は危険である等の問題点が
ある。
However, sticky graphite oxides and the like are formed on the surface of the carbon fiber which has been subjected to strong surface oxidation treatment, and these become an adhesion inhibiting factor between the carbon fiber and the matrix resin to reduce the binding force. . Further, the graphite oxide causes the constituent single yarns to adhere to each other, and becomes a factor to reduce the openability during the preparation of the prepreg. As a method for removing this graphite oxide, in JP-A-62-141171, washing with an organic solvent after electrolytic oxidation treatment is disclosed in JP-A-62-14.
Japanese Patent No. 1172 proposes mixing an organic solvent into an electrolytic solution, but cleaning with an organic solvent requires a relatively long time, and cleaning is not sufficient. Firing using a high-temperature furnace There are problems such as the use of organic solvents in the process is dangerous.

【0006】また特開昭62−149967号公報に
て、電解酸化処理後に超音波洗浄することが提案されて
いるが、超音波洗浄によれば炭素繊維単糸の切断が発生
し、毛羽の要因となりやすく問題がある。さらに、特開
平5−44155号公報にて、50c/g以上の過酷な
条件で電解酸化処理後、350℃以下の酸素含有雰囲気
下で熱処理することにより層間剪断強度を改善させるこ
とが提案されているが、350℃以下の熱処理では、黒
鉛酸化物の除去効果が小さく、開繊性も改善されない。
また、特開昭55−6512号公報には、炭素繊維を空
気中で熱処理することにより強度を向上させることが提
案されているが、電解酸化処理なしに単に熱処理するだ
けでは、マトリックス樹脂との接着性は低い。
Further, Japanese Patent Application Laid-Open No. 62-149967 proposes ultrasonic cleaning after electrolytic oxidation treatment. However, ultrasonic cleaning causes cutting of carbon fiber single yarns, which causes fuzz. It easily becomes a problem. Further, JP-A-5-44155 proposes to improve the interlaminar shear strength by performing an electrolytic oxidation treatment under a severe condition of 50 c / g or more and then performing a heat treatment in an oxygen-containing atmosphere at 350 ° C. or less. However, the heat treatment at 350 ° C. or lower has a small effect of removing the graphite oxide and the openability is not improved.
Further, Japanese Patent Laid-Open No. 55-6512 proposes to heat-treat carbon fiber in air to improve its strength. However, by simply heat-treating it without electrolytic oxidation treatment, it is possible to obtain a matrix resin. Low adhesion.

【0007】[0007]

【発明が解決しようとする課題】本発明は、特に表面酸
化処理によって生じた黒鉛酸化物を炭素繊維を毛羽立た
せることなく安全に除去することにより、炭素繊維に対
しマトリックス樹脂との優れた接着性を付与するととも
に、プリプレグ作製時の改善された開繊性を付与するこ
とを目的とする。
DISCLOSURE OF THE INVENTION According to the present invention, the graphite oxide produced by the surface oxidation treatment can be safely removed without causing fluffing of the carbon fiber, thereby providing excellent adhesion to the carbon fiber with the matrix resin. And to provide improved openability during prepreg preparation.

【0008】[0008]

【課題を解決するための手段】本発明は、X線光電子分
光法で測定した表面酸素濃度O/Cが0.1以上の炭素
繊維を360〜700℃の温度に保たれた酸素含有雰囲
気中で0.1〜600秒熱処理することを特徴とする炭
素繊維の表面処理方法にある。
According to the present invention, a carbon fiber having a surface oxygen concentration O / C of 0.1 or more measured by X-ray photoelectron spectroscopy is kept in an oxygen-containing atmosphere kept at a temperature of 360 to 700 ° C. The method for surface treatment of carbon fiber is characterized in that it is heat-treated for 0.1 to 600 seconds.

【0009】本発明においては、X線光電子分光法で測
定した表面酸素濃度O/Cが0.1以上の炭素繊維を用
いる。かかる表面酸素濃度O/Cが0.1以上の炭素繊
維は、アクリロニトリル繊維、ピッチ、レーヨン等の炭
素繊維前駆体を公知の任意の方法によって焼成して得ら
れた炭素繊維を薬剤酸化処理、気相酸化処理、電解酸化
処理等の表面酸化処理、好ましくは電解酸化処理を施す
ことによって得られる。
In the present invention, carbon fibers having a surface oxygen concentration O / C of 0.1 or more measured by X-ray photoelectron spectroscopy are used. Such carbon fibers having a surface oxygen concentration O / C of 0.1 or more are obtained by firing a carbon fiber precursor such as acrylonitrile fiber, pitch or rayon by a known arbitrary method, and subjecting the carbon fiber to a chemical oxidation treatment, It can be obtained by performing surface oxidation treatment such as phase oxidation treatment and electrolytic oxidation treatment, preferably electrolytic oxidation treatment.

【0010】表面酸素濃度O/Cが0.1以上の炭素繊
維を得るのに好ましく採用される電解酸化処理において
は、電解質として、特に制限はないが、例えば水酸化ナ
トリウム、水酸化カリウム、水酸化バリウム等の水酸化
物、アンモニア、リン酸ナトリウム、リン酸カリウム、
炭酸ナトリウム、炭酸水素アンモニウム、硝酸ナトリウ
ム、硝酸カリウム、硝酸銀、硝酸アンモニウム、硫酸ナ
トリウム、硫酸アンモニウム、硫酸水素アンモニウム、
リン酸二水素アンモニウム等の無機塩、酢酸ナトリウ
ム、酢酸カリウム、マレイン酸ナトリウム、安息香酸ナ
トリウム、ギ酸アンモニウム、酢酸アンモニウム、シュ
ウ酸アンモニウム、シュウ酸ナトリウム等の有機塩、リ
ン酸、硝酸、硫酸、ほう酸、炭酸等の無機酸、酢酸、酪
酸、アクリル酸、マレイン酸、シュウ酸等の有機酸等の
単独または2種以上の混合物が用いられる。
In the electrolytic oxidation treatment which is preferably employed to obtain carbon fibers having a surface oxygen concentration O / C of 0.1 or more, the electrolyte is not particularly limited, but examples thereof include sodium hydroxide, potassium hydroxide and water. Hydroxides such as barium oxide, ammonia, sodium phosphate, potassium phosphate,
Sodium carbonate, ammonium hydrogen carbonate, sodium nitrate, potassium nitrate, silver nitrate, ammonium nitrate, sodium sulfate, ammonium sulfate, ammonium hydrogen sulfate,
Inorganic salts such as ammonium dihydrogen phosphate, sodium acetate, potassium acetate, sodium maleate, sodium benzoate, ammonium formate, ammonium acetate, ammonium oxalate, organic salts such as sodium oxalate, phosphoric acid, nitric acid, sulfuric acid, boric acid Inorganic acids such as carbonic acid, organic acids such as acetic acid, butyric acid, acrylic acid, maleic acid, oxalic acid, etc. may be used alone or in admixture of two or more.

【0011】本発明においては、表面酸素濃度O/Cが
0.1以上の炭素繊維を酸素含有雰囲気中で熱処理する
ことが必要である。用いられる酸素含有雰囲気は、構成
気体、構成比率を特に制限するものではないが、好まし
くは空気雰囲気が用いられる。
In the present invention, it is necessary to heat treat carbon fibers having a surface oxygen concentration O / C of 0.1 or more in an oxygen-containing atmosphere. The oxygen-containing atmosphere used is not particularly limited in the constituent gas and constituent ratio, but an air atmosphere is preferably used.

【0012】酸素含有雰囲気の温度は、360〜700
℃、好ましくは400〜600℃とし、温度が360℃
未満では、黒鉛酸化物の除去効果が不十分であり、70
0℃を超えると、炭素繊維の強度低下が顕著となる。ま
た、熱処理時間は、黒鉛酸化物の除去効果及び強度維持
を考慮し0.1〜600秒とする。
The temperature of the oxygen-containing atmosphere is 360 to 700.
℃, preferably 400 ~ 600 ℃, the temperature is 360 ℃
If it is less than 70%, the effect of removing graphite oxide is insufficient,
If the temperature exceeds 0 ° C, the strength of the carbon fiber will be significantly reduced. The heat treatment time is 0.1 to 600 seconds in consideration of the effect of removing the graphite oxide and maintaining the strength.

【0013】[0013]

【実施例】以下、本発明を実施例により具体的に説明す
る。なお、実施例中の測定項目は次の方法に拠った。
The present invention will be described below in more detail with reference to examples. The measurement items in the examples are based on the following methods.

【0014】ストランド強度:JIS R7601、繊
維方向と90゜方向の曲げ強度(FS⊥)はASTMD
790に記載の試験法に準じて測定した。測定試験片は
炭素繊維を十分水洗後、エポキシ系マトリックス樹脂
(三菱レイヨン社製パイロフィル#340)を用いて作
製した。
Strand strength: JIS R7601, bending strength in the fiber direction and 90 ° direction (FS⊥) is ASTMD
It was measured according to the test method described in 790. The measurement test piece was prepared by thoroughly washing the carbon fiber with water and then using an epoxy matrix resin (Pyrofil # 340 manufactured by Mitsubishi Rayon Co., Ltd.).

【0015】表面酸素濃度O/C:次の手順に従ってX
線光電子分光法により求めた。まず、炭素繊維束をカッ
トして試料ホルダーに両面テープを用いて固定した後、
光電子脱出速度を90゜とし、装置の測定チャンバー内
を1×10-6Paの真空に保つ。測定時の帯電に伴うピ
ークの補正としてまずC1Sの主ピークの結合エネルギ値
を285.6eVに合わせる。C1Sのピーク面積は28
2〜296eVの範囲で直線のベースラインを引くこと
により求め、O1Sのピーク面積は528〜540eVの
範囲で直線のベースラインを引くことにより求めた。表
面酸素濃度O/Cは、O1Sピーク面積とC1Sピーク面積
の比を装置固有の感度補正値で割るこよにより算出した
原子数比で表した。なお、本実施例では複合型表面分析
装置、VG社製ESCALAB MK−‖を使用し、装
置固有の感度補正値は3.07であった。
Surface oxygen concentration O / C: X according to the following procedure
It was determined by line photoelectron spectroscopy. First, after cutting the carbon fiber bundle and fixing it to the sample holder with double-sided tape,
The photoelectron escape rate is set to 90 °, and the inside of the measurement chamber of the device is kept in a vacuum of 1 × 10 −6 Pa. As a correction of the peak due to charging during measurement, first, the binding energy value of the main peak of C 1S is set to 285.6 eV. The peak area of C 1S is 28
It was determined by drawing a linear baseline in the range of 2 to 296 eV, and the peak area of O 1S was determined by drawing a linear baseline in the range of 528 to 540 eV. The surface oxygen concentration O / C was represented by the atomic number ratio calculated by dividing the ratio of the O 1S peak area and the C 1S peak area by the sensitivity correction value specific to the apparatus. In this example, a composite type surface analyzer, ESCALAB MK- |, manufactured by VG was used, and the sensitivity correction value peculiar to the apparatus was 3.07.

【0016】開繊性:直径3cmの梨地ロールを回転し
ないよう固定し、炭素繊維トウを走行速度1.3m/
分、トウ1本当たり2±0.2kgfの張力下にロール
の半周に当接させてロール上を走行させ、ロール上での
トウ幅を測定し、100点測定での平均値を算出した。
Opening property: A satin roll having a diameter of 3 cm is fixed so as not to rotate, and a carbon fiber tow is run at a speed of 1.3 m /
The tow width on the roll was measured by contacting a half circumference of the roll with a tension of 2 ± 0.2 kgf per tow, and the tow width on the roll was measured to calculate an average value at 100 points.

【0017】(実施例1)アクリロニトリル/メタクリ
ル酸共重合体をジメチルホルムアルデヒドの溶解し、湿
式紡糸して単糸繊度1.0デニール、フィラメント数1
2,000の炭素繊維前駆体を得た。この前駆体を耐炎
化処理後、炭素化炉最高温度1,800℃で炭素化して
炭素繊維を得た。この炭素繊維はストランド強度が55
0kg/mm2、表面酸素濃度O/Cが0.05であっ
た。この炭素繊維を陽極とし、pH7.5、温度25℃
の重炭酸アンモニウム5wt%水溶液中で炭素繊維1g
当たり40クーロンの電気量で通電して電解酸化処理し
た。この電解酸化処理した炭素繊維は表面酸素濃度O/
Cが0.15であった。
Example 1 Acrylonitrile / methacrylic acid copolymer was dissolved in dimethylformaldehyde and wet-spun to obtain a single yarn fineness of 1.0 denier and a filament number of 1.
2,000 carbon fiber precursors were obtained. After this flame-retardant treatment, the precursor was carbonized at a carbonization furnace maximum temperature of 1,800 ° C. to obtain carbon fibers. This carbon fiber has a strand strength of 55.
The surface oxygen concentration O / C was 0 kg / mm 2 and 0.05. Using this carbon fiber as an anode, pH 7.5, temperature 25 ° C
1 g of carbon fiber in a 5 wt% aqueous solution of ammonium bicarbonate
The electrolytic oxidation treatment was performed by energizing with an electric quantity of 40 coulomb per unit. This electrolytic oxidation-treated carbon fiber has a surface oxygen concentration of O /
C was 0.15.

【0018】この電解酸化処理した炭素繊維を450℃
の空気雰囲気の炉を30秒滞在させるよう通過させた
後、エポキシ系サイジング剤を炭素繊維に対し0.4w
t%付与した。得られた炭素繊維は、ストランド強度が
545kg/mm2、FS⊥が10kgf/mm2であっ
た。またその開繊性は8.0mmであった。
The electrolytically oxidized carbon fiber was heated at 450 ° C.
After passing through the furnace in the air atmosphere for 30 seconds, the epoxy sizing agent is added to the carbon fiber in an amount of 0.4 w.
t% was given. The obtained carbon fiber had a strand strength of 545 kg / mm 2 and an FS⊥ of 10 kgf / mm 2 . In addition, the spreadability was 8.0 mm.

【0019】(比較例1)実施例1において電解酸化処
理しない以外は、実施例1と同様にして炭素繊維を処理
した。得られた炭素繊維は、ストランド強度が540k
g/mm2、FS⊥が6.5kgf/mm2であった。ま
たその開繊性は7.5mmであった。
(Comparative Example 1) A carbon fiber was treated in the same manner as in Example 1 except that the electrolytic oxidation treatment was not carried out. The carbon fiber obtained has a strand strength of 540 k.
g / mm 2 and FS⊥ were 6.5 kgf / mm 2 . Further, its openability was 7.5 mm.

【0020】(比較例2)実施例1において熱処理温度
の450℃を340℃に代えた以外は、実施例1と同様
にして炭素繊維を処理した。得られた炭素繊維は、スト
ランド強度が545kg/mm2、FS⊥が9.2kg
f/mm2であった。またその開繊性は6.0mmであ
った。
Comparative Example 2 Carbon fiber was treated in the same manner as in Example 1 except that the heat treatment temperature of 450 ° C. was changed to 340 ° C. The obtained carbon fiber has a strand strength of 545 kg / mm 2 and an FS⊥ of 9.2 kg.
f / mm 2 . In addition, the spreadability was 6.0 mm.

【0021】(実施例2)実施例1において熱処理温度
の450℃を680℃に代えた以外は、実施例1と同様
にして炭素繊維を処理した。得られた炭素繊維は、スト
ランド強度が510kg/mm2、FS⊥が9.8kg
f/mm2であった。またその開繊性は8.5mmであ
った。
Example 2 A carbon fiber was treated in the same manner as in Example 1 except that the heat treatment temperature of 450 ° C. was changed to 680 ° C. The obtained carbon fiber has a strand strength of 510 kg / mm 2 and an FS⊥ of 9.8 kg.
f / mm 2 . Further, the openability was 8.5 mm.

【0022】(比較例3)実施例1において熱処理温度
の450℃を750℃に代えた以外は、実施例1と同様
にして炭素繊維を処理した。得られた炭素繊維は、スト
ランド強度が420kg/mm2、FS⊥が7.5kg
f/mm2であった。またその開繊性は7.5mmであ
り、固定ロール上で毛羽立ちが観察された。
Comparative Example 3 A carbon fiber was treated in the same manner as in Example 1 except that the heat treatment temperature of 450 ° C. was changed to 750 ° C. The obtained carbon fiber has a strand strength of 420 kg / mm 2 and an FS⊥ of 7.5 kg.
f / mm 2 . In addition, its openability was 7.5 mm, and fluffing was observed on the fixed roll.

【0023】(比較例4)実施例1において、電解酸化
処理後、熱処理に代えてジメチルホルムアルデヒド30
wt%水溶液中で洗浄処理した以外は、実施例1と同様
にして炭素繊維を得た。得られた炭素繊維は、ストラン
ド強度が553kg/mm2、FS⊥が9.4kgf/
mm2であった。またその開繊性は7.0mmであっ
た。
Comparative Example 4 In Example 1, after electrolytic oxidation treatment, dimethylformaldehyde 30 was used instead of heat treatment.
A carbon fiber was obtained in the same manner as in Example 1 except that the washing treatment was performed in a wt% aqueous solution. The carbon fiber obtained had a strand strength of 553 kg / mm 2 , and an FS⊥ of 9.4 kgf /
It was mm 2 . Further, its openability was 7.0 mm.

【0024】(比較例5)実施例1において、電解酸化
処理後、熱処理に代えて周波数27kHzの超音波洗浄
を30秒施した以外は、実施例1と同様にして炭素繊維
を得た。得られた炭素繊維は、ストランド強度が515
kg/mm2、FS⊥が9.9kgf/mm2であった。
またその開繊性は8.0mmであり、固定ロール上で毛
羽立ちが観察された。
(Comparative Example 5) A carbon fiber was obtained in the same manner as in Example 1 except that after the electrolytic oxidation treatment, ultrasonic treatment was carried out for 30 seconds at a frequency of 27 kHz instead of the heat treatment. The obtained carbon fiber has a strand strength of 515.
kg / mm 2 and FS⊥ were 9.9 kgf / mm 2 .
Further, its openability was 8.0 mm, and fluffing was observed on the fixed roll.

【0025】[0025]

【発明の効果】本発明によれば、炭素繊維の表面酸化処
理によって生じた黒鉛酸化物を、炭素繊維を毛羽立たせ
ることなく、安全に除去することができ、炭素繊維に対
し、マトリックス樹脂との優れた接着性を付与すること
できるとともに、プリプレグ作製時の改善された開繊性
を付与することができる。
According to the present invention, the graphite oxide produced by the surface oxidation treatment of carbon fibers can be safely removed without causing the carbon fibers to be fluffed, and the carbon fibers can be removed from the matrix resin. Not only can excellent adhesiveness be imparted, but also improved openability at the time of making a prepreg can be imparted.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 今井 義隆 広島県大竹市御幸町20番1号 三菱レイヨ ン株式会社大竹事業所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Yoshitaka Imai 20-1 Miyukicho, Otake City, Hiroshima Prefecture Mitsubishi Rayon Co., Ltd. Otake Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 X線光電子分光法で測定した表面酸素濃
度O/Cが0.1以上の炭素繊維を360〜700℃の
温度に保たれた酸素含有雰囲気中で0.1〜600秒熱
処理することを特徴とする炭素繊維の表面処理方法。
1. Heat treatment of carbon fiber having a surface oxygen concentration O / C of 0.1 or more measured by X-ray photoelectron spectroscopy in an oxygen-containing atmosphere kept at a temperature of 360 to 700 ° C. for 0.1 to 600 seconds. A method for treating a surface of carbon fiber, comprising:
【請求項2】 X線光電子分光法で測定した表面酸素濃
度O/Cが0.1以上の炭素繊維が、電解酸化処理によ
って得た炭素繊維である請求項1記載の炭素繊維の表面
処理方法。
2. The surface treatment method for a carbon fiber according to claim 1, wherein the carbon fiber having a surface oxygen concentration O / C of 0.1 or more measured by X-ray photoelectron spectroscopy is a carbon fiber obtained by electrolytic oxidation treatment. .
JP20188195A 1995-07-17 1995-07-17 Surface treatment of carbon fiber Pending JPH0931841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20188195A JPH0931841A (en) 1995-07-17 1995-07-17 Surface treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20188195A JPH0931841A (en) 1995-07-17 1995-07-17 Surface treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPH0931841A true JPH0931841A (en) 1997-02-04

Family

ID=16448407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20188195A Pending JPH0931841A (en) 1995-07-17 1995-07-17 Surface treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPH0931841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083672A (en) * 2017-05-22 2017-08-22 苏州凯邦生物技术有限公司 It is a kind of to be used for the biology enzyme refining agent and its application method of graphite and its composite fibre
CN108486692A (en) * 2018-04-16 2018-09-04 中国科学院宁波材料技术与工程研究所 A kind of processing method and system of high-strength high-modules carbon fibre

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107083672A (en) * 2017-05-22 2017-08-22 苏州凯邦生物技术有限公司 It is a kind of to be used for the biology enzyme refining agent and its application method of graphite and its composite fibre
CN108486692A (en) * 2018-04-16 2018-09-04 中国科学院宁波材料技术与工程研究所 A kind of processing method and system of high-strength high-modules carbon fibre
CN108486692B (en) * 2018-04-16 2024-01-02 中国科学院宁波材料技术与工程研究所 High-strength high-modulus carbon fiber processing method and system

Similar Documents

Publication Publication Date Title
JP3003513B2 (en) Carbon fiber and method for producing the same
US4284615A (en) Process for the production of carbon fibers
US4073869A (en) Internal chemical modification of carbon fibers to yield a product of reduced electrical conductivity
JP3003521B2 (en) Carbon fiber and method for producing the same
KR950002820B1 (en) Surface treatment process for carbon fibers
JPH0931841A (en) Surface treatment of carbon fiber
JPS62276075A (en) Carbon fiber and its production
Mathur et al. Bimodification of polyacrylonitrile (PAN) fibers
JP4936588B2 (en) Carbon fiber for metal oxide coating and method for producing the same
JP2004003043A (en) Flameproof fiber material, carbon fiber material, graphite fiber material and method for producing the same
JPH1193078A (en) Carbon fiber and its production
KR910003351B1 (en) Method for after-treatment of carbon fiber
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JP2015137444A (en) Surface treatment method of carbon fiber bundle, method for producing carbon fiber bundle and carbon fiber
JPH1025627A (en) Acrylic carbon fiber
JPH10266066A (en) Carbon fiber tow and its production
JPS58144128A (en) Preparation of carbon fiber having high performance
JP2592293B2 (en) Surface treatment method for carbon fiber
JP5667380B2 (en) Flame-resistant fiber bundle, carbon fiber bundle, and production method thereof
US3488151A (en) Preparation of carbon fibers from polyvinyl alcohol base fibers
JP4071874B2 (en) Carbon fiber processing method
JPH03287860A (en) Production of carbon fiber
JP3303424B2 (en) Method for producing acrylic carbon fiber
JPS5842288B2 (en) High strength carbon fiber and its manufacturing method
JP3880101B2 (en) Carbon fiber and method for producing the same