JP3549086B2 - Semiconductor light receiving device - Google Patents

Semiconductor light receiving device Download PDF

Info

Publication number
JP3549086B2
JP3549086B2 JP00009898A JP9898A JP3549086B2 JP 3549086 B2 JP3549086 B2 JP 3549086B2 JP 00009898 A JP00009898 A JP 00009898A JP 9898 A JP9898 A JP 9898A JP 3549086 B2 JP3549086 B2 JP 3549086B2
Authority
JP
Japan
Prior art keywords
light receiving
semiconductor light
layer
light
receiving element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00009898A
Other languages
Japanese (ja)
Other versions
JPH11195809A (en
Inventor
秀樹 深野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP00009898A priority Critical patent/JP3549086B2/en
Priority to US09/184,218 priority patent/US6353250B1/en
Publication of JPH11195809A publication Critical patent/JPH11195809A/en
Priority to US10/005,705 priority patent/US6770945B2/en
Priority to US10/702,637 priority patent/US7256062B2/en
Priority to US10/702,577 priority patent/US6917032B2/en
Application granted granted Critical
Publication of JP3549086B2 publication Critical patent/JP3549086B2/en
Priority to US11/825,413 priority patent/US7575949B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体受光装置に関するものである。
【0002】
【従来の技術】
従来の屈折型半導体受光装置においては、図2に示すように、屈折型半導体受光素子の光入射端面21とシングルモード光ファイバ28などの光導波路とが対向して設置され、その間に、空気や不活性ガス等の気体が詰められている。
屈折型半導体受光素子は、n−InP基板25上に、p−InP層22、InGaAs光受光層23及びn−InP層24を積層してなる半導体多層構造の端面に内側に傾斜した光入射端面21を設けることにより、光受光層23を入射光が斜めに通過するようにしたものである。また、素子の上下面には、p電極26、n電極27を設けている。
ここで、気体は、屈折率がほぼ1であり、また、受光素子構成材料の屈折率も一定であるため、屈折型半導体受光素子の光入射端面21における屈折角は逆メサ角のみで決まることになる。
【0003】
一般に、屈折型半導体受光素子の製作工程でメサ角を決定して製作するとそのウェハ内の素子のメサ角はすべて揃ってしまう。
屈折型半導体受光素子は、屈折により光が光吸収層を斜めに通過することによて実効的な吸収長が増大することを利用としているため、このように従来技術では屈折角が一義的に決まっており、従って、実効吸収長も一定となる。
【0004】
このため、各種用途にあわせて実効吸収長を変えるためには、屈折角を変えるためにメサ角の異なるウェハを用意したり、あるいは、吸収層厚の異なるウェハを用途別に用意しなければならないという問題点がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、屈折型半導体受光素子とこれに対向して設置された光導波路よりなる半導体受光装置において、同一層構造及び同一メサ角構成の屈折型半導体受光素子を用いて用途にあわせた受光感度の調整が可能となる半導体受光装置を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決する本発明の請求項1に係る半導体受光装置は、光受光層を含む半導体多層構造よりなる受光部分と端面に表面側から離れるに従い内側に傾斜した光入射端面を、前記光受光層がある表面側から逆メサ形状のエッチングにより形成することにより、該光入射端面の受光層より基板側の部分への入射光を屈折させて、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした屈折型半導体受光素子とこれに対向して設置された光導波路よりなる半導体受光装置において、屈折型半導体受光素子と光導波路の間が屈折率が1よりも大きい固体又は液体で埋められていることにより、受光感度の調整が可能となることを特徴とする。
【0007】
屈折型半導体受光素子と光導波路の間が、屈折率が1より大きな固体又は液体で埋められることにより、屈折型半導体受光素子の光入射端面における屈折角が逆メサ角のみで決まることはなくなり、この埋め込んだ物質の屈折率で変化させることが可能となる。
従来技術とは、屈折型半導体受光素子と光導波路の間が屈折率がほぼ1の気体ではなく、屈折率が1以上の固体又は液体で埋められていることが異なる。
【0008】
〔作用〕
本発明の半導体受光装置は、屈折型半導体受光素子と光導波路の間が、屈折率が1以上の固体又は液体で埋められているため、用いる固体又は液体を適当に選び、屈折率を変化させることにより、同一層構造及び同一メサ角構成よりなる同一ウェハより切り出した屈折型半導体受光素子を用いても、受光素子入射端面での屈折角の変化が可能となり、用途にあわせた受光感度の調整が可能となる。
【0009】
【発明の実施の形態】
以下、本発明の実施の態様について、図面に示す実施例を参照して詳細に説明する。
本発明の一実施例に係る半導体受光装置を図1に示す。
この半導体受光装置は、図1に示すように、屈折型半導体受光素子の光入射端面11とシングルモード光ファイバ18とを対向して設置し、その間にポリイミド19を充填したものである。
屈折型半導体受光素子は、n−InP基板15上に、1μm厚p−InP層12、0.7μm厚InGaAs光受光層13及び1μm厚n−InP層14を積層してなる半導体多層構造の端面に内側に傾斜した光入射端面11を設けることにより、光受光層13を入射光が斜めに通過するようにしたものである。また、素子の上下面には、p電極16、n電極17を設けている。更に、素子の受光層面積は30μm×70μmである。
【0010】
光入射面11は、(001)表面のウェハをブロムメタノールを用いたウェットエッチングでは(111)A面が図のように逆メサ形状で形成され、この時の逆メサ角が55度になることを利用して形成した。
もちろん、逆メサ部は他のウェットエッチング液やドライエッチング法を用いて形成しても良いし、他の結晶面を利用したり、エッチングマスクの密着性を利用し角度を制御して形成しても良い。
【0011】
シングルモード光ファイバ18と光入射面11の間を埋めるポリイミド19の屈折率は、1より大きく、〜1.7程度である。
なお、受光素子及びファイバ端面は無反射膜を形成している。
波長1.55μmの光をシングルモード光ファイバ18にて導入すると、印加逆バイアス1.5Vで受光感度1.0A/Wの大きな値が得られた。
【0012】
なお、本実施例の受光素子の層構造は高速動作が可能なように設計されたものである。
即ち、吸収層が0.7μm厚と薄く、キャリアの走行時間が小さくなるようになっている。
また、素子とファイバ間が空気の時、屈折角が最も大きく、したがって、屈折した光を受光するために必要な素子長が短くでき、素子サイズで決まる素子容量が小さくできる。
素子とファイバ間が空気の従来技術で、素子サイズを10μm×20μmに微小化したもので構成したモジュールで3dB帯域40GHz以上の高速動作が確認できた。
【0013】
しかしながら、このモジュールでは、受光感度は0.8A/Wであった。これは、光吸収層13での吸収が十分でないためである。
高速化と受光感度は基本的にトレードオフの関係にあるため、高速化に伴う受光感度の低下はある程度はしかたのないことであるが、本発明によれば、高速化のために光吸収層13を薄くしても広い範囲にわたって受光感度の変化を図ることが可能となる。
ただし、動作速度は受光素子長の増大にともなう素子容量の増加によりある程度低下する。
【0014】
図3は、InPにおいて、波長1.55μmの光をメサ角55度で入射した時の素子とファイバ間の物質の屈折率nに対する実効吸収長の吸収層厚に対する増大率(Extension Factor)を計算したものを示している。
ここで、増大率は、光入射端面部分の拡大図である図4に示すように、屈折した光の吸収層に対する角度をφとすると、実行吸収長teffの吸収層厚tに対する増大率として1/sinφで与えられる。
従って、屈折率nが大きい材料を用いることで、増大率がかなり大きくできることが判る。
本実施例では屈折率〜1.7のポリイミド19を用いており、この時の増大率は空気の時に対して、約41%の増大がもたらされ、その結果、上述の受光感度の増大が得られている。
【0015】
素子とファイバ間の物質は入射光に対して良好な透過性を持ち、屈折率が1以上のものであれば、特に限定するものではなく、フッ素化ポリイミド等の各種ポリイミド、エポキシ樹脂やフッ素化エポキシやフッ素化エポキシアクリレート樹脂等の各種エポキシやアクリル系及び変成シリコーン樹脂等の有機系物質等の他、屈折率が2以上となるカルコゲナイドガラスなどの無機物質等なんでも良く、また、オイルなどの液体物質でも良い。
【0016】
こうした各種物質を適当に選ぶことにより、同一層構造及び同一メサ角構成よりなる同一ウェハより切り出した屈折型半導体受光素子を用いても、受光素子入射端面での屈折角の変化が可能となり、用途にあわせた受光感度の調整が可能となる。
また、受光素子に関しては、本実施例では、表面側のp−InP層は結晶成長によって形成しているが、結晶成長ではアンドープInP層とし、表面側の主たる部分の半導体の導電形を、Znの拡散や、イオン注入法とその後のアニールによって決定しても良い。
【0017】
また、半導体受光素子部分は、第1導電形を有する半導体層上にあって、真性又は第一の導電型の半導体層、超格子半導体層又は多重量子井戸半導体層より成る光受光層とショットキー電極との間に、前記光受光層と前記ショットキー電極との間のショットキー障壁よりも高いショットキー障壁を前記ショットキー電極に対して有するショットキーバリアハイトの高い半導体属を介在した多層構造を基板上に構成してなる半導体受光素子や、前記ショットキーバリアハイトの高い半導体層は、In1−x−yGaAlAs(0≦x≦1,0≦y≦1)又はIn1−uGaAlAs(0≦x≦1,0≦y≦1)とその上の薄いIn1−uGaAs1−v(0≦u≦1,0≦v≦1)よりなる半導体受光素子で構成しても良い。
【0018】
また、この実施例では、基板としてn−InPを用いた例であるが、p−InPを用いても上記のpとnを逆にして同様に製作可能であり、また、半絶縁性InP基板をもちいても電極の引出し方を考慮すれば同様に製作可能である。
また、ここでは、受光層としで均一組成のバルクを用いているが、アバランシェフォトダイオードに用いられるSGAM(Separate−absorption−graded−multplication)構造やSAM−SL(Separate absorption and multiplication superlattice)構造や他の超格子構造の半導体層等を用いても良い。
【0019】
また、InGaAsP/InP系以外のInGaAlAs/InGaAsPやAlGaAs/GaAs系などの材料系や歪を内在するような材料系でも良い。
また、光導波路に関しては、この実施例では、シングルモード光ファイバを用いているが、レンズ付ファイバや先球ファイバ等の他、PLC(Planer Lightwave Circuit)の様な石英系光導波路等でも良い。
【0020】
また、PLC上に受光素子をマウントするハイブリッド集積構造等でも良い。また、導波路は石英系などの無機系各種材料によるものだけでなく、ポリマー導波路やプラスチックファイバー等の有機系各種材料によるもので良い。
【0021】
【発明の効果】
以上、実施例に基づいて具体的に説明したように、本発明の半導体受光装置は、屈折型半導体受光素子と光導波路の間が、屈折率が1以上の固体又は液体で埋められているため、用いる固体又は液体を適当に選び、屈折率を変化させることにより、同一層構造及び同一メサ角構成よりなる同一ウェハより切り出した屈折型半導体受光素子を用いても、受光素子入射端面での屈折角の変化が可能となり、用途にあわせた受光感度の調整が可能となる。また、用途にあわせて、新たに層構造やメサ角の異なった素子を製作することが不要となるため、コスト低減にも有効である。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す説明図である。
【図2】従来の屈折型半導体光受光素子を示す説明図である。
【図3】InPにおいて、波長1.55μmの光をメサ角55度で入射した時の素子とファイバ間の物質の屈折率n1に対する実効吸収長の吸収層厚に対する増大率を計算した結果を示すグラフである。
【図4】光入射端面部分の拡大図である。
【符号の説明】
11 光入射面
12 1μm厚p−InP層
13 0.7μm厚InGaAs光受光層
14 1μm厚n−InP層
15 n−InP基板
16 p電極
17 n電極
18 シングルモード光ファイバ
19 ポリイミド
21 光入射面
22 p−InP層
23 InGaAs光受光層
24 n−InP層
25 n−InP基板
26 p電極
27 n電極
28 シングルモード光ファイバ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a semiconductor light receiving device.
[0002]
[Prior art]
In a conventional refraction type semiconductor light receiving device, as shown in FIG. 2, a light incident end face 21 of a refraction type semiconductor light receiving element and an optical waveguide such as a single mode optical fiber 28 are installed facing each other. Gas such as inert gas is packed.
The refraction type semiconductor light receiving element has a light incident end face inclined inward to an end face of a semiconductor multilayer structure in which a p-InP layer 22, an InGaAs light receiving layer 23 and an n-InP layer 24 are laminated on an n-InP substrate 25. The provision of 21 allows the incident light to pass through the light receiving layer 23 obliquely. A p-electrode 26 and an n-electrode 27 are provided on the upper and lower surfaces of the element.
Here, since the gas has a refractive index of approximately 1 and the refractive index of the light-receiving element constituent material is constant, the refractive angle at the light incident end face 21 of the refractive semiconductor light-receiving element is determined only by the inverse mesa angle. become.
[0003]
Generally, when the mesa angle is determined and manufactured in the manufacturing process of the refraction type semiconductor light receiving element, all the mesa angles of the elements in the wafer are uniform.
The refraction semiconductor light receiving element utilizes the fact that the effective absorption length is increased by light obliquely passing through the light absorption layer due to refraction. Thus, in the prior art, the refraction angle is uniquely defined as described above. Therefore, the effective absorption length is constant.
[0004]
Therefore, in order to change the effective absorption length according to various applications, it is necessary to prepare a wafer with a different mesa angle to change the refraction angle, or prepare a wafer with a different absorption layer thickness for each application. There is a problem.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor light receiving device including a refractive semiconductor light receiving element and an optical waveguide disposed opposite thereto, using a refractive semiconductor light receiving element having the same layer structure and the same mesa angle configuration to suit the application. An object of the present invention is to provide a semiconductor light receiving device capable of adjusting light receiving sensitivity.
[0006]
[Means for Solving the Problems]
The semiconductor light receiving device according to claim 1 of the present invention for solving the problems is the light incident end face which is inclined inwardly with increasing distance from the surface side to the light receiving portion and the end face made of a semiconductor multilayer structure including a light absorption layer, the light receiving By forming the layer from the surface side by etching in an inverted mesa shape, the light incident on the substrate side portion is refracted from the light receiving layer on the light incident end face , and the incident light is directed in the layer thickness direction by the light receiving layer. In a semiconductor light receiving device comprising a refraction type semiconductor light receiving element obliquely passing therethrough and an optical waveguide installed opposite thereto, a solid between the refraction type semiconductor light receiving element and the optical waveguide has a refractive index larger than 1. Alternatively, by being filled with the liquid , the light receiving sensitivity can be adjusted .
[0007]
Since the space between the refractive semiconductor light receiving element and the optical waveguide is filled with a solid or liquid having a refractive index larger than 1, the refraction angle at the light incident end face of the refractive semiconductor light receiving element is not determined only by the inverse mesa angle, This can be changed by the refractive index of the embedded material.
The difference from the prior art is that the space between the refractive semiconductor light receiving element and the optical waveguide is not filled with a gas having a refractive index of almost 1, but is filled with a solid or liquid having a refractive index of 1 or more.
[0008]
[Action]
In the semiconductor light receiving device of the present invention, since the space between the refractive semiconductor light receiving element and the optical waveguide is filled with a solid or liquid having a refractive index of 1 or more, the solid or liquid to be used is appropriately selected and the refractive index is changed. As a result, it is possible to change the refraction angle at the light-receiving element incident end face even when using a refraction-type semiconductor light-receiving element cut out from the same wafer having the same layer structure and the same mesa angle configuration, and adjust the light-receiving sensitivity according to the application. Becomes possible.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to examples shown in the drawings.
FIG. 1 shows a semiconductor light receiving device according to one embodiment of the present invention.
In this semiconductor light receiving device, as shown in FIG. 1, a light incident end face 11 of a refraction type semiconductor light receiving element and a single mode optical fiber 18 are installed facing each other, and a polyimide 19 is filled between them.
The refraction type semiconductor light receiving element is an end face of a semiconductor multilayer structure in which a 1 μm thick p-InP layer 12, a 0.7 μm thick InGaAs light receiving layer 13 and a 1 μm thick n-InP layer 14 are laminated on an n-InP substrate 15. Is provided with a light incident end face 11 inclined inward, so that incident light passes obliquely through the light receiving layer 13. A p-electrode 16 and an n-electrode 17 are provided on the upper and lower surfaces of the element. Further, the light receiving layer area of the device is 30 μm × 70 μm.
[0010]
As for the light incident surface 11, the (111) A surface is formed in an inverted mesa shape as shown in the figure by wet etching of the (001) surface wafer using bromomethanol, and the inverted mesa angle at this time becomes 55 degrees. Formed by using
Of course, the reverse mesa portion may be formed using another wet etching solution or dry etching method, or may be formed by using another crystal plane or controlling the angle using the adhesion of the etching mask. Is also good.
[0011]
The refractive index of the polyimide 19 filling the space between the single mode optical fiber 18 and the light incident surface 11 is larger than 1 and about 1.7.
The light receiving element and the end face of the fiber form an anti-reflection film.
When light having a wavelength of 1.55 μm was introduced through the single-mode optical fiber 18, a large value of light receiving sensitivity of 1.0 A / W was obtained at an applied reverse bias of 1.5 V.
[0012]
Note that the layer structure of the light receiving element of this embodiment is designed to enable high-speed operation.
That is, the absorption layer is as thin as 0.7 μm, and the traveling time of the carrier is reduced.
Further, when air is present between the element and the fiber, the refraction angle is the largest, and therefore the element length required to receive the refracted light can be shortened, and the element capacity determined by the element size can be reduced.
A high-speed operation in a 3 dB band of 40 GHz or more was confirmed in a module configured by miniaturizing the element size to 10 μm × 20 μm in the conventional technology in which air is used between the element and the fiber.
[0013]
However, in this module, the light receiving sensitivity was 0.8 A / W. This is because the absorption in the light absorption layer 13 is not sufficient.
Since the speeding up and the light receiving sensitivity are basically in a trade-off relationship, the reduction in the light receiving sensitivity accompanying the speeding up is inevitable to some extent. However, according to the present invention, the light absorbing layer Even if the thickness 13 is made thin, the light receiving sensitivity can be changed over a wide range.
However, the operating speed is reduced to some extent due to an increase in the element capacitance accompanying an increase in the light receiving element length.
[0014]
3, in InP, the growth rate on the absorption layer thickness of the effective absorption length to the refractive index n 1 of the material between the elements and the fiber when the light of wavelength 1.55μm incident at the mesa angle 55 degrees (Extension Factor) The calculated result is shown.
Here, as shown in FIG. 4 which is an enlarged view of the light incident end face portion, assuming that the angle of the refracted light with respect to the absorption layer is φ, the effective absorption length t eff is an increase rate with respect to the absorption layer thickness t. It is given by 1 / sinφ.
Therefore, by using the refractive index n 1 is larger material, it can be seen that the rate of increase can be considerably increased.
In this embodiment, the polyimide 19 having a refractive index of about 1.7 is used. At this time, the increase rate is about 41% larger than that of the air, and as a result, the above-described increase in the light receiving sensitivity is reduced. Have been obtained.
[0015]
The material between the element and the fiber is not particularly limited as long as it has good transmittance to incident light and has a refractive index of 1 or more, and various polyimides such as fluorinated polyimides, epoxy resins and fluorinated Various substances such as epoxy and fluorinated epoxy acrylate resins, organic substances such as acrylic resins and modified silicone resins, and inorganic substances such as chalcogenide glass having a refractive index of 2 or more may be used. It can be a substance.
[0016]
By appropriately selecting these various substances, it is possible to change the refraction angle at the light-receiving element incident end face even if a refraction-type semiconductor photodetector cut out from the same wafer having the same layer structure and the same mesa angle configuration is used. It is possible to adjust the light receiving sensitivity according to.
Further, in the present embodiment, the p-InP layer on the surface side is formed by crystal growth in the present embodiment, but the crystal growth is an undoped InP layer, and the conductivity type of the semiconductor in the main part on the surface side is Zn. Diffusion or ion implantation and subsequent annealing.
[0017]
Further, the semiconductor light receiving element portion is on the semiconductor layer having the first conductivity type, and includes a light receiving layer made of an intrinsic or first conductivity type semiconductor layer, a superlattice semiconductor layer, or a multiple quantum well semiconductor layer. A multi-layer structure having a high Schottky barrier height semiconductor having a Schottky barrier higher than the Schottky barrier between the light receiving layer and the Schottky electrode between the electrodes; the or a semiconductor light receiving element formed by configured on a substrate, the Schottky barrier height with high semiconductor layer, in 1-x-y Ga x Al y As (0 ≦ x ≦ 1,0 ≦ y ≦ 1) or in 1-u Ga u Al y as (0 ≦ x ≦ 1,0 ≦ y ≦ 1) thin, on the Part In 1-u Ga u as 1 -v P v (0 ≦ u ≦ 1,0 ≦ v ≦ 1 ) And it may be.
[0018]
In this embodiment, n-InP is used as a substrate. However, even if p-InP is used, p and n can be reversed and the same can be produced. However, if the method of drawing out the electrodes is taken into consideration, it can be manufactured in the same manner.
Here, a bulk having a uniform composition is used for the light receiving layer, but a separate-absorption-graded-multiplication (SGAM) structure used for an avalanche photodiode, a SAM-SL (Separate absorption and multiplication replacement structure, etc.) May be used.
[0019]
Further, a material system other than the InGaAsP / InP system, such as an InGaAlAs / InGaAsP or AlGaAs / GaAs system, or a material system having an intrinsic strain may be used.
In this embodiment, a single mode optical fiber is used for the optical waveguide, but a quartz optical waveguide such as a PLC (Planar Lightwave Circuit) or the like may be used in addition to a fiber with a lens and a spherical fiber.
[0020]
Further, a hybrid integrated structure in which a light receiving element is mounted on a PLC may be used. Further, the waveguide may be made of various organic materials such as a polymer waveguide and a plastic fiber, as well as those made of various inorganic materials such as quartz.
[0021]
【The invention's effect】
As described above, as specifically described based on the embodiments, the semiconductor light receiving device of the present invention is configured such that the space between the refractive semiconductor light receiving element and the optical waveguide is filled with a solid or liquid having a refractive index of 1 or more. By appropriately selecting the solid or liquid to be used and changing the refractive index, even when using a refraction type semiconductor light receiving element cut out from the same wafer having the same layer structure and the same mesa angle structure, refraction at the light receiving element incident end face The angle can be changed, and the light receiving sensitivity can be adjusted according to the application. Further, it is not necessary to newly manufacture an element having a different layer structure or a different mesa angle according to the application, which is effective for cost reduction.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.
FIG. 2 is an explanatory view showing a conventional refraction type semiconductor light receiving element.
FIG. 3 shows a calculation result of the increase in the effective absorption length with respect to the absorption layer thickness for the refractive index n1 of the substance between the element and the fiber when light with a wavelength of 1.55 μm is incident at a mesa angle of 55 degrees in InP. It is a graph.
FIG. 4 is an enlarged view of a light incident end face portion.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Light incident surface 12 1 μm thick p-InP layer 13 0.7 μm thick InGaAs light receiving layer 14 1 μm thick n-InP layer 15 n-InP substrate 16 p electrode 17 n electrode 18 single mode optical fiber 19 polyimide 21 light incident surface 22 p-InP layer 23 InGaAs light receiving layer 24 n-InP layer 25 n-InP substrate 26 p electrode 27 n electrode 28 single mode optical fiber

Claims (3)

光受光層を含む半導体多層構造よりなる受光部分と端面に表面側から離れるに従い内側に傾斜した光入射端面を、前記光受光層がある表面側から逆メサ形状のエッチングにより形成することにより、該光入射端面の受光層より基板側の部分への入射光を屈折させて、前記光受光層を入射光が層厚方向に対し斜めに通過するようにした屈折型半導体受光素子とこれに対向して設置された光導波路よりなる半導体受光装置において、屈折型半導体受光素子と光導波路の間が屈折率が1よりも大きい固体又は液体で埋められていることにより、受光感度の調整が可能となることを特徴とする半導体受光装置。 By forming a light receiving portion made of a semiconductor multilayer structure including a light receiving layer and a light incident end surface inclined inward as the distance from the front surface to the end surface increases, the light receiving layer is formed from the surface side where the light receiving layer is formed by etching in an inverted mesa shape. A refraction-type semiconductor light-receiving element which refracts light incident on the substrate side from the light-receiving layer at the light-incident end face , so that the incident light passes through the light-receiving layer obliquely with respect to the layer thickness direction. In a semiconductor light receiving device including an optical waveguide installed in a vertical direction, since the space between the refractive semiconductor light receiving element and the optical waveguide is filled with a solid or liquid having a refractive index greater than 1 , the light receiving sensitivity can be adjusted. A semiconductor light receiving device characterized by the above-mentioned. 請求項1に記載の半導体受光装置において、屈折型半導体受光素子と光導波路の間が屈折率が2以上の固体又は液体で埋められていることを特徴とする半導体受光装置。2. The semiconductor light receiving device according to claim 1, wherein a space between the refractive semiconductor light receiving element and the optical waveguide is filled with a solid or liquid having a refractive index of 2 or more. 請求項1に記載の半導体受光装置において、屈折型半導体受光素子と光導波路の間が屈折率が1.7のポリイミドで埋められていることを特徴とする半導体受光装置。2. The semiconductor light receiving device according to claim 1, wherein a space between the refractive semiconductor light receiving element and the optical waveguide is filled with polyimide having a refractive index of 1.7.
JP00009898A 1997-11-07 1998-01-05 Semiconductor light receiving device Expired - Lifetime JP3549086B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP00009898A JP3549086B2 (en) 1998-01-05 1998-01-05 Semiconductor light receiving device
US09/184,218 US6353250B1 (en) 1997-11-07 1998-11-02 Semiconductor photo-detector, semiconductor photo-detection device, and production methods thereof
US10/005,705 US6770945B2 (en) 1997-11-07 2001-12-04 Semiconductor photo-detector, semiconductor photodetection device, and production methods thereof
US10/702,637 US7256062B2 (en) 1997-11-07 2003-11-05 Semiconductor photo-detector, semiconductor photo-detection device, and production methods thereof
US10/702,577 US6917032B2 (en) 1997-11-07 2003-11-05 Semiconductor photo-detector, semiconductor photodetection device, and production methods thereof
US11/825,413 US7575949B2 (en) 1997-11-07 2007-07-06 Semiconductor photo-detector, semiconductor photo-detection device, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00009898A JP3549086B2 (en) 1998-01-05 1998-01-05 Semiconductor light receiving device

Publications (2)

Publication Number Publication Date
JPH11195809A JPH11195809A (en) 1999-07-21
JP3549086B2 true JP3549086B2 (en) 2004-08-04

Family

ID=11464637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00009898A Expired - Lifetime JP3549086B2 (en) 1997-11-07 1998-01-05 Semiconductor light receiving device

Country Status (1)

Country Link
JP (1) JP3549086B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001356248A (en) * 2000-06-15 2001-12-26 Nippon Telegr & Teleph Corp <Ntt> Optical module
WO2006131983A1 (en) 2005-06-10 2006-12-14 Fujitsu Limited Method for manufacturing optical module, optical module and platform for optical module

Also Published As

Publication number Publication date
JPH11195809A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
US7575949B2 (en) Semiconductor photo-detector, semiconductor photo-detection device, and production method thereof
EP0446056B1 (en) Integrated optical semiconductor device
JP3526308B2 (en) Light receiving element
KR100532281B1 (en) Side illuminated refracting-facet photodetector and method for fabricating the same
KR20050075355A (en) Semiconductor photodetector with internal reflector
JPH07109929B2 (en) Semiconductor device
JPH1022520A (en) Semiconductor photodetector and its manufacture
US7368750B2 (en) Semiconductor light-receiving device
JP3549086B2 (en) Semiconductor light receiving device
WO2023062766A1 (en) Waveguide-type light receiving element, waveguide-type light receiving element array, and method for producing waveguide-type light receiving element
JP3672168B2 (en) Semiconductor photo detector
JP3783903B2 (en) Semiconductor light receiving element and manufacturing method thereof
JPH03120876A (en) Semiconductor photosensitive element
JP3710039B2 (en) Semiconductor photo detector
JP3831707B2 (en) Semiconductor light-receiving element for repeatedly propagating incident light in a light absorption layer and method for manufacturing the same
JP3620761B2 (en) Semiconductor light receiving element and manufacturing method thereof
US6064782A (en) Edge receptive photodetector devices
WO2023233508A1 (en) Semiconductor light receiver and semiconductor element
JP3928901B2 (en) Semiconductor photo detector
WO2021001918A1 (en) Optical modulator
JP3185860B2 (en) Absorption modulator
JP3717040B2 (en) Semiconductor photo detector
JP2667168B2 (en) Edge-receiving photodiode
JPH10321893A (en) Phototransistor
JPH11261098A (en) Semiconductor light-receiving element

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20040415

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140430

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term