JPS61288473A - Photovoltaic device - Google Patents

Photovoltaic device

Info

Publication number
JPS61288473A
JPS61288473A JP60131285A JP13128585A JPS61288473A JP S61288473 A JPS61288473 A JP S61288473A JP 60131285 A JP60131285 A JP 60131285A JP 13128585 A JP13128585 A JP 13128585A JP S61288473 A JPS61288473 A JP S61288473A
Authority
JP
Japan
Prior art keywords
light
receiving surface
photovoltaic device
surface electrode
tco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60131285A
Other languages
Japanese (ja)
Other versions
JPH0328073B2 (en
Inventor
Kenji Murata
邑田 健治
Yasuo Kishi
岸 靖雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60131285A priority Critical patent/JPS61288473A/en
Priority to US06/872,684 priority patent/US4732621A/en
Publication of JPS61288473A publication Critical patent/JPS61288473A/en
Publication of JPH0328073B2 publication Critical patent/JPH0328073B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent the reflection loss of the incident light and the specific resistance from increasing, and the light transmission factor and the close adhesive ability to keep in close contact with the supporting substrate from decreasing, and to improve the photoelectric converting efficiency, by employing a light receiving face electrode which is made of transparent conductive oxide (TCO) having a mean grain size of 500-2000Angstrom and which has an uneven face having height differences of about 1000-5000Angstrom at the side interfacing with the semiconductor light active layer and having intervals between the respective convexes of about 2000-10000Angstrom . CONSTITUTION:A TCO layer 5 having a mean grain size of about 500-2000Angstrom is coated on the approximately uniform insulating surface of a transparent supporting substrate 1 such as glass. Next, the TCO layer 5 is etched toward the supporting substrate 1 from the exposed face. The etching is stopped at the midway of the thickness, and thus the exposed face has fine uneveness appropriate for a light receiving face electrode 2 of a photovoltaic device. In this way, the light receiving face electrode 2 having triangle cone shaped uneven faces 2tex having height differences of about 1000-5000Angstrom and intervals between the respective convexes of about 2000-10000Angstrom can be formed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は光照射を受けると起電力を発生する光起電力装
置に関し、例えば太陽光発電等に利用される。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a photovoltaic device that generates electromotive force when irradiated with light, and is used, for example, in solar power generation.

(ロ) 従来の技術 ガラス等の透光性基板上に受光面電極、半導体光活性層
及び背面電極をこの順序で積層せしめた光起電力装置は
例えば特公昭53−37718号公報や米国特許第4.
281.208号明細書に開示された如く既に知られて
いる0通常上記受光面電極として電子ビーム蒸着法、真
空蒸着法、スパッタ法、CVD法、スプレー法等によっ
て形成される酸化インジウムスズ(Ire)、酸化スズ
(SnOx)等に代表される透光性導電酸化物(以下T
OCと称す)の単層或いは積層構造が用いられる。
(b) Prior art A photovoltaic device in which a light-receiving surface electrode, a semiconductor photoactive layer, and a back electrode are laminated in this order on a light-transmitting substrate such as glass is disclosed in, for example, Japanese Patent Publication No. 53-37718 and U.S. Pat. 4.
As disclosed in No. 281.208, indium tin oxide (Ire ), translucent conductive oxides (hereinafter referred to as T
(referred to as OC) is used in a single layer or laminated structure.

然し乍ら、斯る工Coから受光面電極を形成すると、こ
のTCOの屈折率は約2.0前後であるのに対し、それ
と接する半導体光活性層の屈折率は上記2.0より太き
(例えばアモルファスシリコン、アモルファスシリコン
カーバイト、アモル)7スシリコンゲルマニウム等のア
モルファスシリコン系半導体にあっては約4.0前後で
あるために、支持基板側から入射した光は上記屈折率の
差に基づき受光面電極と光活性層との界面に於いて反射
し、光電変換動作する光活性層に入射する光量を減少せ
しめる原因となっていた。
However, when the light-receiving surface electrode is formed from such engineered Co, the refractive index of this TCO is around 2.0, whereas the refractive index of the semiconductor photoactive layer in contact with it is thicker than the above-mentioned 2.0 (e.g. For amorphous silicon semiconductors such as amorphous silicon, amorphous silicon carbide, and amorphous silicon germanium, the value is around 4.0, so light incident from the supporting substrate side is received based on the difference in refractive index. This is reflected at the interface between the surface electrode and the photoactive layer, causing a decrease in the amount of light incident on the photoactive layer that performs photoelectric conversion.

昭和60年春季応用物理学会予稿集第439頁29p−
U−14に開示された先行技術は、受光面電極と光活地
層との界面に於ける反射特性が、界面形状に著しく影響
される点に鑑み受光面電極の光活性層側界面を凹凸状と
なし光活性層に入射する光量の増大を図ることを提案し
ている。
1985 Spring Proceedings of the Japan Society of Applied Physics, p. 439, p. 29-
In the prior art disclosed in U-14, the photoactive layer-side interface of the light-receiving surface electrode is made uneven in view of the fact that the reflection characteristics at the interface between the light-receiving surface electrode and the photoactive layer are significantly affected by the shape of the interface. It is proposed to increase the amount of light incident on the photoactive layer.

一方、上述の如き一般的なTCOの形成技術によれば、
形成するTCOの平均粒径によって受光面電極の表面形
状が決定されるために、斯るTCOの平均粒径が約20
0〜1000人程度であることからして、従来の受光面
電極の表面形状は凹凸の高低差約200〜1000Å、
凸部と凸部との間隔約500〜2000人と小さな凹凸
形状を呈するに止まっていた。
On the other hand, according to the general TCO formation technology as described above,
Since the surface shape of the light-receiving surface electrode is determined by the average particle size of the TCO to be formed, the average particle size of the TCO is approximately 20
Considering that the number of people is approximately 0 to 1,000, the surface shape of the conventional light-receiving surface electrode has an uneven height difference of approximately 200 to 1,000 Å.
The distance between the protrusions was only about 500 to 2,000 people, and the shape was only small.

従って、一般的なTCOを受光面電極とした光起電力装
置にあっては、斯るTCOの受光面電極と光活性層との
界面に於ける反射損失が大きく、光電変換効率を低下せ
しめる要因となっていた。
Therefore, in a photovoltaic device using a general TCO as a light-receiving surface electrode, reflection loss at the interface between the TCO light-receiving surface electrode and the photoactive layer is large, which is a factor that reduces photoelectric conversion efficiency. It became.

そこで、更に大きな凹凸を形成するために、TCOの粒
径を大きくすることが試みられた0例えばTCOの平均
粒径を約2000〜10000人とすると、凹凸の高低
差約1000〜5000Å、凸部と凸部との間隔約50
0〜2000人程度の凹凸形状が得られるものの、この
凹凸形状を実現するためには平均粒径の大きなTCOを
使用しなければならず、比抵抗の増大、光透過率の減少
及び支持基板との密着力の低下を招く原因となり、光起
電力装置の受光面電極としては不適切である。
Therefore, attempts have been made to increase the particle size of TCO in order to form even larger unevenness.For example, if the average particle size of TCO is about 2,000 to 10,000 people, the height difference of the unevenness is about 1,000 to 5,000 Å, and the convex part The distance between and the convex part is about 50
Although it is possible to obtain an uneven shape of approximately 0 to 2,000 grains, it is necessary to use TCO with a large average particle size in order to achieve this uneven shape, which increases resistivity, decreases light transmittance, and causes problems with the supporting substrate. This causes a decrease in the adhesion of the material, making it unsuitable for use as a light-receiving surface electrode of a photovoltaic device.

これに対し、上記応用物理学会予稿集に開示された先行
技術によれば支持基板表面に予め凹凸を設け、その凹凸
表面に沿ってTCOを形成することによって、通常の粒
径のTCOを用いても大きな凹凸面を持つ受光面電極が
得られる。ところが、今度は支持基板表面を受光面電極
として要求される数1000人のオーダに凹凸加工する
ことが非常に難しく量産性が低いと云う欠点である。
On the other hand, according to the prior art disclosed in the above-mentioned Proceedings of the Japan Society of Applied Physics, the surface of the support substrate is provided with unevenness in advance, and TCO is formed along the uneven surface. Also, a light-receiving surface electrode having a large uneven surface can be obtained. However, the disadvantage is that it is very difficult to process the surface of the support substrate to the level of several thousand people required for the light-receiving surface electrode, resulting in low mass productivity.

(ハ)発明が解決しようとする問題点 未発明は光起電力装置の受光面電極と半導体光活性層と
の界面に於ける入射光の反射損失と、比抵抗の増大、光
透過率の減少及び支持基板との密着力の低下を同時に解
決しようとするものである。
(c) Problems to be solved by the invention What has not yet been invented is the reflection loss of incident light at the interface between the light-receiving surface electrode of the photovoltaic device and the semiconductor photoactive layer, the increase in specific resistance, and the decrease in light transmittance. This is an attempt to simultaneously solve the problem of lower adhesion with the supporting substrate.

(ニ)  問題点を解決するための手段本発明は上記問
題点を解決するために、受光面電極は平均粒径約500
〜2000人のICOからなると共に、この受光面電極
は半導体光活性層との界面側に高低差約1000〜50
00Å、凸部と凸部との間隔約2000〜10000人
の凹凸面を備えたことを特徴とする。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a light-receiving surface electrode having an average particle diameter of about 500.
Consisting of ~2000 ICOs, this light-receiving surface electrode has a height difference of approximately 1000~50cm on the interface side with the semiconductor photoactive layer.
00 Å and an uneven surface with an interval of about 2,000 to 10,000 angstroms between the protrusions.

(ホ)作用 上述の如く半導体光活性層との界面側に高低差約100
0〜5000Å、凸部と凸部との間隔約2000〜10
000人の凹凸面を備えた平均粒径約500〜2000
人のICOからなる受光面電極を用いることによって、
斯る受光面電極は光起電力装置として好適な凹凸形状を
受光面電極と半導体光活性層との界面に形成する。
(E) Function As mentioned above, there is a height difference of about 100 on the interface side with the semiconductor photoactive layer.
0 to 5000 Å, distance between convex parts approximately 2000 to 10
Average grain size about 500-2000 with uneven surface of 000
By using a light-receiving surface electrode made of human ICO,
Such a light-receiving surface electrode forms an uneven shape suitable for a photovoltaic device at the interface between the light-receiving surface electrode and the semiconductor photoactive layer.

(へ) 実施例 第1図は本発明光起電力装置の一実施例を模式的に示す
断面図であって、(1)はほぼ平坦な絶縁表面を持つ透
光性の支持基板、(2)は上記支持基板の絶縁表面に沿
って形成されたICOからなる受光面電極、(3)は上
記受光面電極(2)の凹凸面(2tex)上に例えば前
記先行技術に開示された如きプラズマCVD法等により
その内部にpin、 pn等の周知の半導体接合が形成
されたアモルファスシリコン系の半導体光活性層、(4
)はこの光活性層(3)の背面に形成きれたアルミニウ
ム(A1)、銀(Ag)或いはTCO/Ag等の単層或
いは積層構造の背面電極で、上記光活性層(3)に支持
基板(1)及び受光面電極(2)を透過して光照射がな
されると、断る光活性層(3)中に於いて光キャリアが
発生し、この光キャリアの移動により受光面電極(2)
と背面電極(4)との間に起電力が発生する。
Embodiment FIG. 1 is a cross-sectional view schematically showing an embodiment of the photovoltaic device of the present invention, in which (1) is a light-transmitting support substrate having a substantially flat insulating surface, (2) ) is a light-receiving surface electrode made of ICO formed along the insulating surface of the support substrate, and (3) is a plasma plate formed on the uneven surface (2tex) of the light-receiving surface electrode (2), for example, as disclosed in the above-mentioned prior art. An amorphous silicon-based semiconductor photoactive layer (4
) is a back electrode of a single layer or a laminated structure made of aluminum (A1), silver (Ag), TCO/Ag, etc. formed on the back surface of the photoactive layer (3). When light is irradiated through (1) and the light-receiving surface electrode (2), photocarriers are generated in the photoactive layer (3), and the movement of these photocarriers causes the light-receiving surface electrode (2) to be irradiated.
An electromotive force is generated between the electrode and the back electrode (4).

而して、本発明の特徴は上記支持基板(1)のほぼ平坦
な絶縁表面に配置され先覚変換動作する半導体光活性層
(3)と接する界面側が凹凸面(2tax )をなす受
光面電極(2)の構造にある。即ち、本発明光起電力装
置の受光面電極(2)として用いられるTCOは通常の
形成方法により得られる約500〜2000人の平均粒
径であるにも拘らず、高低差(h)約1000〜500
0Å、凸部と凸部との間隔(d)約2000〜1000
0人のほぼ三角錐状凹凸面(2tax)を備えている。
The feature of the present invention is that the light-receiving surface electrode (2tax) is disposed on the substantially flat insulating surface of the support substrate (1) and has an uneven surface (2tax) on the interface side in contact with the semiconductor photoactive layer (3) that performs a preconversion operation. 2). That is, although the TCO used as the light-receiving surface electrode (2) of the photovoltaic device of the present invention has an average particle size of about 500 to 2,000 particles obtained by a normal forming method, the height difference (h) is about 1,000. ~500
0 Å, distance between convex parts (d) approximately 2000 to 1000
It has a roughly triangular pyramid-shaped uneven surface (2 tax).

第2図は乃至第4図は斯る凹凸面(2tax)の加工方
法を模式的に表わしている。先ず第2図の如く、ガラス
等の透光性支持基板(1)のほぼ平坦な絶縁表面に沿っ
て周知の電子ビーム蒸着法、真空蒸着法、スパッタ法、
CVD法、スプレー法等によって形成された平均粒径約
500〜2000人の160層(5)被着した電極基板
を準備する。上記160層(5)は、例えば基板温度3
00°C1酸素分圧4x10−’Torrの形成条件に
基づいて電子ビーム蒸着法により得られた5%の5nO
xをドープしたITOからなり、上述の如く約500〜
2000人の平均粒径を備え、膜厚約1500〜700
0人に被着されている。
FIGS. 2 to 4 schematically show a method of processing such an uneven surface (2 tax). First, as shown in FIG. 2, a well-known electron beam evaporation method, vacuum evaporation method, sputtering method, or
An electrode substrate having 160 layers (5) deposited thereon having an average particle size of about 500 to 2000 particles formed by a CVD method, a spray method, or the like is prepared. For example, the 160 layers (5) have a substrate temperature of 3
5% 5nO obtained by electron beam evaporation method based on formation conditions of 00°C1 oxygen partial pressure 4x10-'Torr
It is made of ITO doped with
Equipped with an average particle size of 2000 and a film thickness of about 1500 to 700.
Covered by 0 people.

第3図の工程では、上記支持基板(1)のほぼ平坦面に
沿って被着されていた160層(5)がその露出面から
支持基板(1)に向ってエツチング処理が施される。使
用されるエツチング液としては上記ITOの160層(
5)に対してHCI : H*0 : FeC15= 
500oc: 600cc : 100gのものが好適
であり、他に王水も利用可能である。斯るエツチング処
理に於いて、160層〈5〉はその露出面から順次エツ
チング除去されるものの160層(5)のエツチングレ
ートの異方性に起因して、先ず第3図に示す如くエツチ
ングレートの高い部分からエツチングが始まるために、
断面台形状となる。
In the process shown in FIG. 3, the 160 layer (5) deposited along the substantially flat surface of the support substrate (1) is etched from its exposed surface toward the support substrate (1). The etching solution used was the above-mentioned ITO 160 layer (
5) for HCI: H*0: FeC15=
500oc: 600cc: 100g is suitable, and aqua regia can also be used. In this etching process, the 160 layer (5) is etched away sequentially from its exposed surface, but due to the anisotropy of the etching rate of the 160 layer (5), the etching rate is first reduced as shown in FIG. Because etching starts from the high part of the
It has a trapezoidal cross section.

第4図は第3図のエツチング処理が終了した状態を示し
ている。即ち、斯るエツチング処理はIC0層(5)の
厚み方向の途中までとし、その露出面が光起電力装置の
受光面電極(2)として好適な微細な凹凸を持つまで行
ない、例えば高低差約1000〜5000Å、凸部と凸
部の間隔的2000〜tooo。
FIG. 4 shows a state in which the etching process shown in FIG. 3 has been completed. That is, such etching treatment is carried out to the middle of the thickness direction of the IC0 layer (5), and is performed until the exposed surface has minute irregularities suitable for the light-receiving surface electrode (2) of the photovoltaic device. 1000-5000 Å, spacing between protrusions 2000-toooo.

人のほぼ三角錐状の凹凸面(2tex)が付与きれた受
光面電極(2)が形成される0例えば上記エツチング液
、液温的25°Cの条件に於いて20〜40分程度で程
度微細な凹凸面(2tex)が得られる。
A light-receiving surface electrode (2) with a roughly triangular pyramid-shaped uneven surface (2 tex) is formed.For example, using the above etching solution, it takes about 20 to 40 minutes at a liquid temperature of 25°C. A finely uneven surface (2 tex) is obtained.

第5図及び第6図は上記エツチング処理により凹凸化さ
れる前の160層(5)の粒子構造を示す走査顕微鏡写
真であって、第5図は断面状態であり、第6図は露出面
に対して傾斜角80度の方向から臨んだ状態で、両者の
倍率は等しくなく写真の下段に夫々のスケールが記しで
ある。第7図及び第8図は上記第5図及び第6図に示さ
れた160層(5)を上記エツチング処理により凹凸化
した後の受光面電極(2)の粒子構造を示す走査顕微鏡
写真であって、第7図は第5図と同倍率の断面状態であ
り、第8図は第6図と同倍率の露出面(凹凸面(2te
x))に対して傾斜角80度の方向から臨んだ状態であ
る。
Figures 5 and 6 are scanning micrographs showing the grain structure of the 160 layer (5) before it is made uneven by the etching process, with Figure 5 showing the cross-sectional state and Figure 6 showing the exposed surface. When viewed from a direction with an inclination angle of 80 degrees, the magnifications of both are not equal, and the respective scales are indicated at the bottom of the photograph. Figures 7 and 8 are scanning micrographs showing the particle structure of the light-receiving surface electrode (2) after the 160 layer (5) shown in Figures 5 and 6 has been made uneven by the etching process. 7 shows the cross-sectional state at the same magnification as FIG. 5, and FIG. 8 shows the exposed surface (uneven surface (2te) at the same magnification as FIG.
This is a state viewed from a direction with an inclination angle of 80 degrees with respect to x)).

尚、参考までに第9図及び第10図に第3図に相当する
凹凸加工の途中状態に於ける160層(5)の粒子構造
の断面状態及び傾斜角80度の方向から臨んだ状態の走
査顕微鏡写真を示す。
For reference, Figures 9 and 10 show the cross-sectional state of the grain structure of the 160 layer (5) in the middle of roughening processing, which corresponds to Figure 3, and the state viewed from the direction with an inclination angle of 80 degrees. A scanning micrograph is shown.

この顕微鏡写真からIC0層(5)の異方性エツチング
レートにより、その露出面から支持基板(1)方向に均
一にエツチング除去されることなく凹凸面(2tex)
が形成されていることは明らかである。
This micrograph shows that due to the anisotropic etching rate of the IC0 layer (5), the exposed surface is not uniformly etched away in the direction of the support substrate (1), resulting in an uneven surface (2 tex).
It is clear that a is formed.

この様にして凹凸面(2tax)が付与されたTCOの
受光面電極(2)を組込んだ光起電力装置を評価するた
めに、斯る凹凸面(2tex)に上記特公昭53−37
718号公報に示されたpin接合を有するアモルファ
スシリコンの半導体光活性層(3)とアルミニウム電極
の背面電極(4)とを順次積層した光起電力装置を作製
し、その反射率をほぼ可視光帯域に亘って測定したとこ
ろ、第11図の反射特性を得た。一方、斯る本発明の凹
凸加工きれた工COを受光面電極(2)とした光起電力
装置に代って、第2図及び第7図、第8図に示した凹凸
加工する以前の10層(5)を受光面電極とした光起電
力装置の反射特性を測定し、その結果が第12図に示し
である。斯る第12図の反射特性を見ると、約450n
m、約650nm以上の波長に対して断続的に20%以
上の反射率を呈していたのに対し、本発明による凹凸な
受光面電極(2)を用いた光起電力装置に於いては約4
00〜800nmの可視光帯域に亘ってほぼ一定した1
0%以下の反射率を呈するに止まった。この反射率の低
域は光電変換作用をなす半導体光活性層(3〉内に多く
の光を入射せしめることを意味し、この様な光起電力装
置にあっては光電変換率を上昇せしめることができる。
In order to evaluate a photovoltaic device incorporating a TCO light-receiving surface electrode (2) provided with an uneven surface (2tax) in this way, the above-mentioned Japanese Patent Publication No. 53-37 was applied to the uneven surface (2tex).
A photovoltaic device was fabricated in which an amorphous silicon semiconductor photoactive layer (3) having a pin junction and a back electrode (4) of an aluminum electrode were sequentially laminated as shown in Publication No. When measurements were made over the band, the reflection characteristics shown in FIG. 11 were obtained. On the other hand, instead of a photovoltaic device using the unevenly processed CO of the present invention as the light-receiving surface electrode (2), a photovoltaic device using the unevenly processed CO as shown in FIGS. 2, 7, and 8, The reflection characteristics of a photovoltaic device using the 10th layer (5) as a light-receiving surface electrode were measured, and the results are shown in FIG. Looking at the reflection characteristics in Figure 12, it is approximately 450n.
In contrast, in the photovoltaic device using the uneven light-receiving surface electrode (2) of the present invention, the reflectance was intermittently over 20% for wavelengths of approximately 650 nm or more. 4
1, which is almost constant over the visible light band from 00 to 800 nm.
The reflectance remained below 0%. This low range of reflectance means that more light is allowed to enter the semiconductor photoactive layer (3) that performs photoelectric conversion, and in such photovoltaic devices, it increases the photoelectric conversion rate. I can do it.

第13図乃至第16図は本発明の比較例として従来の技
術の項で述べた支持基板(1)に予め凹凸表面(1te
x)を付与し、その凹凸表面(ltax)上に10層(
5)を形成したものを示し、第13図は模式的断面図、
第14図はそのTCO層(5)の粒子構造の断面状態を
示す走査顕微鏡写真、第15図は同じく粒子構造を傾斜
角80度の方向から臨んだ走査顕微鏡写真及び第16図
は斯る粒子構造のTCO層〈5)を光起電力装置の受光
面電極としたときの反射特性図である。斯る走査顕微鏡
写真の倍率は、第14図は第5図及び第7図と同じであ
り、第15図は第6図及び第8図と同一である。また反
射特性を測定する光起電力装置の半導体光活性層(3)
及びアルミニウムの背面電極(4)ともに第11図、第
12図のものと同時に形成きれている。従って、この先
行技術に開示されたTCO層(5)を光起電力装置の受
光面電極として用いても、本発明の凹凸加工きれた受光
面電極(2)を備えた光起電力装置の反射特性に対して
特に600nmの長波長帯域で劣っていることが明らか
である。
13 to 16 show a support substrate (1) having an uneven surface (1te) as a comparative example of the present invention.
x) and 10 layers (
5) is shown, and FIG. 13 is a schematic cross-sectional view,
Fig. 14 is a scanning micrograph showing the cross-sectional state of the grain structure of the TCO layer (5), Fig. 15 is a scanning micrograph showing the grain structure from a direction with an inclination angle of 80 degrees, and Fig. 16 is a scanning micrograph showing the grain structure of the TCO layer (5). FIG. 6 is a reflection characteristic diagram when the TCO layer of the structure (5) is used as a light-receiving surface electrode of a photovoltaic device. The magnification of such scanning micrographs is the same in FIG. 14 as in FIGS. 5 and 7, and in FIG. 15 as in FIGS. 6 and 8. Also, the semiconductor photoactive layer (3) of a photovoltaic device whose reflection properties are measured.
Both the aluminum back electrode (4) and the aluminum back electrode (4) were formed at the same time as those in FIGS. 11 and 12. Therefore, even if the TCO layer (5) disclosed in this prior art is used as the light-receiving surface electrode of a photovoltaic device, the reflection of the photovoltaic device equipped with the unevenly processed light-receiving surface electrode (2) of the present invention is It is clear that the characteristics are particularly poor in the long wavelength band of 600 nm.

(ト) 発明の効果 本発明は以上の説明から明らかな如く、半導体光活性層
との界面側に高低差約1000〜5000Å、凸部と凸
部との間隔約2000〜toooo人の凹凸面を備えた
平均粒径約500〜2000人のTCOからなる受光面
電極を用いたので、受光面電極と半導体光活性層との界
面に於ける入射光の反射損失と、比抵抗の増大、光透過
率の減少及び支持基板との密着力の低下を同時に解決す
ることができ、光電変換効率を総合的に上昇せしめ得る
(G) Effects of the Invention As is clear from the above description, the present invention has an uneven surface on the interface side with the semiconductor photoactive layer with a height difference of about 1000 to 5000 Å and a distance between the convex parts of about 2000 to too much. Since we used a light-receiving surface electrode made of TCO with an average particle size of about 500 to 2,000 people, we could reduce the reflection loss of incident light at the interface between the light-receiving surface electrode and the semiconductor photoactive layer, increase in specific resistance, and light transmission. It is possible to simultaneously solve the problem of a decrease in conversion rate and a decrease in adhesion to a support substrate, and to increase the photoelectric conversion efficiency overall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明光起電力装置の一実施例を示す模式的断
面図、第2図乃至第4図は本発明光起電力装置に用いら
れる受光面電極の凹凸化方法を説明するための状態別模
式的断面図、第5図及び第6図は凹凸化される前の透光
性導電酸化物の粒子構造の断面状態及び傾斜角80度の
方向から臨んだ状態を示す走査顕微鏡写真、第7図及び
第8図は凹凸化された後の透光性導電酸化物の粒子構造
断面状態及び傾斜角80度の方向から臨んだ状態を示す
走査顕微鏡写真、第9図及び第10図は第3図に相当す
る凹凸加工の途中状態に於ける透光性導電酸化物の粒子
構造の断面状態及び傾斜角80度の方向から臨んだ状態
の走査顕微鏡写真、第11図は本発明光起電力装置の反
射特性図、第12図は従来装置の反射特性図、第13図
は本発明の比較例として用いられた透光性導電酸化物基
板の模式的断面図、第14図及び第15図は上記第13
図に示した本発明比較例に於ける透光性導電酸化物の粒
子構造の断面状態及び傾斜角80度の方向から臨んだ状
態を示す走査顕微鏡写真、第16図は本発明比較例の反
射特性図、を夫々示している。 (1)・・・透光性支持基板、(2)・・・受光面電極
、(2tex)・・・凹凸面、(3)・・・半導体光活
性層、(4)・・・背面電極。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the photovoltaic device of the present invention, and FIGS. 2 to 4 are diagrams for explaining a method of making the light-receiving surface electrode uneven for use in the photovoltaic device of the present invention. Schematic cross-sectional views by state; FIGS. 5 and 6 are scanning micrographs showing the cross-sectional state of the particle structure of the transparent conductive oxide before it is roughened, and the state viewed from a direction with an inclination angle of 80 degrees; Figures 7 and 8 are scanning micrographs showing the cross-sectional state of the grain structure of the translucent conductive oxide after it has been made uneven, and the state viewed from an angle of inclination of 80 degrees, and Figures 9 and 10 are Fig. 3 shows a cross-sectional state of the particle structure of the translucent conductive oxide in the middle of roughening process, and a scanning micrograph of the state viewed from the direction of the inclination angle of 80 degrees, and Fig. 11 shows the photovoltaic material of the present invention 12 is a reflection characteristic diagram of a conventional device; FIG. 13 is a schematic cross-sectional view of a transparent conductive oxide substrate used as a comparative example of the present invention; FIGS. 14 and 15. The figure is number 13 above.
Figure 16 is a scanning micrograph showing the cross-sectional state of the particle structure of the transparent conductive oxide in the comparative example of the present invention and the state viewed from a direction with an inclination angle of 80 degrees. Characteristic diagrams are shown respectively. (1)...Transparent support substrate, (2)...Light-receiving surface electrode, (2tex)...Uneven surface, (3)...Semiconductor photoactive layer, (4)...Back electrode .

Claims (1)

【特許請求の範囲】[Claims] (1)透光性支持基板の平坦面に受光面電極、半導体光
活性層及び背面電極をこの順序で積層した光起電力装置
であって、上記受光面電極は平均粒径約500〜200
0Åの透光性導電酸化物からなると共に、この受光面電
極は半導体活性層との界面側に高低差約1000〜50
00Å、凸部と凸部との間隔約2000〜10000Å
の凹凸面を備えたことを特徴とした光起電力装置。
(1) A photovoltaic device in which a light-receiving surface electrode, a semiconductor photoactive layer, and a back electrode are laminated in this order on a flat surface of a light-transmitting support substrate, wherein the light-receiving surface electrode has an average particle size of approximately 500 to 200.
This light-receiving surface electrode is made of a transparent conductive oxide with a thickness of 0 Å, and has a height difference of about 1000 to 50 Å on the interface side with the semiconductor active layer.
00 Å, distance between protrusions approximately 2000 to 10000 Å
A photovoltaic device characterized by having an uneven surface.
JP60131285A 1985-06-17 1985-06-17 Photovoltaic device Granted JPS61288473A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60131285A JPS61288473A (en) 1985-06-17 1985-06-17 Photovoltaic device
US06/872,684 US4732621A (en) 1985-06-17 1986-06-10 Method for producing a transparent conductive oxide layer and a photovoltaic device including such a layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131285A JPS61288473A (en) 1985-06-17 1985-06-17 Photovoltaic device

Publications (2)

Publication Number Publication Date
JPS61288473A true JPS61288473A (en) 1986-12-18
JPH0328073B2 JPH0328073B2 (en) 1991-04-17

Family

ID=15054375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131285A Granted JPS61288473A (en) 1985-06-17 1985-06-17 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61288473A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0399477A (en) * 1989-09-12 1991-04-24 Canon Inc Solar cell
JP2862174B2 (en) * 1987-05-22 1999-02-24 グラステツク・ソーラー・インコーポレーテツド Substrates for solar cells
US6362414B1 (en) 1999-05-31 2002-03-26 Kaneka Corporation Transparent layered product and glass article using the same
US6444898B1 (en) 1999-06-18 2002-09-03 Nippon Sheet Glass Co., Ltd. Transparent layered product and glass article using the same
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
US6498380B1 (en) 1999-06-18 2002-12-24 Nippon Sheet Glass Co., Ltd. Substrate for photoelectric conversion device, and photoelectric conversion device using the same
US7179527B2 (en) 2001-10-19 2007-02-20 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
JP2009531842A (en) * 2006-03-30 2009-09-03 ユニヴェルスィテ ドゥ ヌシャテル Uneven transparent conductive layer and method for producing the same
US7608294B2 (en) 2003-11-18 2009-10-27 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
WO2011161961A1 (en) 2010-06-23 2011-12-29 Jx日鉱日石エネルギー株式会社 Photoelectric conversion element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229606B2 (en) * 2000-11-21 2009-02-25 日本板硝子株式会社 Base for photoelectric conversion device and photoelectric conversion device including the same
CN109346556B (en) * 2018-09-21 2020-02-21 中国科学院半导体研究所 Preparation method of optically rough and electrically flat transparent conductive substrate

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2862174B2 (en) * 1987-05-22 1999-02-24 グラステツク・ソーラー・インコーポレーテツド Substrates for solar cells
JPH0399477A (en) * 1989-09-12 1991-04-24 Canon Inc Solar cell
US6362414B1 (en) 1999-05-31 2002-03-26 Kaneka Corporation Transparent layered product and glass article using the same
US6444898B1 (en) 1999-06-18 2002-09-03 Nippon Sheet Glass Co., Ltd. Transparent layered product and glass article using the same
US6498380B1 (en) 1999-06-18 2002-12-24 Nippon Sheet Glass Co., Ltd. Substrate for photoelectric conversion device, and photoelectric conversion device using the same
JP2002352956A (en) * 2001-03-23 2002-12-06 Mitsubishi Chemicals Corp Thin-film light emitting substance and manufacturing method therefor
US7179527B2 (en) 2001-10-19 2007-02-20 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7364808B2 (en) 2001-10-19 2008-04-29 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7883789B2 (en) 2001-10-19 2011-02-08 Asahi Glass Company, Limited Substrate with transparent conductive oxide film, process for its production and photoelectric conversion element
US7608294B2 (en) 2003-11-18 2009-10-27 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
US7846562B2 (en) 2003-11-18 2010-12-07 Nippon Sheet Glass Company, Limited Transparent substrate with transparent conductive film, method of manufacturing the same, and photoelectric conversion element including the substrate
JP2009531842A (en) * 2006-03-30 2009-09-03 ユニヴェルスィテ ドゥ ヌシャテル Uneven transparent conductive layer and method for producing the same
WO2011161961A1 (en) 2010-06-23 2011-12-29 Jx日鉱日石エネルギー株式会社 Photoelectric conversion element
US8802971B2 (en) 2010-06-23 2014-08-12 Jx Nippon Oil & Energy Corporation Photoelectric conversion element

Also Published As

Publication number Publication date
JPH0328073B2 (en) 1991-04-17

Similar Documents

Publication Publication Date Title
JP2908067B2 (en) Substrate for solar cell and solar cell
CA1211826A (en) Realization of a thin film solar cell with a detached reflector
US4644091A (en) Photoelectric transducer
JP2814361B2 (en) Manufacturing method of photodetector
US4663188A (en) Method for making a photodetector with enhanced light absorption
JP2504378B2 (en) Method for manufacturing solar cell substrate
WO1999063600A1 (en) Silicon-base thin-film photoelectric device
EP0102204A1 (en) An optically enhanced photovoltaic device
JPS61288473A (en) Photovoltaic device
JP2000252500A (en) Silicon thin-film photoelectric conversion device
JP4789131B2 (en) Solar cell and method for manufacturing solar cell
JP2000058892A (en) Silicon based thin film photoelectric converter
JPS62209872A (en) Photoelectric conversion element
JP2652087B2 (en) Photovoltaic device and manufacturing method thereof
JPS61241983A (en) Photovoltaic device
JPH0418646B2 (en)
JP3196155B2 (en) Photovoltaic device
JPS62123781A (en) Photoelectric conversion element
JP3437422B2 (en) Method for forming indium oxide thin film, substrate for semiconductor device using the indium oxide thin film, and photovoltaic device
JPH05343715A (en) Thin film solar cell
JPS59125669A (en) Solar battery
JPS6288927A (en) Color sensor
JP2000312014A (en) Thin-film photoelectric conversion device
JP2994716B2 (en) Photovoltaic device
JPS62219969A (en) Manufacture of semiconductor photodetector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term