JPH0680451A - 水硬性無機質成形品の製造方法 - Google Patents

水硬性無機質成形品の製造方法

Info

Publication number
JPH0680451A
JPH0680451A JP23009092A JP23009092A JPH0680451A JP H0680451 A JPH0680451 A JP H0680451A JP 23009092 A JP23009092 A JP 23009092A JP 23009092 A JP23009092 A JP 23009092A JP H0680451 A JPH0680451 A JP H0680451A
Authority
JP
Japan
Prior art keywords
curing
hydraulic inorganic
autoclave
hydraulic
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23009092A
Other languages
English (en)
Inventor
Toshihiro Chikugi
稔博 筑木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP23009092A priority Critical patent/JPH0680451A/ja
Publication of JPH0680451A publication Critical patent/JPH0680451A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/18Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing mixtures of the silica-lime type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0004Compounds chosen for the nature of their cations
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0053Water-soluble polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】 【目的】オートクレーブ養生条件下においても補強用繊
維としてのアクリル系繊維の有する補強効果を損なうこ
となく、高強度でかつ寸法安定性に優れた水硬性無機質
成形品を得る。 【構成】アクリル系繊維と石灰質、珪酸質成分を混練し
て配合物を得、ついで成形し、ついでオートクレーブ養
生して水硬性無機質成形品を得るに当り、鉄、マグネシ
ウム、すず、鉛または3A族金属元素の酸化物、ハロゲ
ン化物、硫酸塩または硝酸塩が熱水溶解性高分子中に含
有されている複合体化合物を添加し、該複合体化合物の
存在下で前記混練をする。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、高強度でかつ寸法安定
性に優れ建築用部材等として最適な水硬性無機質成形品
の製造方法に関する。
【0002】
【従来の技術】従来、建築用無機質成形品、例えば、ア
スベストセメント板、珪酸カルシウム板、軽量気泡コン
クリート(ALC)等のように石灰質と珪酸質などから
なる水硬性無機物質が高温のオートクレーブ中にて養生
されることにより、トバモライトと呼ばれる高結晶性水
和物が形成され、このような水和物を含有する水硬性無
機物質からなる屋根材、床材、外壁及び間仕切り材など
は高強度で優れた断熱性と熱的安定性が付与され、加え
て乾燥収縮を少なくしその化学的抵抗性を大きくするこ
とができると言われている。従って、このような高温の
水蒸気中での養生を必須とする上述の高性能な水硬性無
機質成形品の補強用繊維としては、高温耐アルカリ性に
優れるアスベストや鉄筋等が使用されてきた。
【0003】しかし、アスベストは天然素材であるため
価格の変動が大きく、さらに近年、アスベストの粉塵が
健康および衛生上有害であることが明白になってきたた
め、その使用が忌避ないし制限されようとしている。
【0004】そこで、有機合成繊維を補強繊維として使
用しアスベストを代替すべく検討が重ねられてきた。し
かしながら、単純にアスベストを置き換えることは水硬
性無機質成形体の製造において成形体をオートクレーブ
養生する際に、有機合成繊維の著しい劣化を発生し、ゆ
えに得られる成形体の強度は著しく低く実用には供し得
ないものがあった。
【0005】その劣化の例としては、熱による配向の緩
和(典型的な例では融解)あるいは熱分解、そして熱水
による配向の緩和(典型的な例では膨潤、溶解、可塑
化)を挙げることができる。このような物理的な作用に
よる劣化を起こす繊維は基本的に高温度、例えば180
℃でのオートクレーブ養生において補強繊維として供す
ることができないことは明らかである。たとえば、前者
の例ではポリプロピレンなどのポリオレフィン系繊維、
後者の例ではポリビニルアルコール系繊維をあげること
ができる。
【0006】一方、アクリル系繊維は、乾燥下180℃
程度の温度における物理的性質には問題がなく、また1
80℃程度の高圧熱水中での強度低下も軽微ではある
が、高温のアルカリ水雰囲気におかれれば化学的作用で
ある加水分解によって膨潤、分解してしまう。また、そ
の結果アンモニアなどの好ましくない分解物を与える。
そこで、耐アルカリ性に優れるアクリル系繊維を使用す
る試み、あるいはアクリル系繊維にダメージを与えぬよ
う養生法を工夫する試みがなされている。例えば、特開
昭61−6159号公報には珪酸質と石灰質を主原料と
する水硬性物質とアクリル系繊維からなるスラリー状混
合物を抄造法で成形し高温の水蒸気中で養生する方法、
特開昭62−282144号公報には極限粘度2.5以
上の高強度高弾性率繊維を用い110から160℃の温
度で水蒸気養生する方法、特開昭63−282144号
公報にはアクリルアミド系モノマを共重合した高強度高
弾性率繊維を用い110℃以上の水蒸気中で養生する方
法、特開平2−129053号公報には重量平均分子量
40万以上の高強度アクリル系繊維を用い180℃で養
生したセメント製品などが開示されている。
【0007】ところが、これら提案された方法において
もアクリル系繊維は高温の水蒸気雰囲気下でのオートク
レーブ養生では加水分解を避け得ず、充分に補強効果が
得られないという問題があった。さらに、アクリル系繊
維の分解によって発生するアンモニアが成形板中に残留
することがあり、このため商品価値が低下する問題を内
在していた。
【0008】また、近年高強度高弾性率の水硬性物質を
得る目的で石灰質と珪酸質を混合し押出成形したのちオ
ートクレーブ養生を行なう方法が提案されている。しか
し、押出成形においてはスラリーの流動性を確保する観
点から混練り時に添加する水が少なく、例えば抄造法の
ように多量の水で易溶性のアルカリ成分を除去するよう
なことができないので成形板中のアルカリ成分は高濃度
になり、ますます補強繊維は劣化を受けやすい環境下に
おかれるという問題があった。
【0009】
【発明が解決しようとする課題】本発明の目的は、上述
のように、アクリル系繊維がオートクレーブ養生下で充
分な効果を発現し得ないという問題および製品中のアン
モニア臭の問題を解決し高強度で寸法安定性に優れた水
硬性無機質成形品を得るための方法を提供するにある。
【0010】
【課題を解決するための手段】かかる目的は、アクリル
系繊維と石灰質、珪酸質成分を混練して配合物を得、次
いで成形し、次いでオートクレーブ養生して水硬性無機
質成形品を得るに当り、鉄、マグネシウム、すず、鉛ま
たは3A族金属元素の酸化物、ハロゲン化物、硫酸塩ま
たは硝酸塩が熱水溶解性高分子中に含有されている複合
体化合物を添加し、該複合体化合物の存在下で前記混練
をすることを特徴とする水硬性無機質成形品の製造方法
とすることにより達成することができる。
【0011】
【作用】以下、本発明を詳細に説明する。
【0012】本発明でいうオートクレーブ養生条件とい
うのは前述した好ましいトバモライト結晶を得るために
用いられる養生方法であり、一般的には110℃から1
90℃までの高温度の水蒸気雰囲気で養生を行なう方法
である。この養生温度は任意に設定できるが、養生温度
が高ければ高いほど速やかに水硬反応が完結するので経
済的観点からみて好ましく、また、良質の成形品が得ら
れる。このため160℃以上の温度で養生を行なうこと
が望ましい。
【0013】本発明に用いられる水硬性物質とは、水和
によって硬化する無機物質をいい、例えば石灰質と硅酸
質の水硬反応が挙げられる。ここで石灰質成分として
は、ポルトランドセメントなどの単味セメント及び高炉
セメントなど混合セメントなどがあげられ、珪酸質成分
としては珪砂、珪石紛、珪ソウ土、フライアッシュ、高
炉スラグ、シリカヒューム等があげられる。珪酸質成分
は粒径がなるだけ小さい方が水硬反応性が向上し、よく
石灰質成分と反応するので用いるオートクレーブ養生条
件下において酸性成分を放出するような成分の使用を少
なくでき経済的な点で望ましく、比表面積(ブレーン
値)で4000cm2 /g以上、更に好ましくは100
00cm2 /g以上であることが望ましい。
【0014】また、本発明に用いられるオートクレーブ
養生条件下において酸性成分を放出する化合物は、オー
トクレーブ養生の進行即ち水硬性物質の水和反応の進行
に伴い成形板中のpHの急激な上昇(特にオートクレー
ブ反応初期においては水硬反応の速度が遅く、また硅酸
質あるいは石灰質中に不純物として存在する例えば水酸
化ナトリウム等の易溶性のアルカリ成分が一気に成形板
含有水中に溶出に伴う現象)にたいしアクリル系繊維の
加水分解反応を抑制できるpH値に緩衝することができ
るような成分であり、混練時には中性物質として振舞い
オートクレーブ養生という熱的エネルギーとアルカリ水
の作用によって酸性成分を発生させることができるもの
である。混練り時のときから強い酸性を示す成分を用い
ることは、水硬反応それ自体を阻害し、混練り自体をも
困難にすることになり結果として高性能な水硬性無機成
形品を得ることはできない。
【0015】オートクレーブ養生条件下で酸性成分を放
出する無機系化合物としては、例えば、鉱物系としてア
ルミ、ホウ素などの3A族金属元素、鉛、スズ、鉄、マ
グネシウム等の酸化物やハロゲン化物、硫酸塩、硝酸塩
等を用いることができるがハロゲン化物はいわゆる塩害
の原因ともなり、鉄製部材を腐食させる可能性もあるの
で、酸化物を用いることが好ましい。またアルカリ成分
との反応性の点から、マグネシウム、3A族元素の酸化
物を用いることがさらに望ましい。しかし、これらの化
合物は一般に石灰質と硅酸質との水硬反応を促進する効
果を有するので、混練り条件によっては配合物全体の粘
度が著しく上昇し成形性を損なうことがある。
【0016】そのため、熱水溶解性の化合物で保護する
ことが必要になる。このような保護作用を持つ化合物に
は有機物、無機物等が用いられ得、特に限定はされない
が、例えば加水分解反応等の化学的過程を経て熱水溶解
性を獲得したり、もともと熱水に対し溶解性を持つ化合
物を用いたりできる。そのような化合物としては、ポリ
ビニルアルコール系誘導体、セルロース系誘導体、糖類
誘導体、ポリアクリル酸系誘導体、ポリアクリルアミド
系化合物、ポリエステル系化合物等を例示できる。
【0017】上述のオートクレーブ条件下において酸性
成分を放出する化合物は単独でも用いることができる
し、また二種以上複合して用いることができることはい
うまでもない。
【0018】このようなオートクレーブ養生条件下にお
いて酸性成分を放出する化合物と熱水溶解性を有する化
合物の複合体を用いる量は、その作用を充分発揮できる
量であれば良いのであり複合体中の有機化合物、無機化
合物の構成比率にもよるが有効成分として、通常0.1
から10wt%の範囲内で用いることが望ましい。0.
1%よりも少ないと効果が十分に得られないし、10w
t%より多くてもさらなる性能の向上は望めない上有機
化合物の使用量によっては製品の耐火性を損なうことに
もなりかねない。
【0019】次に、本発明に用いられるアクリル系繊維
は、特に限定されるものではないが、高温のアルカリに
耐えかつ補強効果を期待することのできる方が望まし
く、そのようなアクリル系繊維としては高重合度のアク
リロニトリル(以下、「AN」と略す)系ポリマを湿
式、乾式および乾湿式紡糸して得られる高強度高弾性率
の繊維であることが望ましい。このうち、特に重合度が
極限粘度で2.5〜5.0の高重合度AN系ポリマを乾
湿式紡糸して得られ、引張強度が少なくとも10g/
d、弾性率が少なくとも180g/dおよび結節強度が
少なくとも1.9g/dであり、かつ表面が平滑なアク
リル系繊維が望ましく、紡糸方法としては乾湿式法をと
ると良好な結果を得やすい。
【0020】上記のような乾湿式紡糸して得られた高強
度で、かつ表面が緻密で平滑なアクリル系繊維はセメン
トなど水硬性物質に対する補強効果が高く、かつ該水硬
性物質との接着力も高く、アルカリ水溶液の浸透抑制に
も有利であるので曲げ強度および曲げ弾性率の高い水硬
性無機成形品が得られる。
【0021】ここで、アクリル系繊維の製造に用いられ
るAN系ポリマとしては、AN単独または少なくとも9
0モル%のANと10モル%以下の該ANに対して共重
合性を有するモノマ、例えばアクリル酸、メタクリル
酸、イタコン酸などのカルボン酸及びそれらの低級アル
キルエステル類、ヒドロキシメチルアクリレート、ヒド
ロキシエチルアクリレート、ヒドロキシメチルメタアク
リレートなどのカルボン酸の水酸基を含有するヒドロキ
シアルキルアクリレート、アクリルアミド、メタクリル
アミド、α−クロルアクリロニトリル、ヒドロキシエチ
ルアクリル酸、アリルスルホン酸、メタクリルスルホン
酸などの共重合モノマを例示することができるが、この
うちアクリルアミド系モノマが高強度高弾性率繊維を得
る上で特に望ましい。
【0022】これらのAN系ポリマは、ジメチルスルホ
キシド(DMSO)、ジメチルホルムアミド(DM
F)、ジメチルアセトアミド(DMAc)などの有機溶
剤、塩化カルシウム、塩化亜鉛、ロダンソーダなどの無
機塩濃厚水溶液、硝酸などの無機系溶剤に溶解して、溶
液粘度が2000ポイズ以上、好ましくは3000〜1
0000ポイズ、ポリマ濃度が5〜20%の紡糸原液を
作成する。
【0023】かくして得られた前記高重合度AN系ポリ
マの溶剤溶液(紡糸原液)から、できる限り高強度高弾
性率で、内外構造差の少ない緻密な繊維を製造するため
には、この高重合度AN系ポリマの紡糸原液を紡糸口金
を通していったん空気などの不活性雰囲気中に吐出した
後、吐出された該紡糸原液を凝固浴中に導いて凝固を完
結させる、いわゆる乾湿式紡糸法を採用し、高度に延伸
することが望ましい。この乾湿式紡糸の具体的条件とし
ては、紡糸原液を紡糸口金面と凝固浴液面との距離が1
〜20mm、好ましくは3〜10mmの範囲内に設定さ
れた該紡糸口金面と凝固浴液面とで形成される微小空間
に吐出した後、凝固浴へ導いて凝固させ、次いで得られ
た繊維糸条を常法により、水洗、脱溶媒、1次延伸、乾
燥・緻密化、2次延伸、熱処理などの後処理工程を経由
せしめて延伸繊維糸条とする。この乾湿式紡糸によって
得られる繊維糸条は、延伸性が極めて優れているが、好
ましくは2次延伸方法として、150〜270℃の乾熱
下に少なくとも1.1倍、好ましくは1.5倍以上延伸
し、全有効延伸倍率が少なくとも10倍、好ましくは1
2倍以上になるように延伸し、その繊度を0.5〜7デ
ニール(d)、好ましくは1〜5dの範囲内とするのが
よい。
【0024】アクリル系繊維は、好ましくは長さ0.5
〜15mmに切断され、配合組成物重量あたり0.1〜
5重量%、好ましくは0.5〜3重量%の範囲内で水硬
性物質と混合される。
【0025】また、無機質成形品に多孔性を与え、軽量
化するためにパーライト、シラスバルーン、ガラスバル
ーン等を適宜混合することができる。更に、水硬性物質
の流動性を向上させるため木材パルプ、アクリル系繊維
や芳香族ポリアミド繊維のフィブリル化物、無機繊維な
ど、あるいは、その他の充填剤を添加、配合することが
できる。
【0026】上記のアクリル系繊維、水硬性物質、オー
トクレーブ条件下において酸性成分を放出する化合物お
よび各種の充填剤からなる配合物は水と共に混合された
りあるいは水は混合後付与されたりするが、混合はアク
リル系繊維が充分に分散し、かつ配合物が充分混練され
る方法であれば特に制限はなく、一般的にはオムニミキ
サー、ニーダー、アイリッヒ混合器等が用いられる。ま
た、成形方法には公知の方法が利用可能である。例えば
スクリュー押出機等を用いて成形されたりするが、この
とき、減圧下で混練押出を行なうことにより、さらに曲
げ強度の高い水硬性無機質成形体を得ることができる。
【0027】次に、成形物はオートクレーブ中に投入さ
れ、例えば、180℃以上の水蒸気雰囲気下で養生され
る。養生温度として100℃から180℃の温度範囲を
用いてももちろん問題はない。養生時間は上記の養生温
度によっても異なるが、通常3時間から15時間程度の
範囲で用いられる。
【0028】
【発明の効果】本発明にかかる水硬性無機成形品の製造
方法は、石灰質と珪酸質を主原料とする水硬性物質にお
いて補強繊維としてアクリル系繊維を、養生方法として
オートクレーブ養生を用いるときに配合物を混練時にオ
ートクレーブ条件下において酸性成分を放出する化合物
として、鉄、マグネシウム、すず、鉛または3A族金属
元素の酸化物、ハロゲン化物、硫酸塩または硝酸塩が熱
水溶解性高分子中に含有されている複合体化合物を含有
していることによってオートクレーブ養生中の補強繊維
の補強効果の損失を抑制ならしめ、得られる繊維強化水
硬性無機成形品は著しく曲げ強度が高く、耐食性、耐衝
撃性並びに寸法安定性にきわめて優れる。また、アクリ
ル系繊維が内在しているオートクレーブ養生中における
繊維の分解によって発生しうるアンモニア問題の可能性
を軽減できる。
【0029】従って、建築資材用途、土木資材用途など
多くの用途にその優れた性能を活用することができる。
【0030】
【実施例】以下、実施例により本発明の効果を具体的に
説明する。
【0031】オートクレーブ養生条件下において酸性成
分を放出するような成分として塩化マグネシウムを用
い、押し出し成形法に適用した例を示すが、この実施例
に本発明は限定されるものではない。
【0032】曲げ破壊:含水率が6±1重量%の成形品
を成形方向、すなわち、アクリル系繊維がより配向して
いる方向と平行に幅7mm、長さ200mmに切断し試
験片を作成する。得られた試験片をJIS−A1408
に準じ切断面に垂直に3点曲げ試験を行なう。このと
き、スパンは165mm、曲げ速度は1mm/分とす
る。そして、成形品の曲げ強度を測定する。
【0033】アンモニア臭:オートクレーブ養生後成形
品を室温下解放された空間に24時間おき、その後アン
モニア検知管(ガステック株式会社製)にて試験を行な
った。
【0034】実施例1、比較例1、2、3 アクリルアミド1重量%とAN99重量%をDMSO中
で溶液重合し、AN系重合体を作成した。得られた重合
体溶液を紡糸原液とし乾湿式紡糸した。凝固浴としては
15℃、55%DMSO水溶液を用いた。得られた未延
伸繊維糸条は熱水浴中で5倍に延伸した後、油剤を付与
し110℃で乾燥緻密化した。次いで、180℃の乾熱
チューブ中で最高延伸倍率の85%で二次延伸し、強度
12.1g/d、繊度約2デニールのアクリル系繊維を
得た。
【0035】また、オートクレーブ養生条件下において
酸性成分を放出するような無機成分として塩化マグネシ
ウムを用い、これを市販のポリ酢酸ビニルの酢酸エチル
溶液中に分散し溶媒を減圧留去して固化後冷却しながら
ミルにて微粉化し、塩化マグネシウム−ポリ酢酸ビニル
複合微粉体を得た。
【0036】次に、石灰質としてポルトランドセメン
ト、珪酸質として日本セメント株式会社製珪砂を用い、
これら水硬性物質100重量部に対しメチルセルローズ
1.5重量部とアクリル系繊維(表1中では補強材とし
て表記)、塩化マグネシウム−ポリ酢酸ビニル複合微粉
体(表1中では添加剤として表記)を配合しアイリッヒ
ミキサで混合した後、水を添加し混練した。ここで用い
たアクリル系繊維と塩化マグネシウム−ポリ酢酸ビニル
複合微粉体の配合量(有効成分としての量)は表1中に
示した通りである。得られた粘土状物を押出成形して厚
さ約6mmの成形板とした。得られた成形板を室温下湿
潤状態にして24時間、70℃スチーム中に4時間おい
た後180℃のオートクレーブ中で5.5時間水蒸気養
生を行なった。
【0037】得られた成形板を上記の方法で曲げ強度を
測定した。また、アンモニア臭の有無を調べた。その結
果を表1に示した。
【0038】 表 1 補強材 添加剤 曲げ強度 アンモニア臭 (wt%) (wt%) (Kg/cm2 ) 実施例1 1 1 278 殆ど検出されない 比較例1 1 0 * 強く検出される 比較例2 0 1 221 強く検出される 比較例3 0 0 219 強く検出される *)オートクレーブ養生中にアクリル系繊維の劣化によ
り成形板が崩壊し曲げ強度が測定できない。
【0039】上記のように曲げ強度として優れた特性の
成形板を得ることができた。また、アクリル系繊維の分
解によって発生するアンモニア臭は軽微であり、このこ
とからも本発明の有用性を実証することができた。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C04B 24/24 Z 28/18 40/02

Claims (2)

    【特許請求の範囲】
  1. 【請求項1】アクリル系繊維と石灰質、珪酸質成分を混
    練して配合物を得、次いで成形し、次いでオートクレー
    ブ養生して水硬性無機質成形品を得るに当り、鉄、マグ
    ネシウム、すず、鉛または3A族金属元素の酸化物、ハ
    ロゲン化物、硫酸塩または硝酸塩が熱水溶解性高分子中
    に含有されている複合体化合物を添加し、該複合体化合
    物の存在下で前記混練をすることを特徴とする水硬性無
    機質成形品の製造方法。
  2. 【請求項2】オートクレーブ養生を160℃以上の温度
    で行なうことを特徴とする請求項1記載の水硬性無機質
    成形品の製造方法。
JP23009092A 1992-08-28 1992-08-28 水硬性無機質成形品の製造方法 Pending JPH0680451A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23009092A JPH0680451A (ja) 1992-08-28 1992-08-28 水硬性無機質成形品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23009092A JPH0680451A (ja) 1992-08-28 1992-08-28 水硬性無機質成形品の製造方法

Publications (1)

Publication Number Publication Date
JPH0680451A true JPH0680451A (ja) 1994-03-22

Family

ID=16902394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23009092A Pending JPH0680451A (ja) 1992-08-28 1992-08-28 水硬性無機質成形品の製造方法

Country Status (1)

Country Link
JP (1) JPH0680451A (ja)

Similar Documents

Publication Publication Date Title
JP2633772B2 (ja) 繊維補強された成形物
KR960001424B1 (ko) 수경 조성물 및 고강도 복합재료
EP0271825A2 (en) Hydraulic cementitious compositions reinforced with fibers containing polymerized polyacrylonitrile
JP6607774B2 (ja) セメント補強用耐アルカリ性有機繊維
JP2001287980A (ja) 水硬性組成物および無機質成形物の製造方法
JP6302716B2 (ja) 水硬性成形体用補強繊維および同繊維を含む水硬性材料
JP3108431B2 (ja) 成形物
JPH0680451A (ja) 水硬性無機質成形品の製造方法
JP2585668B2 (ja) 補強繊維を含む中空板の低圧押出成形方法
JP5885973B2 (ja) 低収縮型耐爆裂性水硬性硬化体
JPH0692699A (ja) 水硬性無機質成形品の製造方法
JP3355588B2 (ja) セルロース繊維含有セメント組成物
JP4364343B2 (ja) 混練成形水硬性材料補強材及び混練成形体
JP3280636B2 (ja) 成形物の製造方法
JPH06115989A (ja) アクリル系繊維補強水硬性無機質成型品およびその製造方法
JP2565517B2 (ja) 繊維強化水硬性成形物
JPH04175252A (ja) アクリル系合成繊維及びその製造方法
JPH04300229A (ja) 水硬性無機質成形品およびその製造方法
JPH06115997A (ja) アクリル系繊維補強水硬性無機質成型品およびその製造方法
JP5008798B2 (ja) 繊維補強セメント成形体
JP4368489B2 (ja) オートクレーブ養生用水硬性組成物
JP3166180B2 (ja) 繊維補強水硬性成形品およびその製造方法
JPH0585800A (ja) 水硬性無機質成形品およびその製造方法
JP2001115330A (ja) ポリビニルアルコール系繊維及びその製造方法
JPH04254460A (ja) 水硬性無機質成形品およびその製造方法