JPS6310125A - Plane type optical control element - Google Patents

Plane type optical control element

Info

Publication number
JPS6310125A
JPS6310125A JP15640486A JP15640486A JPS6310125A JP S6310125 A JPS6310125 A JP S6310125A JP 15640486 A JP15640486 A JP 15640486A JP 15640486 A JP15640486 A JP 15640486A JP S6310125 A JPS6310125 A JP S6310125A
Authority
JP
Japan
Prior art keywords
layer
light
electric field
light beam
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15640486A
Other languages
Japanese (ja)
Other versions
JPH0656456B2 (en
Inventor
Masahiko Fujiwara
雅彦 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61156404A priority Critical patent/JPH0656456B2/en
Publication of JPS6310125A publication Critical patent/JPS6310125A/en
Publication of JPH0656456B2 publication Critical patent/JPH0656456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To take a high erasion ratio at a low voltage, and to operate at a high speed by constituting the titled element of a semiconductor optical waveguide which contains a specific multiple quantum well structure and a layer on which a diffraction grating is formed, in a part of a waveguide layer and a clad layer, a means for applying an electric field, and a means for leading roughly vertically a light beam to each layer. CONSTITUTION:When a light beam 10a of lambda=1.32mum is made incident from on a mesa 7, at first, a diffraction grating 5 does not satisfy a Bragg condition, and the light beam passes through a substrate as it is and emitted as a light beam 10b. Subsequently, when a reverse bias is applied between electrodes 6, 8, an electric field is applied to a multiple quantum well (MQW) waveguide layer 3, an absorption coefficient increases against the light beam of lambda=1.32mum and the emitted light 10b starts an attenuation, and also. the Bragg condition is varied by a variation of a refractive index of the MQW, and in some electric field, the incident light 10a is couple to a waveguide light 10c, the emitted light 10c is decreased greatly, and a plane type optical gate element can be realized. In such a way, a large erasion ratio can be obtained without taking greatly an optical absorption length (MQW layer thickness), and as for an operation, speed, several GHz is obtained easily by reducing a CR time constant which is determined by an element capacity Q and a series resistance R.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は基板にほぼ垂直な方向に元の人、出射を行なう
平面型光制御素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a planar light control element that emits light in a direction substantially perpendicular to a substrate.

(従来の技術) 近年、光信号t−光のままで処理する光変換、光コンピ
ユーテイング等の研究が盛んになっている。
(Prior Art) In recent years, research into optical conversion, optical computing, etc., which processes optical signals as they are (t-light), has become active.

元の持つ並列処理性、画偉信号の取シ扱い等1考えると
、1つの面内に2次元アレイ状元信号処理デバイスを配
置し、面に垂直な方向に光信号の入出射を行なう、謂ゆ
る平面型光制御素子が重要なデバイスとなる。
Considering the parallel processing ability of the original, the handling of image signals, etc.1, it is possible to arrange a two-dimensional array of original signal processing devices in one plane and input and output optical signals in the direction perpendicular to the plane. Planar light control elements will become important devices.

従来このような千面聾元制御素子としては液晶や強誘電
体の電気光学効果を利用した元シャッタがあったが、動
作が遅い、高い駆動電圧が必要などの欠点があり、広く
用いられるには至っていない。また、雑誌アプライド・
フィツクス・レターズ(Applied Physic
s Letters)第41巻。
Conventional shutters that utilize the electro-optical effect of liquid crystals or ferroelectrics have been used as such control elements for a thousand-sided deafening element, but they have drawbacks such as slow operation and the need for high drive voltage, so they are not widely used. has not yet been reached. In addition, the magazine Applied
Fixture Letters (Applied Physics
s Letters) Volume 41.

1982年、413〜415頁及び同じ雑誌の第44巻
1982, pp. 413-415 and volume 44 of the same magazine.

1984年16〜18頁に述べられているように半導体
層や多重量子井戸構造に電界を印加した際の吸収端の移
動(電界吸収効果)を利用した素子も報告されている。
As described in 1984, pp. 16-18, devices that utilize the movement of absorption edges (electric field absorption effect) when an electric field is applied to a semiconductor layer or multiple quantum well structure have also been reported.

この素子は累励起の効果を利用しているため本質的に応
答速度が速く、半導体材料を用いているので他の高速電
子デバイス、元デバイスと集積化できる等の利点を持っ
ている。
Since this element utilizes the effect of cumulative excitation, its response speed is inherently fast, and since it uses a semiconductor material, it has the advantage of being able to be integrated with other high-speed electronic devices and original devices.

第4図は、この素子の断面図を示すものである。FIG. 4 shows a cross-sectional view of this element.

第4図を用いてまずこの素子の製作について説明する。First, the fabrication of this element will be explained using FIG. 4.

n+−GaAs基板41上に分子線エピタキシャル(M
BE)法によりn+−A/GaAsコンタクト層42.
1−GaAs/AlGaAs多重量子井戸(MQW)層
43 、 P”−AA!GaAs :I7タクト層44
゜全成長する。このウェハのエピタキシャル層側円形(
径95μfF1)のフォトレジストマスクラ形成し、エ
ツチングによ’)n”−AIGaAs コンタクト層4
2の途中迄を除去し、円柱状のメサを形成する。次にプ
ラズマCVD法により5IsN4膜46をエピタキシャ
ル層側に成膜しメサ上面の5ixN4膜を7オトレジス
ト1マスクにリング状に除去し、続いてAuの蒸着、リ
フトオフによりリング状の電極45を形成する。ウェハ
の裏面にはAu5ui蒸着後、エピタキシャル層側の円
柱状のメサの真下の部分のAuSnを除去して出来た電
極48をマスクとしてn +−G a A s基板を除
去する。
Molecular beam epitaxial (M
n+-A/GaAs contact layer 42.
1-GaAs/AlGaAs multiple quantum well (MQW) layer 43, P”-AA!GaAs:I7 tact layer 44
゜Full growth. The epitaxial layer side of this wafer is circular (
A photoresist masking layer with a diameter of 95 μf F1) is formed and etched to form an n”-AIGaAs contact layer 4.
Part 2 is removed up to the middle to form a cylindrical mesa. Next, a 5IsN4 film 46 is formed on the epitaxial layer side by plasma CVD, and the 5ixN4 film on the upper surface of the mesa is removed in a ring shape using a 7-photoresist 1 mask, followed by Au evaporation and lift-off to form a ring-shaped electrode 45. . After Au5ui is deposited on the back surface of the wafer, the n + -GaAs substrate is removed using the electrode 48 formed by removing the AuSn directly below the columnar mesa on the epitaxial layer side as a mask.

ここで用いているMQW構造は半導体層をそれよシパン
ドギャップの広い半導体ではさんだ量子井戸(QW)を
層厚方向に多重に有するもので、各QW内での電子、正
孔の2次元化によシバルクとは異なる物性を示すことか
ら注目されているものである。具体的にはそれぞれ95
A厚のG a A sウェルとAI G a A sバ
リアの50周期から成る構造を用いている。
The MQW structure used here has multiple quantum wells (QWs) in the layer thickness direction, with a semiconductor layer sandwiched between semiconductors with a wide band gap, and electrons and holes within each QW are two-dimensional. It is attracting attention because it exhibits physical properties that are different from Yoshibulk. Specifically, 95 each
A structure consisting of 50 periods of A-thick GaAs wells and AI GaAs barriers is used.

GaAs/AJGaAs  MQWではそのポテンシャ
ル構造により、電子、正孔共にG a A sウェル内
に閉じ込められる。電子、正孔それぞれの井戸深さは価
電子帯伝導帯のバンド不連続量により決まる。
In GaAs/AJGaAs MQW, both electrons and holes are confined within the GaAs well due to its potential structure. The depth of each well for electrons and holes is determined by the amount of band discontinuity in the valence band conduction band.

井戸深さが充分深いと近似すれば層厚方向をz方向とし
て、電子の全エネルギーは2方向に量子化となる。但し
ここに、上はディラック定数2m“は電子の有効質量、
nは量子数(n=1.2,3゜・・・)、L2はウェル
幅である。バルク状態での電子のエネルギーは全運動1
t−pとしてp/2m”と書ける。これに対応するエネ
ルギー波動の波長はドブロイ波長λ。と呼ばれ、λo=
h/p (h=ニブランク数)と書けるが、QW構造に
於て量子効化が顕著になるためにはL2≦λ。であるこ
とが必要である。今考えている系ではλ。は200〜A
 I G a A sバリγ層はあまシ薄いとウェル間
の結合が生じるため95Aとして各ウェル間の結合が起
きない構造としている。
Approximating that the well depth is sufficiently deep, the total energy of electrons is quantized in two directions, with the layer thickness direction being the z direction. However, here, the Dirac constant 2m" above is the effective mass of the electron,
n is the quantum number (n=1.2, 3°...), and L2 is the well width. The energy of an electron in the bulk state is the total motion 1
It can be written as "p/2m" as t-p.The wavelength of the energy wave corresponding to this is called de Broglie wavelength λ. λo=
It can be written as h/p (h=Nyblank number), but in order for the quantum effect to become significant in the QW structure, L2≦λ. It is necessary that In the system we are currently considering, λ. is 200~A
If the IGaAs barrier γ layer is too thin, bonding will occur between the wells, so the structure is set to 95A so that bonding between the wells does not occur.

第4図に示した構造はp −i −nダイオード構造と
なっておシ、電極46.48間に逆バイアスを印加する
とi−MQW層43に有効に電界が印加される。この電
界によfiMQWの吸収端は長波長側に移動するので、
無電界時の吸収端よシ長波長側の元に対しては、電界の
印加によpMQW層の吸収が増大する。従って、円柱状
メサ上部のSi3N4膜の中心部46aに層に垂直に光
を通すと、(吸収端よシ長波長の元)電界の印加によシ
この光を変調することができる。
The structure shown in FIG. 4 is a p-i-n diode structure, and when a reverse bias is applied between the electrodes 46 and 48, an electric field is effectively applied to the i-MQW layer 43. This electric field moves the absorption edge of fiMQW toward longer wavelengths, so
For elements on the long wavelength side of the absorption edge in the absence of an electric field, the absorption of the pMQW layer increases by applying an electric field. Therefore, when light is passed perpendicularly to the central portion 46a of the Si3N4 film above the cylindrical mesa, the light can be modulated by applying an electric field (at a longer wavelength than the absorption edge).

(発明が解決しようとする問題点) しかしながら、これらの素子では元の透過方向と電界の
印加方向が同一であるため、吸収長(ここでは層厚)を
長くすると電界強度が強くできず、逆に電界強度を高く
するため吸収長を短くすると消光比が充分とれない。報
告されているデータによれば電圧10■程度で消光比は
数dB程度しかとれておらず、実用に供するのは難しい
(Problem to be solved by the invention) However, in these elements, since the original transmission direction and the direction of electric field application are the same, increasing the absorption length (here, layer thickness) does not increase the electric field strength, and vice versa. If the absorption length is shortened to increase the electric field strength, a sufficient extinction ratio cannot be obtained. According to reported data, the extinction ratio is only about several dB at a voltage of about 10 µ, making it difficult to put it to practical use.

本発明はこのような従来の平面型光制御素子の欠点を除
き、低電圧で高消去比がとれ、しかも高速動作が可能な
平面型光制御素子を提供すること:である。
An object of the present invention is to provide a planar light control element which eliminates the drawbacks of the conventional planar light control element, has a high erasing ratio at low voltage, and can operate at high speed.

(問題を解決するための手段) 本発明による平面型光制御素子は、ドブロイ波長程度の
厚みの第1の半導体層を前記第1の半導体層よシもバン
ドギャップの広い第2の半導体層ではさんだ量子井戸を
層厚方向に多重に有する多重量子井戸構造と回析格子の
形成された層とを導波路層、クラッド層の少なくとも1
部に含む半導体光導波路と前記多重量子井戸構造に電界
を印加する手段と前記光導波路の回析格子が形成された
部分に各層に略垂直に光を導く手段とから成ることを特
徴とする。
(Means for Solving the Problem) In the planar light control element according to the present invention, a first semiconductor layer having a thickness of approximately the de Broglie wavelength is formed into a second semiconductor layer having a wider bandgap than the first semiconductor layer. A multi-quantum well structure having multiple sandwiched quantum wells in the layer thickness direction and a layer on which a diffraction grating is formed are at least one of the waveguide layer and the cladding layer.
A semiconductor optical waveguide included in the optical waveguide and a means for applying an electric field to the multi-quantum well structure, and a means for guiding light substantially perpendicularly to each layer to a portion of the optical waveguide where a diffraction grating is formed.

(作用) 本発明は量子井戸(QW)構造の電界による複素屈折率
n=n−jkの変化を利用したものである。
(Function) The present invention utilizes a change in the complex refractive index n=n-jk due to an electric field in a quantum well (QW) structure.

まずこの電界による複素屈折率nの変化について説明す
る。
First, the change in the complex refractive index n due to this electric field will be explained.

第2図はGaAs/AIGaAsMQW構造に電界E″
lr:MQWの各QWに垂直に印加した際の光吸収スペ
クトルの変化を測定した結果である。電界Eによ#)Q
Wのポテンシャル構造が傾き、量子準位の移動、電子・
正孔波動関数のQW内でのかたよりが生じるため電界E
i印加しない時の吸収端λf近傍よシ長波長側では吸収
係数の増大、吸収端より短波長側では逆に吸収係数の減
少が生じる。伺、MQW構造では半導体本来の基礎吸収
スペクトルに、エキシトン吸収ピークが重なっておシ、
更に不純物等による吸収端での吸収I杭列きもあるため
、厳密には吸収端λfの位置は特定しにくい。
Figure 2 shows the electric field E'' in the GaAs/AIGaAs MQW structure.
lr: This is the result of measuring the change in the light absorption spectrum when applying light perpendicularly to each QW of MQW. Due to the electric field E#)Q
The potential structure of W is tilted, the quantum level moves, the electrons
Because the hole wave function is shifted within the QW, the electric field E
When no i is applied, the absorption coefficient increases on the longer wavelength side near the absorption edge λf, and conversely, the absorption coefficient decreases on the shorter wavelength side than the absorption edge. In the MQW structure, the exciton absorption peak overlaps with the fundamental absorption spectrum inherent in semiconductors.
Furthermore, since there is also an absorption I pile row at the absorption edge due to impurities, etc., it is difficult to specify the position of the absorption edge λf in a strict sense.

ここでは吸収スペクトラムの急激に変化する部分の接線
と吸収係数0の直線の交点の波長を吸収端と呼ぶが厳密
には意味はない。一方、複素屈折率富=n−jkのkは
吸収係数αとに=λa/4π(但しλは波長)の関係が
あハ更に複素屈折率nの実部nと虚部にはクラマース・
クローニツヒの関係によシ関係付けられている。このた
め、上述のような吸収係数αの変化は複素屈折率実部n
の変化ももたらす。
Here, the wavelength at the intersection of the tangent to the rapidly changing portion of the absorption spectrum and the straight line with the absorption coefficient of 0 is called the absorption edge, but it has no strict meaning. On the other hand, k of the complex refractive index wealth = n-jk has a relationship with the absorption coefficient α of = λa/4π (where λ is the wavelength).Furthermore, the real part n and imaginary part of the complex refractive index n have the Kramers equation.
It is related by Kronitz's relationship. Therefore, the change in the absorption coefficient α as described above is due to the real part of the complex refractive index n
It also brings about changes.

第3図はこのような関係をもとにある電界強度に於ける
吸収係数変化(Δα)、屈折率変化(Δn)のスペクト
ルの概要を示したものである。第3図に示すようにλf
くλくλ!の範囲ではΔαは正。
FIG. 3 shows an outline of the spectrum of absorption coefficient change (Δα) and refractive index change (Δn) at a certain electric field intensity based on such a relationship. As shown in Figure 3, λf
Kuλkuλ! Δα is positive in the range of .

Δnは負、λ1くλではΔα、Δn共に正の符号を持ち
その絶対値は10−2のオーダにも達する。
Δn is negative, and at λ1 and λ, both Δα and Δn have positive signs, and their absolute values reach the order of 10 −2 .

一方1元導波路の導波路層若しくはクラッド層に形成し
た回析格子はグレーティング・カプラとして働くことが
知られており、その周期Aが波長λとの間に次の関係(
ブラッグ条件)を持つ時、はぼ層に垂直に入射する元に
対するカプラとなる。
On the other hand, it is known that a diffraction grating formed in the waveguide layer or cladding layer of a one-dimensional waveguide acts as a grating coupler, and the relationship between its period A and wavelength λ is as follows (
Bragg condition), it becomes a coupler for the element that is incident perpendicularly to the layer.

A=mλ72g ここにn111元導波路の実効屈折率、mは偶数である
。Aが1定としてnyが変化したとするとブラッグ条件
を満たす波長の変化はd2!λ=dny7n。
A=mλ72g where the effective refractive index of the n111-element waveguide, m, is an even number. Assuming that A is constant and ny changes, the change in wavelength that satisfies the Bragg condition is d2! λ=dny7n.

となる。従ってグレーティング・カプラの光導波路をM
QW構造により作り電界印加によりnpt:10  変
化させればλを例えば1.3μmの近傍で100A程度
以上変化させることができる。入射光波長がブラッグ条
件を満足しなければ光導波路に結合されず入射光はその
まま透過する。一方、ngを変化させることによシ入射
光がブラッグ条件を満足するようにすれば入射光は光導
波路に導波光として結合され各層を透過して出力はされ
ない。
becomes. Therefore, the optical waveguide of the grating coupler is M
By making a QW structure and changing npt:10 by applying an electric field, it is possible to change λ by about 100 A or more in the vicinity of 1.3 μm, for example. If the wavelength of the incident light does not satisfy the Bragg condition, the incident light will not be coupled to the optical waveguide and will pass through as is. On the other hand, if the incident light is made to satisfy the Bragg condition by changing ng, the incident light is coupled to the optical waveguide as guided light, passes through each layer, and is not output.

つまジグレーティング・カブ2を平面型の元ゲート素子
として用いることができる訳で、ng の変化を得る丸
めにMQWの電界による屈折率変化を利用すれば効果が
大きく応答速度が速いため高速/高効率の素子を得るこ
とができる。本発明は以上のような原理に基づくもので
ある。
The Tsumji grating Cub 2 can be used as a planar original gate element, and if the refractive index change due to the electric field of MQW is used for rounding to obtain the change in ng, the effect is large and the response speed is fast, so it can be used at high speeds/high speeds. A highly efficient element can be obtained. The present invention is based on the above principle.

(実施例) 第1図は本発明による平面型光制御素子の1実施例の断
面構造を示すものである。ここではInGaAsP/I
nP素材料を用いた場合について示しである。まず第1
図を用いて本実施例の製作について説明する。n+−I
nP基板1上にn+−InPバッフ丁層2を介して1−
InGaAsP/InPMQW元導波層3 + p I
nGaAsP層4’1VPE法によシ成長した。1−I
nGaAsP/InP MQW元導良導波層3p −I
nGaAsP層4の吸収端はそれぞれ1.3 am 、
 1.15 μmである。次にp−InGaAsP層4
上にHe−Cdレーザの2X束干渉露光法によ)回析格
子5を形成する。1−InGaAsP/InPMQW元
導波層3t−導波層とする光導波路3t=1.35μm
に於ける実効屈折率nyは3.4であり、回析格子5の
周期Aは2次のブラッグ条件を満足するように約400
OAとしている。次にp−InGaAsP層4上にp型
オーム性電極6となるAu/ Z uをドーナツ状に形
成し、ドーナツの外部をエツチングによシ除去し円筒状
のメブ7を形成する。最後にn”−InP基板1にメサ
7の直下の部分を除いてn型オーム性電極8を形成した
(Embodiment) FIG. 1 shows a cross-sectional structure of one embodiment of a planar light control element according to the present invention. Here, InGaAsP/I
This shows the case where nP material is used. First of all
Manufacturing of this example will be explained using the drawings. n+-I
1- on the nP substrate 1 through the n+-InP buffer layer 2
InGaAsP/InPMQW original waveguide layer 3 + p I
The nGaAsP layer was grown by a 4'1 VPE method. 1-I
nGaAsP/InP MQW original waveguide layer 3p-I
The absorption edges of the nGaAsP layer 4 are 1.3 am, respectively.
It is 1.15 μm. Next, p-InGaAsP layer 4
A diffraction grating 5 is formed thereon (by a 2X beam interference exposure method using a He-Cd laser). 1 - InGaAsP/InPMQW original waveguide layer 3t - Optical waveguide 3t used as waveguide layer = 1.35 μm
The effective refractive index ny is 3.4, and the period A of the diffraction grating 5 is approximately 400 to satisfy the second order Bragg condition.
It is set as OA. Next, Au/Zu, which will become the p-type ohmic electrode 6, is formed in a donut shape on the p-InGaAsP layer 4, and the outside of the donut is removed by etching to form a cylindrical meb 7. Finally, an n-type ohmic electrode 8 was formed on the n''-InP substrate 1 except for the part directly under the mesa 7.

次に本実施例の動作について説明する。メサ7の上から
λ= 1.32μ慣の元10aを入射させると、当初こ
の光に対し、回析格子5はブラッグ条件を満足せず、そ
の′!!ま基板を透過し元10bとして出射される。次
に電極6,8間に逆バイアスを印加すると、MQW導波
路層3に電界が印加され、先に述べたようにλ=1.3
2μmの元に対し吸収係数が増加し出射光10bが減衰
t−h始すると共に、MQWの屈折率変化によりブラッ
グ条件が変化し、ある電界に於て入射光10aは導波光
10Cに結合され、出射光10bは大きく減少する。つ
まり、平面型の元ゲート素子が実現できる。本実施例は
光の吸収のみを利用しているのではないため元吸収長(
MQW層浮)t−大きくとらなくても大きな消光比が可
能である。しかも制御手段は電界でありキャリアの移動
をともなわないため、動作速度は素子容量Cと直列抵抗
几で決まる08時定数を小さくすることにより数GHz
以上が容易に得られる。
Next, the operation of this embodiment will be explained. When the element 10a with λ = 1.32μ is incident from above the mesa 7, the diffraction grating 5 initially does not satisfy the Bragg condition for this light, and the '! ! The light passes through the substrate and is emitted as a source 10b. Next, when a reverse bias is applied between the electrodes 6 and 8, an electric field is applied to the MQW waveguide layer 3, and as mentioned earlier, λ=1.3
The absorption coefficient increases with respect to the original 2 μm, and the output light 10b begins to attenuate t-h, and the Bragg condition changes due to the change in the refractive index of the MQW, and the incident light 10a is coupled to the guided light 10C in a certain electric field. The output light 10b is greatly reduced. In other words, a planar original gate element can be realized. Since this example does not utilize only light absorption, the original absorption length (
MQW layer floating) A large extinction ratio is possible without increasing t. Moreover, since the control means is an electric field and does not involve movement of carriers, the operating speed can be reduced to several GHz by reducing the time constant determined by the element capacitance C and the series resistance.
The above can be easily obtained.

本実施例では回析格子の周期を一定としているため、ブ
ラッグ条件を満足する成長は非常に狭い帯域を持ってお
り、消光状態を得るには印加電圧をある一定の値に保た
ねばならない。しかし回析格子を謂ゆるチャープ回析格
子とすることKよシ印加電圧の制御の厳しさは大幅に緩
和される。回析格子の形成は本実施例のように素子の最
上部に形成する他、基板に直接格子を形成しその上に各
層を成長する方法も考えられる。n+−InP基板1は
光吸収特性を持つため吸収損失の低減のためには基板を
ある程度エッチオフした方が有利である0 以上の実施例ではInGaAs/InP系材料を例に説
明したが、他の材料系、例えばGaAs/AlGaAs
 、 I nG aA s /I nAI A s系等
にも適用可能である0 (発明の効果) 以上詳細に説明したように本発明によれば、低電圧で高
消光比がとれ、しかも高速動作が可能な平面型光制御素
子が得られる。
In this example, since the period of the diffraction grating is constant, the growth that satisfies the Bragg condition has a very narrow band, and the applied voltage must be kept at a certain value to obtain the extinction state. However, by using a so-called chirped diffraction grating as the diffraction grating, the severity of the control of the applied voltage is greatly reduced. In addition to forming the diffraction grating on the top of the element as in this embodiment, it is also possible to form the grating directly on the substrate and grow each layer thereon. Since the n+-InP substrate 1 has light absorption characteristics, it is advantageous to etch off the substrate to some extent in order to reduce absorption loss.0 In the above embodiments, InGaAs/InP material was used as an example, but other materials may be used. material system, e.g. GaAs/AlGaAs
, InGaAs / InAlAs system, etc.0 (Effects of the Invention) As explained in detail above, according to the present invention, a high extinction ratio can be obtained at low voltage, and high-speed operation can be achieved. A possible planar light control element can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による平面型光制御素子の1実施例を示
す斜視図、第2図、第3図は本発明に用いる多重量子井
戸構造の電界による複素屈折率変化を説明するための特
性図、第4図は従来の平面型光制御素子の構造、動作を
説明するための斜視図である。 1−n”−InP基板、2・・・n”−InPnアバ2
フフ −InGaAsP層、5・・・回析格子、6・・・p型
オーム性電極、7・・・メサ、8・・・n型オーム性電
極、tOa。 10b,10c・・・光。 代理人 弁理士  内 原   晋 第1図 L−n” −I n P基板 2 − n中−InP/(−z77層 3−i−InGaAsP   MQW光−し皮14・・
・p−rnGaAsPN S・・・回折梯子 6・・・P型オームa電極 7・・・メサ 8・・・n型オーA+′i@径 10a,Job+ 10c・=光 第2図 ’780 800 820 840 86゜ジ皮長(n
m)− 第3図 第4図
FIG. 1 is a perspective view showing one embodiment of a planar light control element according to the present invention, and FIGS. 2 and 3 show characteristics for explaining changes in complex refractive index due to an electric field of a multiple quantum well structure used in the present invention. 4 are perspective views for explaining the structure and operation of a conventional planar light control element. 1-n"-InP substrate, 2...n"-InPn substrate 2
Fufu-InGaAsP layer, 5... Diffraction grating, 6... P-type ohmic electrode, 7... Mesa, 8... N-type ohmic electrode, tOa. 10b, 10c...light. Agent Patent Attorney Susumu UchiharaFigure 1 L-n'' -InP substrate 2-n-InP/(-z77 layer 3-i-InGaAsP MQW light-shield 14...
・p-rnGaAsPN S...Diffraction ladder 6...P-type ohm a electrode 7...Mesa 8...n-type ohm A+'i@diameter 10a, Job+ 10c=light Fig. 2 '780 800 820 840 86° skin length (n
m) - Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] ドブロイ波長程度の厚みの第1の半導体層を前記第1の
半導体層よりもバンドギャップの広い第2の半導体層で
はさんだ量子井戸を層厚方向に多重に有する多重量子井
戸構造と回析格子の形成された層とを導波路層、クラッ
ド層の少なくとも1部に含む半導体光導波路と、前記多
重量子井戸構造に電界を印加する手段と、前記光導波路
の回析格子が形成された部分に各層に略垂直に光を導く
手段とから成ることを特徴とする平面型光制御素子。
A multi-quantum well structure having multiple quantum wells in the layer thickness direction, in which a first semiconductor layer having a thickness of about the de Broglie wavelength is sandwiched between a second semiconductor layer having a wider band gap than the first semiconductor layer, and a diffraction grating. a semiconductor optical waveguide including the formed layer in at least part of a waveguide layer or cladding layer; a means for applying an electric field to the multi-quantum well structure; and means for guiding light substantially perpendicularly to the planar light control element.
JP61156404A 1986-07-02 1986-07-02 Planar light control element Expired - Lifetime JPH0656456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61156404A JPH0656456B2 (en) 1986-07-02 1986-07-02 Planar light control element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61156404A JPH0656456B2 (en) 1986-07-02 1986-07-02 Planar light control element

Publications (2)

Publication Number Publication Date
JPS6310125A true JPS6310125A (en) 1988-01-16
JPH0656456B2 JPH0656456B2 (en) 1994-07-27

Family

ID=15627001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61156404A Expired - Lifetime JPH0656456B2 (en) 1986-07-02 1986-07-02 Planar light control element

Country Status (1)

Country Link
JP (1) JPH0656456B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204018A (en) * 1988-02-10 1989-08-16 Nec Corp Optical modulator
JPH024209A (en) * 1988-06-21 1990-01-09 Matsushita Electric Ind Co Ltd Waveguide and photodetector
JPH02154221A (en) * 1988-12-06 1990-06-13 Fujitsu Ltd Optical semiconductor device
JPH04131601U (en) * 1991-05-24 1992-12-03 積水樹脂株式会社 insect repellent sheet
FR2741489A1 (en) * 1995-11-21 1997-05-23 Thomson Csf Quantum well electromagnetic waves modulator especially inter-sub-band quantum wells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104036A (en) * 1974-01-14 1975-08-16
JPS57142608A (en) * 1981-02-27 1982-09-03 Canon Inc Optical coupler
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104036A (en) * 1974-01-14 1975-08-16
JPS57142608A (en) * 1981-02-27 1982-09-03 Canon Inc Optical coupler
JPS59116612A (en) * 1982-12-23 1984-07-05 Toshiba Corp Light modulator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01204018A (en) * 1988-02-10 1989-08-16 Nec Corp Optical modulator
JPH024209A (en) * 1988-06-21 1990-01-09 Matsushita Electric Ind Co Ltd Waveguide and photodetector
JPH02154221A (en) * 1988-12-06 1990-06-13 Fujitsu Ltd Optical semiconductor device
JPH04131601U (en) * 1991-05-24 1992-12-03 積水樹脂株式会社 insect repellent sheet
FR2741489A1 (en) * 1995-11-21 1997-05-23 Thomson Csf Quantum well electromagnetic waves modulator especially inter-sub-band quantum wells

Also Published As

Publication number Publication date
JPH0656456B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
EP0470249B1 (en) Electric field induced quantum well waveguides
US5801872A (en) Semiconductor optical modulation device
JPH02129616A (en) Light modulation apparatus and method
US5101293A (en) Electrooptic device for modulation of intensity and phase of transmitted or reflected light at discrete operating wavelengths
EP0378098B1 (en) Semiconductor optical device
JPH02272785A (en) Semiconductor device
US4549788A (en) Intensity of a light beam applied to a layered semiconductor structure controls the beam
US5093695A (en) Controllable semiconductor modulator having interleaved contacts
JPS6310125A (en) Plane type optical control element
US7233709B2 (en) Electro-absorption modulator
US5608566A (en) Multi-directional electro-optic switch
US5017974A (en) Optical modulator with superlattice having asymmetric barriers
EP0409605A2 (en) Semiconductor optical device having a variable refractive index profile
Wakita et al. Highly efficient InGaAs/InAIAs MQW waveguide phase shifter
US5535045A (en) Modulation doped quantum well waveguide modulator
JPS623221A (en) Optical modulator
US5067828A (en) Transferred electron effective mass modulator
JPS62156617A (en) Electrooptic element
KR20190136906A (en) Apparatus and method for controlling laser light propagation direction
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
WO1989006369A1 (en) Electrooptic modulator
JP3185860B2 (en) Absorption modulator
AU652479B2 (en) Electrooptic modulator
US5093746A (en) Current injection modulator
JPH07321414A (en) Field absorption-type multiple quantum well optical control element