JPH06244444A - Light confining structure and photodetector using structure thereof - Google Patents

Light confining structure and photodetector using structure thereof

Info

Publication number
JPH06244444A
JPH06244444A JP5029092A JP2909293A JPH06244444A JP H06244444 A JPH06244444 A JP H06244444A JP 5029092 A JP5029092 A JP 5029092A JP 2909293 A JP2909293 A JP 2909293A JP H06244444 A JPH06244444 A JP H06244444A
Authority
JP
Japan
Prior art keywords
light
substrate
refractive index
transition layer
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5029092A
Other languages
Japanese (ja)
Other versions
JP3526308B2 (en
Inventor
Tsuyoshi Uematsu
強志 上松
Mitsunori Ketsusako
光紀 蕨迫
Hiroyuki Otsuka
寛之 大塚
Yasushi Nagata
寧 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP02909293A priority Critical patent/JP3526308B2/en
Publication of JPH06244444A publication Critical patent/JPH06244444A/en
Application granted granted Critical
Publication of JP3526308B2 publication Critical patent/JP3526308B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Abstract

PURPOSE:To provide a light confining structure, which can decrease surface reflection and can perform the light confinement effectively. CONSTITUTION:A transition layer 2 having the recess parts and protruding parts is provided on the surface of the a substrate 3. The repeating width of the recess part and the protruding part is made to be the wavelength or less of main light 5, which is to be confined. It is preferable to provide recess parts and protruding parts 8 and 9 at the rear surface of the substrate 3. The refractive index of the transition layer 2 is changed so as to approach the refractive index of the substrate toward the side of the substrate from the reverse side of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光センサー、光電変換
装置等の受光装置や光励起レーザー等の光−光変換装置
等に用いる光閉込め構造及びそれを用いた受光素子に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light confining structure used in a light receiving device such as an optical sensor and a photoelectric conversion device, a light-to-light converting device such as a photoexcitation laser, and a light receiving element using the same.

【0002】[0002]

【従来の技術】光を基板に入射し、これを用いて光−光
変換、光−電気変換等を行なう場合、基板内に光を効果
的に取り込み、この光を基板外に逃すことなく、基板内
に閉じ込めることにより、上記の各変換の効率を高くす
ることができる。これを行なうためには、基板表面での
光の反射率の低減及び基板内に入射した光の閉じ込めが
重要である。
2. Description of the Related Art When light is incident on a substrate and is used for light-to-light conversion, light-to-electrical conversion, etc., the light is effectively taken into the substrate and the light is not leaked to the outside of the substrate. By confining it in the substrate, the efficiency of each of the above conversions can be increased. In order to do this, it is important to reduce the reflectance of light on the substrate surface and confine the light incident on the substrate.

【0003】従来、基板表面での入射光の反射率の低減
は、反射防止膜や数十μmの大きさの表面凹凸等を用い
て行なわれていた。また、エス アイ ディー 89
ダイジェスト 270頁(1989)(SID 89
DIGEST p270(1989))や特願平3−5
4371に述べられているように、微細なSiO2、M
gF2粒を用いた表面微細凹凸による反射防止膜を用い
ることが行なわれていた。
Conventionally, the reflectance of incident light on the surface of a substrate has been reduced by using an antireflection film or surface irregularities having a size of several tens of μm. In addition, S 89
Digest 270 pages (1989) (SID 89
DIGEST p270 (1989)) and Japanese Patent Application No. 3-5
4371, fine SiO 2 , M
It has been practiced to use an antireflection film having fine surface irregularities using gF 2 grains.

【0004】[0004]

【発明が解決しようとする課題】上記従来の反射防止膜
を用いる方法は、入射光の波長が広範囲に及んだり、光
の入射角が大きく変化する場合には充分に反射率を下げ
ることが出来ないという問題があった。また、数十μm
の大きさの表面凹凸を用いる方法は、光が基板に入射し
たときに屈折で光路が大きく曲げられるため、裏面に形
成された凹凸を用て光閉じ込めを行なうことは難しいと
いう問題があった。また、微細なSiO2粒等を用いた
表面微細凹凸による反射防止膜を用いた場合は、基板の
屈折率や表面微細凹凸形状について考慮していないた
め、反射率を非常に低くすることは困難であるという問
題があった。
The conventional method using the antireflection film described above can sufficiently reduce the reflectance when the wavelength of incident light extends over a wide range or the incident angle of light changes greatly. There was a problem that I could not do it. Also, several tens of μm
The method using the surface unevenness of the size has a problem that it is difficult to confine light by using the unevenness formed on the back surface because the light path is largely bent by refraction when light is incident on the substrate. Further, when an antireflection film having fine surface irregularities made of fine SiO 2 grains is used, it is difficult to make the reflectance extremely low because the refractive index of the substrate and the shape of the fine surface irregularities are not taken into consideration. There was a problem that was.

【0005】本発明の目的は、表面反射を低減し、光閉
じ込めを有効に行なうことができる光閉込め構造及びそ
れを用いた受光素子を提供することにある。
An object of the present invention is to provide a light confining structure capable of reducing surface reflection and effectively confining light, and a light receiving element using the same.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、本発明の光閉込め構造は、基板及び基板表面に設け
られた、凹凸を有する遷移層からなり、この凹凸の繰り
返し幅を光閉じ込めを行なう主な光の波長以下とするよ
うに構成する。
In order to achieve the above object, the light confining structure of the present invention comprises a substrate and a transition layer having irregularities provided on the surface of the substrate. The wavelength is set to be equal to or shorter than the main light wavelength for confinement.

【0007】この遷移層の屈折率は、基板側と逆の側か
ら基板側に向かって、基板の屈折率に近づくように変化
することが好ましい。このように屈折率が基板外部か
ら、基板方向に連続的に変化することにより、数層で形
成された干渉薄膜による反射防止膜に比べはるかに低い
反射率を、波長の広い範囲に渡って得ることが出来る。
It is preferable that the refractive index of the transition layer changes from the side opposite to the substrate side toward the substrate side so as to approach the refractive index of the substrate. By continuously changing the refractive index from the outside of the substrate toward the substrate in this manner, a much lower reflectance can be obtained over a wide range of wavelengths as compared with an antireflection film made of an interference thin film formed of several layers. You can

【0008】また、この遷移層は、基板側に配置された
凹凸を有する第1の材質の部分と、これに対応する逆向
きの凹凸を有し、基板と逆の側に配置された第2の材質
の部分とより構成し、第1の材質の屈折率を基板の屈折
率と同じか又は第2の材質の屈折率よりも基板の屈折率
に近くすることが好ましい。第1の材質の部分は、基板
そのものを用いて形成されたもの、例えば、基板表面に
凹凸を形成したものでもよく、基板表面に他の材質のも
のを付けたものでもよい。第2の材質の部分は、空気で
あってもよく、他の材質のもので基板表面の凹凸の間を
埋めた構造であってもよい。
Further, the transition layer has a portion of the first material having irregularities arranged on the substrate side and a corresponding irregularity of opposite direction, and the second layer disposed on the opposite side of the substrate. It is preferable that the refractive index of the first material is the same as the refractive index of the substrate or closer to the refractive index of the substrate than the refractive index of the second material. The portion of the first material may be formed using the substrate itself, for example, the surface of the substrate may be uneven, or the surface of the substrate may be made of another material. The second material portion may be air, or may have a structure in which the unevenness on the substrate surface is filled with another material.

【0009】この凹凸の形状は、第2の材質の部分の平
面上に占める面積が遷移層の表面から基板の方向に向か
って減少するように構成することが好ましい。凹凸の繰
り返し幅は、光閉じ込めを行なう主な光が可視光である
とき、1μm以下とすることが好ましい。
It is preferable that the shape of the unevenness is configured such that the area occupied by the second material portion on the plane decreases from the surface of the transition layer toward the substrate. The repeating width of the irregularities is preferably 1 μm or less when the main light for confining light is visible light.

【0010】また、本発明の光閉込め構造は、基板の裏
面に光閉じ込めを行なう主な光の波長より大きな繰返し
幅を持つ第2の凹凸を設けることが出来る。さらに、基
板の裏面に光反射層を設けることが出来る。
In the light confining structure of the present invention, the second concavity and convexity having a repetition width larger than the wavelength of the main light for confining light can be provided on the back surface of the substrate. Further, a light reflecting layer can be provided on the back surface of the substrate.

【0011】さらに本発明の受光素子は、上記の光閉込
め構造を用い、基板を第1導電型とするとき、第1導電
型と逆の導電型の第2導電型領域を基板に設け、望まし
くはさらに高濃度の第1導電型領域を基板に設け、これ
らと接続する電極を設けて構成される。
Further, the light receiving element of the present invention uses the above-mentioned light confining structure, and when the substrate is of the first conductivity type, the substrate is provided with a second conductivity type region having a conductivity type opposite to the first conductivity type. Desirably, the first conductivity type region of higher concentration is provided on the substrate, and an electrode connected to these regions is provided.

【0012】[0012]

【作用】図1〜6を用いて本発明の作用を説明する。図
1(a)、(b)は、基板表面近傍の部分斜視図及びそ
の断面図である。基板3に外部媒質1から光4が入射す
る場合、基板表面の凹凸の繰り返し幅7が光の波長より
小さいと、光学的には、遷移層2の屈折率が表面から基
板に向って連続的に変化した場合と同様に作用する。つ
まり、図のように第2の媒質5と第1の媒質6の割合が
基板に向って次第に変化する場合に、第2の媒質5の持
つ屈折率から第1の媒質6の持つ屈折率に、屈折率が直
線的に変化する膜と等価な遷移層2が形成される。
The operation of the present invention will be described with reference to FIGS. 1A and 1B are a partial perspective view and a cross-sectional view of the vicinity of the substrate surface. When the light 4 is incident on the substrate 3 from the external medium 1 and the repeating width 7 of the irregularities on the substrate surface is smaller than the wavelength of light, the refractive index of the transition layer 2 is optically continuous from the surface toward the substrate. Works the same as when changed to. That is, when the ratio between the second medium 5 and the first medium 6 gradually changes toward the substrate as shown in the figure, the refractive index of the second medium 5 is changed to the refractive index of the first medium 6. A transition layer 2 equivalent to a film whose refractive index changes linearly is formed.

【0013】屈折率の遷移層内での変化の様子は、第1
の媒質と第2の媒質の混ざり方で決定される。2種類の
媒質で構成される膜ではその実効的な屈折率は各々の媒
質の平均値で表される。図2(a)、(b)、(c)、
(d)、(e)、(f)に示すように、それぞれ第1の
媒質6が、矩形、三角溝、ピラミッド、半球、球、逆ピ
ラミッド等の形状を持つ場合には、第2の媒質5の屈折
率を1.0、第1の媒質6の屈折率を3.5とすると、
図3に示す様な実効的な屈折率を持つことになる。
The change of the refractive index in the transition layer is as follows.
It is determined by the mixing method of the medium and the second medium. In a film composed of two kinds of media, its effective refractive index is represented by the average value of each medium. 2 (a), (b), (c),
As shown in (d), (e), and (f), when the first medium 6 has a shape such as a rectangle, a triangular groove, a pyramid, a hemisphere, a sphere, or an inverted pyramid, the second medium is used. If the refractive index of 5 is 1.0 and the refractive index of the first medium 6 is 3.5,
It has an effective refractive index as shown in FIG.

【0014】また、ピラミッドと球の形状について外部
媒質1の屈折率1.0、第2の媒質5の屈折率を1.
0、第1の媒質6の屈折率を3.5、基板3の屈折率を
3.5とした場合の反射率の計算値を図4に示す。図4
(a)、(b)はピラミッド形状のときの反射率を、図
4(c)、(d)は球形状のときの反射率をそれぞれリ
ニアースケールとログスケールで示したものである。ピ
ラミッド形状では遷移層膜厚が40nmではやや高い反
射率を示すが、これより厚い膜厚では非常に低い反射率
を示している。球形では、いずれの膜厚においても平均
で10%を越える反射率になっており、ピラミッド形状
に比べると若干高い反射率を示している。
Regarding the shapes of the pyramid and the sphere, the refractive index of the external medium 1 is 1.0 and the refractive index of the second medium 5 is 1.
FIG. 4 shows calculated values of reflectance when the refractive index of the first medium 6 is 0, the refractive index of the first medium 6 is 3.5, and the refractive index of the substrate 3 is 3.5. Figure 4
4A and 4B show the reflectance in the pyramid shape, and FIGS. 4C and 4D show the reflectance in the spherical shape on a linear scale and a log scale, respectively. In the pyramid shape, when the thickness of the transition layer is 40 nm, the reflectance is slightly high, but when the thickness is thicker than this, the reflectance is very low. The spherical shape has an average reflectance of more than 10% at any film thickness, which is slightly higher than that of the pyramidal shape.

【0015】図5に、ピラミッド形状での吸収光量と遷
移層膜厚との関係を示す。外部媒質1の屈折率1.0、
第1の媒質6の屈折率を3.5、基板3の屈折率を3.
5とし第2の媒質5の屈折率が1.0、1.5の場合に
ついて計算した結果を示す。いずれの場合も、遷移層の
膜厚が数百nm前後で吸収光量が大きくなりこれより厚
い膜厚ではほぼ100%吸収する。
FIG. 5 shows the relationship between the amount of absorbed light and the thickness of the transition layer in the pyramid shape. The refractive index of the external medium 1 is 1.0,
The first medium 6 has a refractive index of 3.5, and the substrate 3 has a refractive index of 3.
5, the calculation results are shown for the cases where the refractive index of the second medium 5 is 1.0 and 1.5. In either case, the amount of absorbed light becomes large when the film thickness of the transition layer is around several hundred nm, and almost 100% is absorbed when the film thickness is thicker than this.

【0016】図6に、各形状での吸収光量と遷移膜厚と
の関係を示す。外部媒質1の屈折率1.0、第2の媒質
5の屈折率を1.0、第1の媒質6の屈折率を3.5、
基板3の屈折率を3.5とした場合について計算した結
果を示す。各膜厚での光吸収量はピラミッド形状で一番
高く、逆ピラミッドまではそれぞれ高い吸収量を示して
いる。しかし、矩形と球形では遷移層膜厚を厚くしても
あまり光吸収量は大きくならない。この結果は、第1の
媒質の形状が、図3で右上がりである様な形状をしてい
るものが光吸収量が大きい事を示している。また、特に
図3で右上がりで下に凸の曲線を持つピラミッド形状が
よい結果を示す事から、本遷移層の第1の媒質6の形状
はピラミッド形状、多角錐、円錐や下に凸の線分を回転
して得られる形状の様に、遷移層2表面付近での第2の
媒質5の基板方向への面積の減少の割合が遷移層2裏面
付近でのその減少の割合より大きい形状が好ましいこと
が分かった。
FIG. 6 shows the relationship between the amount of absorbed light and the transition film thickness in each shape. The refractive index of the external medium 1 is 1.0, the refractive index of the second medium 5 is 1.0, the refractive index of the first medium 6 is 3.5,
The result of calculation when the refractive index of the substrate 3 is 3.5 is shown. The light absorption amount at each film thickness is the highest in the pyramid shape, and the absorption amount is high up to the inverted pyramid. However, in the rectangular and spherical shapes, the light absorption amount does not increase so much even if the transition layer film thickness is increased. This result shows that the amount of light absorption is large when the shape of the first medium is such that the shape is upward to the right in FIG. Further, in particular, in FIG. 3, a pyramid shape having an upwardly-sloping and downwardly-convex curve shows a good result. A shape in which the rate of decrease in the area of the second medium 5 in the substrate direction in the vicinity of the surface of the transition layer 2 is larger than the rate of decrease in the vicinity of the back surface of the transition layer 2, such as the shape obtained by rotating the line segment. Was found to be preferable.

【0017】具体的な基板形状を、図7を用いて説明す
る。図7(a)に示すように、基板上に繰り返し幅7が
小さい凹凸から成る遷移層2を設ける。これにより、遷
移層2の屈折率は上から下に向って外気の屈折率から基
板3の屈折率まで連続的に変化する。この遷移層により
基板3に入射する光4は、基板表面でほとんど反射する
ことなく基板内へ入射する。また、繰り返し幅7が入射
光の波長より小さいため、入射した光は基板表面の凹凸
により形成される斜面で斜めに反射されることなく入射
した角度で基板裏面まで直進する。
A specific substrate shape will be described with reference to FIG. As shown in FIG. 7A, a transition layer 2 having irregularities with a small repeating width 7 is provided on the substrate. As a result, the refractive index of the transition layer 2 continuously changes from the refractive index of the outside air to the refractive index of the substrate 3 from top to bottom. The light 4 incident on the substrate 3 due to this transition layer is incident on the substrate with almost no reflection on the substrate surface. Further, since the repeating width 7 is smaller than the wavelength of the incident light, the incident light goes straight to the back surface of the substrate at the incident angle without being obliquely reflected by the slope formed by the unevenness of the substrate surface.

【0018】この基板に、図7(b)のような周期的
で、入射光の波長より大きい繰り返し幅を持つ凹凸8を
形成することにより、裏面で反射された光が斜めに基板
内を進み、基板表面へ達する。このときの入射角度が臨
界角より大きい場合、光は全反射されて再び基板内を進
む。このようにして、一度入射した光は基板3に効率よ
く閉じ込められる。また、図7(c)のように裏面に入
射光の波長より大きい繰り返し幅を持つ不規則な凹凸9
を形成することにより、裏面で光が散乱反射され、大部
分の光が基板表面に達したときに臨界角より大きい入射
角を持つため、基板内へ再び反射されて、入射した光が
基板3に効率よく閉じ込められる。これらの構成では、
裏面に反射鏡を形成することで、より確実に裏面で光を
反射することができる。
By forming the unevenness 8 having a periodical repeating width larger than the wavelength of the incident light as shown in FIG. 7B on this substrate, the light reflected on the back surface advances obliquely in the substrate. , Reach the substrate surface. If the incident angle at this time is larger than the critical angle, the light is totally reflected and travels inside the substrate again. In this way, the light that has once entered is efficiently confined in the substrate 3. Further, as shown in FIG. 7C, irregular irregularities 9 having a repeating width larger than the wavelength of incident light on the back surface.
By forming the film, light is scattered and reflected on the back surface, and when most of the light reaches the surface of the substrate, it has an incident angle larger than the critical angle. Efficiently trapped in. In these configurations,
By forming the reflecting mirror on the back surface, it is possible to more reliably reflect the light on the back surface.

【0019】[0019]

【実施例】〈実施例1〉図8を用いて本発明の一実施例
を説明する。本実施例では、表面が(100)面シリコ
ン基板3の上に、遷移層を構成する、規則的な幅、大き
さのピラミッド11を形成した。このピラミッドは、裏
面をマスクして、表面だけをアルカリ性のエッチング液
で加工することにより容易に形成することができる。ま
た、アンモニヤやヒドラジンを主成分とする加熱した水
溶液をエッチング液として用いて、加工を行なうことに
より1μm以下の微小なピラミッド11を容易に形成す
ることが出来る。
[Embodiment 1] An embodiment of the present invention will be described with reference to FIG. In this example, the pyramid 11 having a regular width and size, which constitutes a transition layer, was formed on the (100) plane silicon substrate 3. This pyramid can be easily formed by masking the back surface and processing only the front surface with an alkaline etching solution. In addition, a minute pyramid 11 having a size of 1 μm or less can be easily formed by performing processing using a heated aqueous solution containing ammonium or hydrazine as a main component as an etching solution.

【0020】このようにして得られたシリコン基板3の
表面のピラミッド11の平均のサイズは、SEM(走査
型電子顕微鏡)による測定では約0.3μmであった。
このシリコン基板の表面反射率を測定したところ、0.
4〜1.1μmの波長範囲で表面反射率が著しく低下し
た。また、シリコン基板3表面に薄い酸化膜による皮膜
を設けたところ、遷移層2内の屈折率の変化が急峻にな
り、さらに表面反射率が低下した。
The average size of the pyramids 11 on the surface of the silicon substrate 3 thus obtained was about 0.3 μm as measured by SEM (scanning electron microscope).
The surface reflectance of this silicon substrate was measured and found to be 0.
The surface reflectance was significantly reduced in the wavelength range of 4 to 1.1 μm. Further, when a thin oxide film was formed on the surface of the silicon substrate 3, the change in the refractive index in the transition layer 2 became sharp, and the surface reflectance was further lowered.

【0021】〈実施例2〉図9を用いて本発明の他の実
施例を説明する。本実施例ではシリコン基板3の上に断
面が主に三角形をした、不規則な大きさの微小凹凸1
1’を形成した。微小凹凸11’はCVD(化学気相成
長)法を用いた堆積膜により形成した。膜の材質は、I
TO、ZnO2等の透明で比較的屈折率の高い材料を用
いた。微小凹凸11’のサイズは堆積速度や温度、ガス
圧等により平均で約0.5μmにすることが出来た。ま
た、表面保護を兼ねて充填材(図示せず)で微小凹凸1
1’の間を埋めた。この充填材にはSiO2等の屈折率
の比較的小さい材料をスピン塗布法やCVD法等で形成
した。このシリコン基板の表面反射率も0.4〜1.1
μmの波長範囲で著しく低下した。
<Embodiment 2> Another embodiment of the present invention will be described with reference to FIG. In this embodiment, irregularly-sized minute irregularities 1 having a triangular cross section on the silicon substrate 3 are used.
1'is formed. The fine irregularities 11 'are formed by a deposited film using a CVD (chemical vapor deposition) method. The material of the film is I
A transparent material having a relatively high refractive index such as TO or ZnO 2 was used. The size of the fine irregularities 11 ′ could be about 0.5 μm on average depending on the deposition rate, temperature, gas pressure and the like. In addition, a minute unevenness 1 is provided with a filler (not shown) for the purpose of surface protection.
I filled the space between 1 '. As the filler, a material having a relatively small refractive index such as SiO 2 was formed by a spin coating method, a CVD method or the like. The surface reflectance of this silicon substrate is also 0.4 to 1.1.
Remarkably decreased in the wavelength range of μm.

【0022】〈実施例3〉図10を用いて本発明のさら
に他の実施例を説明する。本実施例では、実施例2で述
べたシリコン基板3の裏面に繰り返し幅が2μmのV溝
13を形成した。これにより、表面から入射した光は、
裏面で反射され、再び表面に達すると全反射され、シリ
コン基板内に閉じ込められる。V溝13は通常のホトレ
ジストを用いたエッチングマスクを用いて容易に形成す
ることが出来た。この場合、ホトレジストでなく印刷レ
ジストでもよい。また、裏面形状はV溝のみならず逆ピ
ラミッドや半円等の形状でもよく、その繰り返し幅が入
射光の波長より大きいサイズであればよい。また、裏面
での反射率を高めるために裏面反射鏡14を形成した。
<Embodiment 3> Still another embodiment of the present invention will be described with reference to FIG. In this embodiment, the V groove 13 having a repeating width of 2 μm is formed on the back surface of the silicon substrate 3 described in the second embodiment. As a result, the light incident from the surface is
The light is reflected on the back surface, is totally reflected when it reaches the front surface again, and is confined in the silicon substrate. The V groove 13 could be easily formed by using an etching mask using an ordinary photoresist. In this case, a printing resist may be used instead of the photoresist. The shape of the back surface is not limited to the V-shaped groove, but may be an inverted pyramid, a semicircle, or the like, as long as the repeating width is larger than the wavelength of the incident light. Further, the back surface reflecting mirror 14 is formed in order to increase the reflectance on the back surface.

【0023】〈実施例4〉図11を用いて本発明のさら
に他の実施例を説明する。本実施例では、シリコン基板
3の裏面にピラミッド状の凹凸15を形成した。この凹
凸15の材質には透明なガラスを用い、シリコン基板3
に接着した。これにより、シリコン基板3を加工するこ
となく容易に光トラップ構造を形成する事が出来た。ま
た、実施例3と同じように、裏面反射鏡(図示せず)を
形成した。
<Embodiment 4> Still another embodiment of the present invention will be described with reference to FIG. In this example, pyramid-shaped irregularities 15 were formed on the back surface of the silicon substrate 3. Transparent glass is used for the material of the unevenness 15, and the silicon substrate 3 is used.
Glued to. Thereby, the optical trap structure could be easily formed without processing the silicon substrate 3. Further, as in Example 3, a back surface reflecting mirror (not shown) was formed.

【0024】〈実施例5〉図12を用いて本発明の受光
素子の一実施例を説明する。実施例3と同様に、p型シ
リコン基板21の上に、断面が主に三角形をした、不規
則な大きさの微小凹凸11’を、裏面に繰り返し幅が2
μmのV溝を形成した(実施例3に示した裏面反射鏡は
形成しない)。次に、高濃度p型層19、高濃度n型層
20を熱拡散法で形成し、p型シリコン基板21の表面
及び裏面にパッシベーシヨン酸化膜18(表面の酸化膜
は図示せず)を設け、所定の位置の酸化膜18に穴開け
して、電極16、17を真空蒸着法により形成し、受光
素子を形成した。この受光素子は、微小凹凸11’から
なる遷移層を設けない従来の受光素子よりも光電変換効
率が向上した。
<Embodiment 5> An embodiment of the light receiving element of the present invention will be described with reference to FIG. Similar to the third embodiment, irregularly-sized minute irregularities 11 ′ having a triangular shape in cross section are formed on the p-type silicon substrate 21, and a repeating width is 2 on the back surface.
A V-groove of μm was formed (the back reflector shown in Example 3 was not formed). Next, the high-concentration p-type layer 19 and the high-concentration n-type layer 20 are formed by the thermal diffusion method, and the passivation oxide film 18 (the oxide film on the surface is not shown) is provided on the front surface and the back surface of the p-type silicon substrate 21. A hole was formed in the oxide film 18 at a predetermined position, and the electrodes 16 and 17 were formed by a vacuum evaporation method to form a light receiving element. This light receiving element has improved photoelectric conversion efficiency as compared with the conventional light receiving element in which the transition layer formed of the minute irregularities 11 'is not provided.

【0025】なお、上記以外の形状の微小凹凸、すなわ
ち、三角溝、球、半球、逆ピラミッド、矩形を有する遷
移層を持つp型シリコン基板を用いて、同様に受光素子
を形成したが、いずれも従来の受光素子よりも光電変換
効率が向上した。
A light-receiving element was formed in the same manner using a p-type silicon substrate having a transition layer having minute irregularities of shapes other than the above, that is, triangular grooves, spheres, hemispheres, inverted pyramids, and rectangles. Also, the photoelectric conversion efficiency is improved as compared with the conventional light receiving element.

【0026】以上の実施例で基板としてシリコンを用い
たが、シリコンの他に、ガリウムヒソ、インジュウムリ
ン、CuInS、CdS等の単結晶、多結晶、非晶質の
単原子、多元系等の半導体や、ガラス、プラスチック等
の絶縁性のもの等、どのような材質のものであってもよ
いことは言うまでもない。また、表面凹凸、裏面凹凸の
構造は上記で説明した構造のいずれかの組み合わせであ
ってもよく、凹凸の断面形状も、図2で説明した形状
や、それに類似した規則的、不規則ないかなる形状であ
ってもよいことは言うまでもない。
Although silicon is used as the substrate in the above embodiments, in addition to silicon, semiconductors such as gallium arsenide, indium phosphide, CuInS, CdS, etc., such as single crystals, polycrystals, amorphous monoatoms, and multielement semiconductors Needless to say, it may be made of any material such as an insulating material such as glass or plastic. Further, the structure of the surface unevenness and the backside unevenness may be any combination of the structures described above, and the cross-sectional shape of the unevenness may be the shape described in FIG. 2 or any similar regular or irregular shape. It goes without saying that it may be shaped.

【0027】[0027]

【発明の効果】本発明の構造を用いることにより、光セ
ンサー、受電変換装置等の受光装置や光励起レーザー等
の光−光変換装置等において光を有効に閉じ込める必要
がある場合に、有効に光閉じ込めを行なうことが出来
た。また、このような光閉込め構造を用いた本発明の受
光素子は、光電変換効率を向上させることが出来た。
INDUSTRIAL APPLICABILITY By using the structure of the present invention, when it is necessary to effectively confine light in an optical sensor, a light receiving device such as a power receiving conversion device or a light-to-light conversion device such as a photoexcitation laser, it is possible to effectively use I was able to confine it. Further, the light receiving element of the present invention using such a light confining structure could improve the photoelectric conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理を説明する概念図。FIG. 1 is a conceptual diagram illustrating the principle of the present invention.

【図2】本発明の原理を説明する概念図。FIG. 2 is a conceptual diagram illustrating the principle of the present invention.

【図3】本発明の効果を説明する計算結果の一例を示す
図。
FIG. 3 is a diagram showing an example of calculation results for explaining the effect of the present invention.

【図4】本発明の効果を説明する計算結果の一例を示す
図。
FIG. 4 is a diagram showing an example of calculation results for explaining the effect of the present invention.

【図5】本発明の効果を説明する計算結果の一例を示す
図。
FIG. 5 is a diagram showing an example of calculation results for explaining the effect of the present invention.

【図6】本発明の効果を説明する計算結果の一例を示す
図。
FIG. 6 is a diagram showing an example of calculation results for explaining the effect of the present invention.

【図7】本発明の原理を説明する概念図。FIG. 7 is a conceptual diagram illustrating the principle of the present invention.

【図8】本発明の光閉込め構造の一実施例の断面模式
図。
FIG. 8 is a schematic sectional view of an embodiment of the light confining structure of the present invention.

【図9】本発明の光閉込め構造の他の実施例の断面模式
図及び斜視図。
FIG. 9 is a schematic sectional view and a perspective view of another embodiment of the light confining structure of the present invention.

【図10】本発明の光閉込め構造の一実施例の斜視図。FIG. 10 is a perspective view of an embodiment of the light confining structure of the present invention.

【図11】本発明の光閉込め構造の一実施例の斜視図。FIG. 11 is a perspective view of an embodiment of the light confining structure of the present invention.

【図12】本発明の受光素子の一実施例の斜視図。FIG. 12 is a perspective view of an embodiment of a light receiving element of the present invention.

【符号の説明】[Explanation of symbols]

1…外部媒質 2…遷移層 3…基板 4…光 5…第2の媒質 6…第1の媒質 7…繰り返し幅 8、9、15…凹凸 11…ピラミッド 11’…微小凹凸 13…V溝 14…裏面反射鏡 16、17…電極 18…酸化膜 19…高濃度p型層 20…高濃度n型層 21…p型シリコン基板 DESCRIPTION OF SYMBOLS 1 ... External medium 2 ... Transition layer 3 ... Substrate 4 ... Light 5 ... 2nd medium 6 ... 1st medium 7 ... Repeat width 8, 9, 15 ... Concavo-convex 11 ... Pyramid 11 '... Micro concavo-convex 13 ... V groove 14 Backside reflecting mirror 16, 17 ... Electrode 18 ... Oxide film 19 ... High concentration p-type layer 20 ... High concentration n-type layer 21 ... P-type silicon substrate

フロントページの続き (72)発明者 永田 寧 千葉県茂原市早野3681番地 日立デバイス エンジニアリング株式会社内Front page continuation (72) N. Nagata Inventor, Hitachi Device Engineering Co., Ltd. 3681 Hayano, Mobara-shi, Chiba

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基板及び該基板表面に設けられた、凹凸を
有する遷移層からなり、該凹凸の繰り返し幅は、光閉じ
込めを行なう主な光の波長以下であることを特徴とする
光閉込め構造。
1. A light confinement comprising a substrate and a transition layer provided on the surface of the substrate and having irregularities, wherein the repeating width of the irregularities is not more than the wavelength of the main light for confining light. Construction.
【請求項2】請求項1記載の光閉込め構造において、上
記遷移層の屈折率は、基板側と逆の側から基板側に向か
って、基板の屈折率に近づくように変化することを特徴
とする光閉込め構造。
2. The light confinement structure according to claim 1, wherein the refractive index of the transition layer changes from the side opposite to the substrate side toward the substrate side so as to approach the refractive index of the substrate. The light confinement structure.
【請求項3】請求項1記載の光閉込め構造において、上
記遷移層は、基板側に配置された凹凸を有する第1の材
質の部分と、これに対応する逆向きの凹凸を有し、基板
と逆の側に配置された第2の材質の部分とよりなり、該
第1の材質の屈折率は、基板の屈折率と同じか又は該第
2の材質の屈折率よりも基板の屈折率に近いことを特徴
とする光閉込め構造。
3. The light confinement structure according to claim 1, wherein the transition layer has a first material portion having irregularities arranged on the substrate side and corresponding irregularities in opposite directions, The second material is disposed on the side opposite to the substrate, and the refractive index of the first material is the same as the refractive index of the substrate or the refractive index of the substrate is higher than that of the second material. Light confinement structure characterized by close to the rate.
【請求項4】請求項3記載の光閉込め構造において、上
記凹凸の形状を、上記第2の材質の部分の平面上に占め
る面積が上記遷移層の表面から基板の方向に向かって減
少するように構成することを特徴とする光閉込め構造。
4. The light confining structure according to claim 3, wherein an area occupied by the uneven shape on the plane of the second material portion decreases from the surface of the transition layer toward the substrate. An optical confinement structure characterized by being configured as follows.
【請求項5】請求項4記載の光閉込め構造において、上
記凹凸の形状を、上記第2の材質の部分の平面上に占め
る面積の上記遷移層の表面から基板の方向に向かって減
少する割合が遷移層の裏面付近より表面付近で大きいよ
うに構成することを特徴とする光閉込め構造。
5. The light confining structure according to claim 4, wherein the shape of the unevenness decreases from the surface of the transition layer in the area occupied by the second material portion on the plane toward the substrate. An optical confinement structure characterized in that the proportion is larger near the front surface than near the back surface of the transition layer.
【請求項6】請求項1記載の光閉込め構造において、上
記凹凸は、その断面形状が実質的に三角であることを特
徴とする光閉込め構造。
6. The light confining structure according to claim 1, wherein the irregularities have a substantially triangular cross-sectional shape.
【請求項7】請求項1から6のいずれか一に記載の光閉
込め構造において、上記光閉じ込めを行なう主な光は、
可視光であり、上記凹凸の繰り返し幅は、1μm以下で
あることを特徴とする光閉込め構造。
7. In the light confining structure according to any one of claims 1 to 6, the main light for confining the light is
A light confining structure that is visible light and has a repeating width of the irregularities of 1 μm or less.
【請求項8】請求項1から7のいずれか一に記載の光閉
込め構造において、上記基板は、その裏面に光閉じ込め
を行なう主な光の波長より大きな繰返し幅を持つ第2の
凹凸を有することを特徴とする光閉込め構造。
8. The light confinement structure according to claim 1, wherein the substrate has a second concave and convex portion having a repetition width larger than a main light wavelength for optical confinement on the back surface thereof. An optical confinement structure characterized by having.
【請求項9】請求項1から8のいずれか一に記載の光閉
込め構造において、上記基板は、その裏面に光反射層を
有することを特徴とする光閉込め構造。
9. The light confining structure according to claim 1, wherein the substrate has a light reflecting layer on its back surface.
【請求項10】請求項1から7のいずれか一に記載の光
閉込め構造を用いた受光素子であって、上記基板は第1
導電型であり、上記基板に設けられた第2導電型領域及
びこれと接続する電極を有することを特徴とする受光素
子。
10. A light-receiving element using the light confining structure according to claim 1, wherein the substrate is a first light-receiving element.
A light receiving element which is of a conductive type and has a second conductive type region provided on the substrate and an electrode connected to the second conductive type region.
JP02909293A 1993-02-18 1993-02-18 Light receiving element Expired - Fee Related JP3526308B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02909293A JP3526308B2 (en) 1993-02-18 1993-02-18 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02909293A JP3526308B2 (en) 1993-02-18 1993-02-18 Light receiving element

Publications (2)

Publication Number Publication Date
JPH06244444A true JPH06244444A (en) 1994-09-02
JP3526308B2 JP3526308B2 (en) 2004-05-10

Family

ID=12266715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02909293A Expired - Fee Related JP3526308B2 (en) 1993-02-18 1993-02-18 Light receiving element

Country Status (1)

Country Link
JP (1) JP3526308B2 (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183390A (en) * 1998-12-10 2000-06-30 Oki Electric Ind Co Ltd Semiconductor photodetector and its manufacture
JP2003124483A (en) * 2001-10-17 2003-04-25 Toyota Motor Corp Photovoltaic element
JP2006093256A (en) * 2004-09-22 2006-04-06 Jsr Corp Silicon film and its formation method
JP2006286820A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Photovoltaic device
JP2008172279A (en) * 2008-04-03 2008-07-24 Shin Etsu Handotai Co Ltd Solar cell
JP2009302319A (en) * 2008-06-13 2009-12-24 Rohm Co Ltd Photoelectric conversion element having spectroscope function and image sensor using the same
WO2010110083A1 (en) * 2009-03-25 2010-09-30 シャープ株式会社 Back electrode type solar cell, wiring sheet, solar cell provided with wiring sheet, solar cell module, method for manufacturing solar cell provided with wiring sheet, and method for manufacturing solar cell module
JP2010232494A (en) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk Back-illuminated solid-state image sensor
WO2010140621A1 (en) * 2009-06-05 2010-12-09 浜松ホトニクス株式会社 Semiconductor light detecting element and manufacturing method therefor
JP2011503861A (en) * 2007-11-05 2011-01-27 フォトン ベスローテン フェノーツハップ Photovoltaic device
JP2011023417A (en) * 2009-07-13 2011-02-03 Hamamatsu Photonics Kk Semiconductor optical detecting element, and method of manufacturing the same
JP2011066316A (en) * 2009-09-18 2011-03-31 Asahi Kasei Electronics Co Ltd Optical sensor
JP2011077165A (en) * 2009-09-29 2011-04-14 Mitsubishi Heavy Ind Ltd Light detector, light detecting apparatus, infrared detector and infrared detecting apparatus
JP2011171486A (en) * 2010-02-18 2011-09-01 Asahi Kasei Electronics Co Ltd Infrared sensor
WO2011129149A1 (en) * 2010-04-14 2011-10-20 浜松ホトニクス株式会社 Semiconductor light detecting element
CN102362363A (en) * 2009-03-23 2012-02-22 夏普株式会社 Wiring-sheet-attached solar battery cell, solar cell module, and process for manufacturing wiring-sheet-attached solar battery cell
JP2012142568A (en) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Photoelectric conversion element
JP2012191186A (en) * 2011-02-21 2012-10-04 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
JP2013065909A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Semiconductor photo-detector
JP2013201347A (en) * 2012-03-26 2013-10-03 Asahi Kasei Electronics Co Ltd Optical sensor
US8629485B2 (en) 2009-02-24 2014-01-14 Hamamatsu Photonics K.K. Semiconductor photodetection element
US8742528B2 (en) 2009-02-24 2014-06-03 Hamamatsu Photonics K.K. Photodiode and photodiode array
US8916945B2 (en) 2009-02-24 2014-12-23 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US9190551B2 (en) 2009-02-24 2015-11-17 Hamamatsu Photonics K.K. Photodiode and photodiode array
JP2016509376A (en) * 2013-03-08 2016-03-24 ソイテックSoitec Photoactive device having a low bandgap active layer configured to improve efficiency and related methods
US9559132B2 (en) 2012-06-18 2017-01-31 Hamamatsu Photonics K.K. Solid-state image capture device
US9666636B2 (en) 2011-06-09 2017-05-30 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
WO2018061898A1 (en) * 2016-09-27 2018-04-05 日本電気株式会社 Optical sensor and method for forming same
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
JP2021010010A (en) * 2018-01-09 2021-01-28 トライアイ リミテッド Germanium-based focal plane array for short infrared spectral region
WO2021131759A1 (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor light detection element
JP2021100057A (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector
WO2021215123A1 (en) * 2020-04-24 2021-10-28 パナソニックIpマネジメント株式会社 Dimming element
WO2022003896A1 (en) * 2020-07-02 2022-01-06 株式会社京都セミコンダクター End face incidence-type semiconductor light-receiving element, and method for manufacturing end face incidence-type semiconductor light-receiving element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946B1 (en) * 1970-10-23 1973-10-09
JPS6169178A (en) * 1984-09-13 1986-04-09 Toshiba Corp Manufacture of solar cell
JPH0258876A (en) * 1988-08-25 1990-02-28 Tonen Corp Manufacture of substrate for solar cell and solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832946B1 (en) * 1970-10-23 1973-10-09
JPS6169178A (en) * 1984-09-13 1986-04-09 Toshiba Corp Manufacture of solar cell
JPH0258876A (en) * 1988-08-25 1990-02-28 Tonen Corp Manufacture of substrate for solar cell and solar cell

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000183390A (en) * 1998-12-10 2000-06-30 Oki Electric Ind Co Ltd Semiconductor photodetector and its manufacture
US10374109B2 (en) 2001-05-25 2019-08-06 President And Fellows Of Harvard College Silicon-based visible and near-infrared optoelectric devices
JP2003124483A (en) * 2001-10-17 2003-04-25 Toyota Motor Corp Photovoltaic element
JP4617795B2 (en) * 2004-09-22 2011-01-26 Jsr株式会社 Method for forming silicon film
JP2006093256A (en) * 2004-09-22 2006-04-06 Jsr Corp Silicon film and its formation method
US10361083B2 (en) 2004-09-24 2019-07-23 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
US10741399B2 (en) 2004-09-24 2020-08-11 President And Fellows Of Harvard College Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
JP4557772B2 (en) * 2005-03-31 2010-10-06 三洋電機株式会社 Photovoltaic device
JP2006286820A (en) * 2005-03-31 2006-10-19 Sanyo Electric Co Ltd Photovoltaic device
JP2011503861A (en) * 2007-11-05 2011-01-27 フォトン ベスローテン フェノーツハップ Photovoltaic device
JP2008172279A (en) * 2008-04-03 2008-07-24 Shin Etsu Handotai Co Ltd Solar cell
JP2009302319A (en) * 2008-06-13 2009-12-24 Rohm Co Ltd Photoelectric conversion element having spectroscope function and image sensor using the same
US8916945B2 (en) 2009-02-24 2014-12-23 Hamamatsu Photonics K.K. Semiconductor light-detecting element
JP2013065909A (en) * 2009-02-24 2013-04-11 Hamamatsu Photonics Kk Semiconductor photo-detector
US9419159B2 (en) 2009-02-24 2016-08-16 Hamamatsu Photonics K.K. Semiconductor light-detecting element
US9972729B2 (en) 2009-02-24 2018-05-15 Hamamatsu Photonics K.K. Photodiode and photodiode array
US9190551B2 (en) 2009-02-24 2015-11-17 Hamamatsu Photonics K.K. Photodiode and photodiode array
US8742528B2 (en) 2009-02-24 2014-06-03 Hamamatsu Photonics K.K. Photodiode and photodiode array
US8629485B2 (en) 2009-02-24 2014-01-14 Hamamatsu Photonics K.K. Semiconductor photodetection element
US9614109B2 (en) 2009-02-24 2017-04-04 Hamamatsu Photonics K.K. Photodiode and photodiode array
CN102362363A (en) * 2009-03-23 2012-02-22 夏普株式会社 Wiring-sheet-attached solar battery cell, solar cell module, and process for manufacturing wiring-sheet-attached solar battery cell
US9263603B2 (en) 2009-03-23 2016-02-16 Sharp Kabushiki Kaisha Solar cell with connecting sheet, solar cell module, and fabrication method of solar cell with connecting sheet
CN102414835A (en) * 2009-03-25 2012-04-11 夏普株式会社 Back electrode type solar cell, wiring sheet, solar cell provided with wiring sheet, solar cell module, method for manufacturing solar cell provided with wiring sheet, and method for manufacturing solar cell module
WO2010110083A1 (en) * 2009-03-25 2010-09-30 シャープ株式会社 Back electrode type solar cell, wiring sheet, solar cell provided with wiring sheet, solar cell module, method for manufacturing solar cell provided with wiring sheet, and method for manufacturing solar cell module
JPWO2010110083A1 (en) * 2009-03-25 2012-09-27 シャープ株式会社 Back electrode type solar cell, wiring sheet, solar cell with wiring sheet, solar cell module, method for manufacturing solar cell with wiring sheet, and method for manufacturing solar cell module
US9000492B2 (en) 2009-03-27 2015-04-07 Hamamatsu Photonics K.K. Back-illuminated solid-state image pickup device
JP2010232494A (en) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk Back-illuminated solid-state image sensor
EP2439790A4 (en) * 2009-06-05 2013-07-17 Hamamatsu Photonics Kk Semiconductor light detecting element and manufacturing method therefor
EP2439790A1 (en) * 2009-06-05 2012-04-11 Hamamatsu Photonics K.K. Semiconductor light detecting element and manufacturing method therefor
JP2010283223A (en) * 2009-06-05 2010-12-16 Hamamatsu Photonics Kk Semiconductor optical detecting element and method of manufacturing semiconductor optical detecting element
WO2010140621A1 (en) * 2009-06-05 2010-12-09 浜松ホトニクス株式会社 Semiconductor light detecting element and manufacturing method therefor
JP2011023417A (en) * 2009-07-13 2011-02-03 Hamamatsu Photonics Kk Semiconductor optical detecting element, and method of manufacturing the same
US10361232B2 (en) 2009-09-17 2019-07-23 Sionyx, Llc Photosensitive imaging devices and associated methods
US9911781B2 (en) 2009-09-17 2018-03-06 Sionyx, Llc Photosensitive imaging devices and associated methods
US9673243B2 (en) 2009-09-17 2017-06-06 Sionyx, Llc Photosensitive imaging devices and associated methods
JP2011066316A (en) * 2009-09-18 2011-03-31 Asahi Kasei Electronics Co Ltd Optical sensor
EP2302678B1 (en) * 2009-09-29 2020-08-19 Mitsubishi Heavy Industries Light detector, light detecting apparatus, infrared detector and infrared detecting apparatus
JP2011077165A (en) * 2009-09-29 2011-04-14 Mitsubishi Heavy Ind Ltd Light detector, light detecting apparatus, infrared detector and infrared detecting apparatus
JP2011171486A (en) * 2010-02-18 2011-09-01 Asahi Kasei Electronics Co Ltd Infrared sensor
US9293499B2 (en) 2010-04-14 2016-03-22 Hamamatsu Photonics K.K. Semiconductor light detecting element having silicon substrate and conductor
WO2011129149A1 (en) * 2010-04-14 2011-10-20 浜松ホトニクス株式会社 Semiconductor light detecting element
JP2011222893A (en) * 2010-04-14 2011-11-04 Hamamatsu Photonics Kk Semiconductor photodetector
US10229951B2 (en) 2010-04-21 2019-03-12 Sionyx, Llc Photosensitive imaging devices and associated methods
US9741761B2 (en) 2010-04-21 2017-08-22 Sionyx, Llc Photosensitive imaging devices and associated methods
US10505054B2 (en) 2010-06-18 2019-12-10 Sionyx, Llc High speed photosensitive devices and associated methods
US9761739B2 (en) 2010-06-18 2017-09-12 Sionyx, Llc High speed photosensitive devices and associated methods
JP2016154243A (en) * 2010-12-17 2016-08-25 株式会社半導体エネルギー研究所 Photoelectric conversion element
JP2012142568A (en) * 2010-12-17 2012-07-26 Semiconductor Energy Lab Co Ltd Photoelectric conversion element
JP2016106434A (en) * 2011-02-21 2016-06-16 株式会社半導体エネルギー研究所 Photoelectric conversion device
JP2012191186A (en) * 2011-02-21 2012-10-04 Semiconductor Energy Lab Co Ltd Photoelectric conversion device
US10269861B2 (en) 2011-06-09 2019-04-23 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US9666636B2 (en) 2011-06-09 2017-05-30 Sionyx, Llc Process module for increasing the response of backside illuminated photosensitive imagers and associated methods
US10244188B2 (en) 2011-07-13 2019-03-26 Sionyx, Llc Biometric imaging devices and associated methods
US10224359B2 (en) 2012-03-22 2019-03-05 Sionyx, Llc Pixel isolation elements, devices and associated methods
US9905599B2 (en) 2012-03-22 2018-02-27 Sionyx, Llc Pixel isolation elements, devices and associated methods
JP2013201347A (en) * 2012-03-26 2013-10-03 Asahi Kasei Electronics Co Ltd Optical sensor
US9559132B2 (en) 2012-06-18 2017-01-31 Hamamatsu Photonics K.K. Solid-state image capture device
US9762830B2 (en) 2013-02-15 2017-09-12 Sionyx, Llc High dynamic range CMOS image sensor having anti-blooming properties and associated methods
JP2016509376A (en) * 2013-03-08 2016-03-24 ソイテックSoitec Photoactive device having a low bandgap active layer configured to improve efficiency and related methods
US10347682B2 (en) 2013-06-29 2019-07-09 Sionyx, Llc Shallow trench textured regions and associated methods
US11069737B2 (en) 2013-06-29 2021-07-20 Sionyx, Llc Shallow trench textured regions and associated methods
US9673250B2 (en) 2013-06-29 2017-06-06 Sionyx, Llc Shallow trench textured regions and associated methods
US10879407B2 (en) 2016-09-27 2020-12-29 Nec Corporation Optical sensor and method for forming same
WO2018061898A1 (en) * 2016-09-27 2018-04-05 日本電気株式会社 Optical sensor and method for forming same
JP2021010010A (en) * 2018-01-09 2021-01-28 トライアイ リミテッド Germanium-based focal plane array for short infrared spectral region
WO2021131759A1 (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor light detection element
JP2021100058A (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector
JP2021100057A (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector
WO2021131758A1 (en) * 2019-12-23 2021-07-01 浜松ホトニクス株式会社 Semiconductor photodetector
WO2021215123A1 (en) * 2020-04-24 2021-10-28 パナソニックIpマネジメント株式会社 Dimming element
WO2022003896A1 (en) * 2020-07-02 2022-01-06 株式会社京都セミコンダクター End face incidence-type semiconductor light-receiving element, and method for manufacturing end face incidence-type semiconductor light-receiving element

Also Published As

Publication number Publication date
JP3526308B2 (en) 2004-05-10

Similar Documents

Publication Publication Date Title
JP3526308B2 (en) Light receiving element
US8354682B2 (en) Radiation emitting element
US5779924A (en) Ordered interface texturing for a light emitting device
US20030057417A1 (en) Photonic crystal organic light emitting device having high extraction efficiency
US20020134985A1 (en) Interface texturing for light-emitting device
JP6918631B2 (en) Photodetector
KR100934358B1 (en) A prism glass structure for enhancing the performance of sollar cell module
US20040195641A1 (en) Semiconductor chip for optoelectronics
JP2005159002A (en) Light receiving element, optical module, and optical transmission device
US5506419A (en) Quantum well photodetector with pseudo-random reflection
JP7280532B2 (en) Light receiving element
JPS61288473A (en) Photovoltaic device
JP2005197597A (en) Multijunction solar cell
KR101930640B1 (en) Structure having low reflectance surface, method of manufacturing the structure, solar cell and optical film having the structure
KR101661223B1 (en) Solar cell
US20100294334A1 (en) Quantum dot intermediate band solar cell with optimal light coupling by difraction
JPH05206490A (en) Photoelectric conversion device
KR102515398B1 (en) Transparent solar cell and its manufacturing method
JPS61288314A (en) Working of light transmitting conducting oxide layer
KR101205451B1 (en) Optical device package and method for fabricating the same
JPWO2018061898A1 (en) Optical sensor and method of forming the same
JPS6310125A (en) Plane type optical control element
JP3549086B2 (en) Semiconductor light receiving device
JP2690963B2 (en) Photoelectric conversion device
CN220233206U (en) Optical trap type multi-reflection layer-increasing nano array

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040213

LAPS Cancellation because of no payment of annual fees