JP2006286820A - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
JP2006286820A
JP2006286820A JP2005103097A JP2005103097A JP2006286820A JP 2006286820 A JP2006286820 A JP 2006286820A JP 2005103097 A JP2005103097 A JP 2005103097A JP 2005103097 A JP2005103097 A JP 2005103097A JP 2006286820 A JP2006286820 A JP 2006286820A
Authority
JP
Japan
Prior art keywords
substrate
photovoltaic device
type
back surface
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005103097A
Other languages
Japanese (ja)
Other versions
JP4557772B2 (en
Inventor
Takuo Nakai
拓夫 中井
Teiji Tsuge
定司 津毛
Takahiro Haga
孝裕 羽賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005103097A priority Critical patent/JP4557772B2/en
Publication of JP2006286820A publication Critical patent/JP2006286820A/en
Application granted granted Critical
Publication of JP4557772B2 publication Critical patent/JP4557772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enhance photovoltaic conversion efficiency in a photovoltaic device employing a single crystal semiconductor substrate such as a single crystal silicon wafer. <P>SOLUTION: In a photovoltaic device equipped with a photovoltaic cell 10 employing a semiconductor substrate 1 where protrusions and recesses of texture structure are formed on the major surface 1a, protrusions and recesses of texture structure are also formed on the side face 1b of the semiconductor substrate 1 and on the periphery 1c of rear surface thereof. Preferably, the periphery of rear surface where protrusions and recesses are formed is the region of 2 mm or less from the end of side face on the periphery of the substrate to the inside. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主面に光閉じ込めのためのテクスチャー構造の凹凸が形成された半導体基板を用いた光起電力装置に関するものである。   The present invention relates to a photovoltaic device using a semiconductor substrate in which irregularities of a texture structure for light confinement are formed on a main surface.

単結晶シリコン基板などの結晶系半導体基板を用いた光起電力装置は、光電変換効率が高く、既に太陽光発電システムとして広く一般に実用化されている。   A photovoltaic device using a crystalline semiconductor substrate such as a single crystal silicon substrate has high photoelectric conversion efficiency and has already been widely put into practical use as a photovoltaic power generation system.

これらの結晶系半導体基板を用いた光起電力装置においては、結晶系半導体基板の光入射側主面に、光閉じ込め構造により反射損失を低減するため、テクスチャー構造の凹凸が形成されている。表面にテクスチャー構造の凹凸を形成する方法としては、アルカリ性溶液を用いて結晶系半導体基板の表面をエッチングする方法が知られている(特許文献1など)。   In the photovoltaic device using these crystalline semiconductor substrates, texture structure irregularities are formed on the light incident side main surface of the crystalline semiconductor substrate in order to reduce reflection loss by the light confinement structure. As a method for forming irregularities of a texture structure on the surface, a method of etching the surface of a crystalline semiconductor substrate using an alkaline solution is known (Patent Document 1, etc.).

このような結晶系半導体基板においては、光入射側主面のみにテクスチャー構造の凹凸を形成しており、高い光電変換効率を有する光起電力装置では、基板の主面と反対側の裏面は、従来から平坦な面となるように形成されている(特許文献2など)。
特開平11−233484号公報 特開平3−173481号公報
In such a crystalline semiconductor substrate, the texture structure irregularities are formed only on the light incident side main surface, and in the photovoltaic device having high photoelectric conversion efficiency, the back surface opposite to the main surface of the substrate is Conventionally, it has been formed to be a flat surface (Patent Document 2, etc.).
Japanese Patent Laid-Open No. 11-233484 Japanese Patent Laid-Open No. 3-173481

しかしながら、本発明者は、半導体基板の周辺からの入射光を考慮した場合、基板の側面及び裏面周辺部にもテクスチャー構造の凹凸を形成することにより、基板周辺からの光を効率的に吸収することができ、光電変換効率が向上することを見出した。   However, when considering the incident light from the periphery of the semiconductor substrate, the inventor efficiently absorbs the light from the periphery of the substrate by forming irregularities of the texture structure on the side surface and the back surface periphery of the substrate. It has been found that photoelectric conversion efficiency is improved.

本発明の目的は、半導体基板を用いた光起電力装置において、光電変換効率に優れた光起電力装置を提供することにある。   An object of the present invention is to provide a photovoltaic device having excellent photoelectric conversion efficiency in a photovoltaic device using a semiconductor substrate.

本発明は、主面にテクスチャー構造の凹凸が形成された半導体基板を用いた光起電力セルを備える光起電力装置であり、半導体基板の側面及び裏面周辺部にもテクスチャー構造の凹凸が形成されていることを特徴としている。   The present invention is a photovoltaic device provided with a photovoltaic cell using a semiconductor substrate having a textured surface asperity formed on the main surface, and the textured surface asperity is also formed on the side surface and back surface peripheral portion of the semiconductor substrate. It is characterized by having.

本発明に従い、半導体基板の側面及び裏面周辺部にもテクスチャー構造の凹凸を形成することにより、基板の側面及び裏面周辺部において光を効果的に吸収することができ、光電変換効率を高め、高い出力が得られる。   According to the present invention, by forming irregularities of the texture structure also on the side surface and back surface periphery of the semiconductor substrate, light can be effectively absorbed in the side surface and back surface periphery of the substrate, increasing the photoelectric conversion efficiency, and high Output is obtained.

本発明において、凹凸が形成される裏面周辺部は、基板周辺の側面端部から内側に2mm以下までの領域であることが好ましい。凹凸を形成する裏面周辺部が、基板周辺の側面端部から内側に2mm以下までの領域を超えると、短絡電流が小さくなり、光電変換効率の向上が得られない場合がある。   In this invention, it is preferable that the back surface peripheral part in which an unevenness | corrugation is formed is an area | region from the side edge part of a board | substrate periphery to 2 mm or less inside. If the back surface peripheral part forming the irregularities exceeds the region of 2 mm or less inward from the side edge part around the substrate, the short circuit current may be reduced, and the photoelectric conversion efficiency may not be improved.

本発明の光起電力装置は、上記半導体基板を用いた光起電力セルが複数並べて設けられており、これらが電気的に直列に接続されている太陽電池モジュールであることが好ましい。このような太陽電池モジュールにおいては、光起電力セルが所定間隔をあけて配置されている。本発明によれば、光起電力セル間の隙間を通り入射した光が、基板の側面及び裏面周辺部において吸収されるので、光電変換効率を高めることができる。従来の基板の側面及び裏面周辺部がフラットである光起電力装置においては、セル間の隙間から入射し散乱した光が十分に吸収されず反射されていた。本発明では、このような散乱光を効果的に吸収することができるため、高い光電変換効率が得られる。   The photovoltaic device of the present invention is preferably a solar cell module in which a plurality of photovoltaic cells using the semiconductor substrate are provided side by side and these are electrically connected in series. In such a solar cell module, photovoltaic cells are arranged at a predetermined interval. According to the present invention, the light incident through the gap between the photovoltaic cells is absorbed at the side surface and the back surface peripheral portion of the substrate, so that the photoelectric conversion efficiency can be increased. In the conventional photovoltaic device in which the side surface and the back surface peripheral portion of the substrate are flat, the light incident and scattered from the gaps between the cells is not sufficiently absorbed and reflected. In this invention, since such scattered light can be absorbed effectively, high photoelectric conversion efficiency is obtained.

本発明において、半導体基板は、結晶系半導体基板であることが好ましく、単結晶半導体基板であってもよいし、多結晶半導体基板であってもよい。また、結晶系半導体基板は、例えば、結晶系シリコン基板であり、最も一般的には、単結晶シリコン基板である。   In the present invention, the semiconductor substrate is preferably a crystalline semiconductor substrate, and may be a single crystal semiconductor substrate or a polycrystalline semiconductor substrate. The crystalline semiconductor substrate is, for example, a crystalline silicon substrate, and most commonly a single crystal silicon substrate.

本発明における光起電力セルとしては、単結晶系光起電力セル、多結晶系光起電力セル、単結晶と非晶質のハイブリッド型の光起電力セルなどが挙げられる。ハイブリッド型光起電力セルとしては、例えば、n型結晶系シリコン基板の主面上にi型非晶質シリコン層を形成し、この上にp型非晶質シリコン層を形成したものが挙げられる。i型非晶質シリコン層の厚みは、例えば、2〜10nmであり、p型非晶質シリコン層の厚みは、例えば、2〜10nmである。   Examples of the photovoltaic cell in the present invention include a single crystal photovoltaic cell, a polycrystalline photovoltaic cell, and a single crystal and amorphous hybrid photovoltaic cell. An example of a hybrid photovoltaic cell is one in which an i-type amorphous silicon layer is formed on the main surface of an n-type crystalline silicon substrate and a p-type amorphous silicon layer is formed thereon. . The i-type amorphous silicon layer has a thickness of 2 to 10 nm, for example, and the p-type amorphous silicon layer has a thickness of 2 to 10 nm, for example.

また、半導体基板の裏面には、裏面電極との間にBSF(back surface field)構造が形成されていてもよい。例えば、半導体基板がn型結晶系半導体基板である場合には、i型非晶質シリコン層を介してn型非晶質シリコン層を設けてもよい。   Further, a back surface field (BSF) structure may be formed between the back surface of the semiconductor substrate and the back electrode. For example, when the semiconductor substrate is an n-type crystalline semiconductor substrate, an n-type amorphous silicon layer may be provided via an i-type amorphous silicon layer.

本発明における半導体基板は、例えば、結晶系半導体基板の裏面において、裏面周辺部以外の領域をレジスト膜やマスク等で覆い、この状態で基板をウェットエッチングすることにより得ることができる。従って、基板の主面、側面及び裏面周辺部に同時にテクスチャー構造の凹凸を形成した基板を用いることができる。   The semiconductor substrate in the present invention can be obtained, for example, by covering a region other than the periphery of the back surface with a resist film, a mask or the like on the back surface of the crystalline semiconductor substrate, and wet etching the substrate in this state. Therefore, the board | substrate which formed the unevenness | corrugation of the texture structure simultaneously in the main surface, side surface, and back surface peripheral part of a board | substrate can be used.

本発明における光起電力セルとしては、上記のような光起電力セルが挙げられるが、例えば、n型もしくはp型の結晶系シリコン基板の上に直接p型もしくはn型の非晶質シリコン層を形成した光起電力セルであってもよい。また、n型もしくはp型の結晶系シリコン基板の表面にp型もしくはn型のドーパントをドープすることによりpn接合を形成した光起電力セルであってもよい。   Examples of the photovoltaic cell in the present invention include the photovoltaic cells as described above. For example, a p-type or n-type amorphous silicon layer directly on an n-type or p-type crystalline silicon substrate. It may be a photovoltaic cell formed. Alternatively, a photovoltaic cell in which a pn junction is formed by doping a p-type or n-type dopant on the surface of an n-type or p-type crystalline silicon substrate may be used.

本発明によれば、基板の側面及び裏面周辺部における散乱光を効果的に吸収することができ、高い光電変換効率を得ることができる。   According to the present invention, it is possible to effectively absorb scattered light on the side surface and back surface peripheral portion of the substrate, and to obtain high photoelectric conversion efficiency.

以下、本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example.

図1は、本発明に従う一実施例の光起電力装置を示す模式的断面図である。本実施例の光起電力装置は太陽電池モジュールであり、複数の光起電力セル10が並べて設けられている。これらの光起電力セル10は、図示省略されているが、互いに電気的に直列に接続されている。   FIG. 1 is a schematic cross-sectional view showing a photovoltaic device of one embodiment according to the present invention. The photovoltaic device of the present embodiment is a solar cell module, and a plurality of photovoltaic cells 10 are provided side by side. Although not shown, these photovoltaic cells 10 are electrically connected to each other in series.

光起電力セル10は、単結晶シリコン基板1を用いて作製されており、単結晶シリコン基板1の光入射側の主面1aにはテクスチャー構造の凹凸が形成されている。また、側面1bにも同様にテクスチャー構造の凹凸が形成されている。また、単結晶基板1の裏面1dの周辺部1cにも、テクスチャー構造の凹凸が形成されている。   The photovoltaic cell 10 is fabricated using a single crystal silicon substrate 1, and textured irregularities are formed on the main surface 1 a on the light incident side of the single crystal silicon substrate 1. Similarly, the side surface 1b is provided with textured irregularities. In addition, unevenness having a texture structure is also formed on the peripheral portion 1 c of the back surface 1 d of the single crystal substrate 1.

図1には、光起電力セル10における単結晶シリコン基板1のみが図示されているが、光起電力セル10は、図2に示すような構造を有している。すなわち、単結晶シリコン基板1はn型単結晶シリコン基板であり、その主面1aの上には、i型非晶質シリコン層2が形成されており、i型非晶質シリコン層2の上には、p型非晶質シリコン層3が形成されている。   Although only the single crystal silicon substrate 1 in the photovoltaic cell 10 is shown in FIG. 1, the photovoltaic cell 10 has a structure as shown in FIG. That is, the single crystal silicon substrate 1 is an n-type single crystal silicon substrate, and an i-type amorphous silicon layer 2 is formed on the main surface 1a. A p-type amorphous silicon layer 3 is formed.

p型非晶質シリコン層3の上には、ITO(インジュウム錫酸化物)などからなる透明電極4が形成されている。透明電極4の上には、集電極8が形成されている。   A transparent electrode 4 made of ITO (Indium Tin Oxide) or the like is formed on the p-type amorphous silicon layer 3. A collecting electrode 8 is formed on the transparent electrode 4.

なお、i型非晶質シリコン層2、p型非晶質シリコン層3、及び透明電極4は、単結晶シリコン基板1の側面1b及び側面周辺部1cには形成されていない。側面1bの部分は、単結晶シリコン基板の面がそのまま露出した状態である。   The i-type amorphous silicon layer 2, the p-type amorphous silicon layer 3, and the transparent electrode 4 are not formed on the side surface 1b and the side surface peripheral portion 1c of the single crystal silicon substrate 1. The portion of the side surface 1b is in a state where the surface of the single crystal silicon substrate is exposed as it is.

また、単結晶シリコン基板1の裏面1dの上には、図2に示すように、i型非晶質シリコン層5を介してn型非晶質シリコン層6が形成されている。従って、BSF構造が形成されている。n型非晶質シリコン層6の上には透明電極7が形成されており、透明電極7の上には集電極9が形成されている。   Further, as shown in FIG. 2, an n-type amorphous silicon layer 6 is formed on the back surface 1 d of the single crystal silicon substrate 1 via an i-type amorphous silicon layer 5. Therefore, a BSF structure is formed. A transparent electrode 7 is formed on the n-type amorphous silicon layer 6, and a collector electrode 9 is formed on the transparent electrode 7.

図1に示すように、電気的に直列に接続された光起電力セル10は、EVA樹脂(エチレン酢酸ビニル共重合体)などからなる充填材13に埋め込まれた状態で、裏面保護フィルム12及び表面のガラス板11に挟まれた状態で、太陽電池モジュールが構成されている。図1に示すように、主面1a側から光14が入射し、単結晶シリコン基板1内で光が吸収され光電変換されて発電される。図1に示すように、光起電力セル10間には隙間が設けられており、この隙間に光14が入射する。隙間から入射した光14は、裏面保護フィルム12の表面で反射し散乱する。本発明においては、単結晶シリコン基板1の側面1b及び裏面周辺部1cに凹凸が形成されているので、このようにして裏面保護フィルム12で反射し散乱した光を効果的に吸収することができる。このため、従来から光電変換に利用することができなかった光を利用することができ、高い光電変換効率を得ることができる。裏面保護フィルム12として、光反射率が高いフィルム、例えば白色などのフィルムを用いることにより、裏面保護フィルム12の表面で反射する光が増えるため、より高い光電変換効率を得ることができる。   As shown in FIG. 1, the photovoltaic cells 10 electrically connected in series are embedded in a filler 13 made of EVA resin (ethylene vinyl acetate copolymer) or the like, and the back surface protective film 12 and The solar cell module is configured with being sandwiched between the glass plates 11 on the surface. As shown in FIG. 1, light 14 enters from the main surface 1a side, and the light is absorbed and photoelectrically converted in the single crystal silicon substrate 1 to generate electric power. As shown in FIG. 1, a gap is provided between the photovoltaic cells 10, and light 14 enters the gap. The light 14 incident from the gap is reflected and scattered by the surface of the back surface protective film 12. In this invention, since the unevenness | corrugation is formed in the side surface 1b and the back surface peripheral part 1c of the single crystal silicon substrate 1, the light reflected and scattered by the back surface protective film 12 in this way can be absorbed effectively. . For this reason, the light which could not be utilized for photoelectric conversion conventionally can be utilized, and high photoelectric conversion efficiency can be obtained. By using a film having a high light reflectance, such as a white film, as the back surface protective film 12, the amount of light reflected on the surface of the back surface protective film 12 increases, so that higher photoelectric conversion efficiency can be obtained.

図5は、従来の比較例の光起電力装置を示す模式的断面図である。図5に示すように、従来の光起電力装置においては、単結晶シリコン基板1の側面1c及び裏面周辺部1dに凹凸が形成されていない。従って、光起電力セル10間の隙間に入射した光14は、裏面保護フィルム12で反射して散乱するが、基板1の側面及び裏面周辺部1cがフラットな面であるので、この散乱光を反射してしまい、効果的に吸収することができない。従って、従来は、このような散乱光を利用することができず、本発明のように高い光電変換効率を得ることができなかった。   FIG. 5 is a schematic cross-sectional view showing a photovoltaic device of a conventional comparative example. As shown in FIG. 5, in the conventional photovoltaic device, the unevenness | corrugation is not formed in the side surface 1c of the single crystal silicon substrate 1, and the back surface peripheral part 1d. Therefore, although the light 14 incident on the gap between the photovoltaic cells 10 is reflected and scattered by the back surface protective film 12, the side surface of the substrate 1 and the back surface peripheral portion 1c are flat surfaces. It is reflected and cannot be absorbed effectively. Therefore, conventionally, such scattered light cannot be used, and high photoelectric conversion efficiency cannot be obtained as in the present invention.

図1に示す光起電力装置を以下のようにして製造し、光電変換特性を評価した。   The photovoltaic device shown in FIG. 1 was manufactured as follows, and the photoelectric conversion characteristics were evaluated.

主面の面方位が(100)であるn型単結晶シリコンウェハを、70℃の5重量%NaOH水溶液に5分間浸漬し、その表面をエッチングした。   An n-type single crystal silicon wafer having a (100) main surface orientation was immersed in a 5 wt% NaOH aqueous solution at 70 ° C. for 5 minutes, and the surface was etched.

なお、エッチングの際には、図3に示すように、単結晶シリコンウェハ1の裏面1dの部分にレジスト膜20を形成した。図3に示すように、ウェハ1の側面1bの端部から内側に幅Wまでの領域にはレジスト膜20が設けられないように形成した。ここでは、幅Wを1mmとした。従って、基板の側面1bの端部から内側に1mmまでの領域1cにレジスト膜が設けられないようにレジスト膜20を形成した。レジスト膜20としては、アルカリエッチング耐性の樹脂膜を用いることができる。また、酸化シリコン膜等からなるマスクを用いてもよい。   In the etching, a resist film 20 was formed on the back surface 1d of the single crystal silicon wafer 1 as shown in FIG. As shown in FIG. 3, the resist film 20 was not formed in the region from the end of the side surface 1 b of the wafer 1 to the width W inside. Here, the width W was 1 mm. Therefore, the resist film 20 was formed so that the resist film was not provided in the region 1c from the end of the side surface 1b of the substrate to 1 mm inside. As the resist film 20, a resin film resistant to alkali etching can be used. Further, a mask made of a silicon oxide film or the like may be used.

以上のようにしてレジスト膜を形成したシリコンウェハを、3重量%のカプリル酸を含有した2重量%NaOHからなる水溶液に浸漬し、レジスト膜が設けられていないシリコンウェハの表面に(111)面からなるテクスチャー構造の凹凸を形成した。   The silicon wafer on which the resist film is formed as described above is immersed in an aqueous solution of 2 wt% NaOH containing 3 wt% caprylic acid, and the (111) plane is formed on the surface of the silicon wafer on which no resist film is provided. The textured irregularities made of

次に、硫酸過水(硫酸:純水=1:1、120℃)や、酸素プラズマによるアッシングにより、レジスト膜20を除去した。レジスト膜が酸化シリコン膜である場合には、2重量%HF水溶液を用いて除去することができる。   Next, the resist film 20 was removed by ashing with sulfuric acid / hydrogen peroxide (sulfuric acid: pure water = 1: 1, 120 ° C.) or oxygen plasma. When the resist film is a silicon oxide film, it can be removed using a 2 wt% HF aqueous solution.

水洗した後、2重量%HF水溶液を用いて、シリコンウェハの表面の酸化膜を除去し、次に超純水で水洗した。   After washing with water, the oxide film on the surface of the silicon wafer was removed using a 2 wt% HF aqueous solution, and then washed with ultrapure water.

以上のようにして主面、側面及び裏面周辺部にテクスチャー構造の凹凸を形成した単結晶シリコンウェハの上に、プラズマCVD装置を用いて非晶質シリコン薄膜を形成した。まず、シリコンウェハの裏面(フラット面)に水素プラズマ処理(圧力80Pa、RF出力20W)を行い、続けてi型非晶質シリコン薄膜(厚み5nm)を圧力80Pa、RF出力30Wで形成した。次に、n型非晶質シリコン薄膜(厚み30nm)を圧力80Pa、RF出力30Wで連続して形成した。   As described above, an amorphous silicon thin film was formed on the single crystal silicon wafer having the textured surface irregularities formed on the main surface, the side surface, and the periphery of the back surface using a plasma CVD apparatus. First, a hydrogen plasma treatment (pressure 80 Pa, RF output 20 W) was performed on the back surface (flat surface) of the silicon wafer, and then an i-type amorphous silicon thin film (thickness 5 nm) was formed at a pressure 80 Pa and an RF output 30 W. Next, an n-type amorphous silicon thin film (thickness 30 nm) was continuously formed at a pressure of 80 Pa and an RF output of 30 W.

次に、シリコンウェハの主面に対し、水素プラズマ処理(圧力80Pa、RF出力20W)を行い、この上にi型非晶質シリコン薄膜(厚み5nm)を圧力80Pa、RF出力30Wで形成した。さらに、この上にp型非晶質シリコン薄膜(厚み5nm)を圧力80Pa、RF出力30Wで連続して形成した。   Next, the main surface of the silicon wafer was subjected to hydrogen plasma treatment (pressure 80 Pa, RF output 20 W), and an i-type amorphous silicon thin film (thickness 5 nm) was formed thereon with a pressure 80 Pa and RF output 30 W. Further, a p-type amorphous silicon thin film (thickness 5 nm) was continuously formed thereon at a pressure of 80 Pa and an RF output of 30 W.

なお、裏面に形成したn型非晶質シリコン薄膜及びn型非晶質シリコン薄膜は、凹凸が形成されている裏面周辺部の領域にも形成した。   Note that the n-type amorphous silicon thin film and the n-type amorphous silicon thin film formed on the back surface were also formed in the region around the back surface where the irregularities were formed.

以上のようにして形成した主面上のp型非晶質シリコン薄膜及び裏面上のn型非晶質シリコン薄膜の上に、スパッタリング法により透明電極としてITOをそれぞれ100nmの厚みとなるように形成した。次に、透明電極の上に、銀ペーストをスクリーン印刷し、櫛形電極を形成し、集電極とした。   On the p-type amorphous silicon thin film on the main surface and the n-type amorphous silicon thin film on the back surface formed as described above, ITO is formed to have a thickness of 100 nm as a transparent electrode by sputtering. did. Next, a silver paste was screen-printed on the transparent electrode to form a comb-shaped electrode, thereby forming a collector electrode.

以上のようにして作製した光起電力セルを複数個接続した後、充填材としてのEVA樹脂、保護基板としてのガラス板、裏面保護フィルムとしてのPET(ポリエチレンテレフタレート)フィルムをラミネートし、太陽電池モジュールとした。   After connecting a plurality of photovoltaic cells produced as described above, an EVA resin as a filler, a glass plate as a protective substrate, and a PET (polyethylene terephthalate) film as a back protective film are laminated, and a solar cell module It was.

比較として、図4に示すように、単結晶シリコンウェハ1の側面1c及び裏面1dの全面にレジスト膜20を形成してエッチングする以外は、上記実施例と同様にして太陽電池モジュールを作製し、比較例の太陽電池モジュールとした。   For comparison, as shown in FIG. 4, a solar cell module was produced in the same manner as in the above example except that the resist film 20 was formed and etched on the entire side surface 1c and back surface 1d of the single crystal silicon wafer 1. It was set as the solar cell module of the comparative example.

上記の実施例及び比較例の太陽電池モジュールについて、ソーラーシミュレータにより出力を測定したところ、本実施例の太陽電池モジュールは、比較例の太陽電池モジュールに比べ、短絡電流が1.8%増加した。この結果、本実施例の太陽電池モジュールは、比較例の太陽電池モジュールに比べ、出力Pmaxが1.8%向上した。   About the solar cell module of said Example and comparative example, when the output was measured with the solar simulator, the short circuit current of the solar cell module of a present Example increased 1.8% compared with the solar cell module of the comparative example. As a result, the output Pmax of the solar cell module of this example was improved by 1.8% compared to the solar cell module of the comparative example.

<凹凸を形成する裏面周辺部の領域についての検討>
図3に示す裏面周辺部1cの領域の幅Wを、表1に示すように変化させて上記実施例と同様にして太陽電池モジュールを作製し、光電変換特性を評価した。なお、上記と同様に、W=0の比較例の太陽電池モジュールを基準にして評価した。すなわち、比較例の太陽電池モジュールの短絡電流(Isc)、開放電圧(Voc)、フィルファクタ(F.F.)、出力(Pmax)を1として、それぞれを評価した。評価結果を表1に示す。
<Examination of the area around the back surface where irregularities are formed>
A solar cell module was produced in the same manner as in the above example by changing the width W of the region of the back surface peripheral portion 1c shown in FIG. 3 as shown in Table 1, and the photoelectric conversion characteristics were evaluated. In addition, it evaluated on the basis of the solar cell module of the comparative example of W = 0 similarly to the above. That is, the short-circuit current (Isc), the open-circuit voltage (Voc), the fill factor (FF), and the output (Pmax) of the solar cell module of the comparative example were evaluated as 1, respectively. The evaluation results are shown in Table 1.

また、裏面周辺部の幅Wと短絡電流の相対値との関係を図6に示す。表1及び図6に示す結果から明らかなように、裏面周辺部の幅Wが2mm以下であれば、短絡電流が比較例のものより高くなり、高い出力が得られている。従って、基板の裏面周辺部の幅Wとしては2mm以下が好ましいことがわかる。   FIG. 6 shows the relationship between the width W of the peripheral portion of the back surface and the relative value of the short circuit current. As is apparent from the results shown in Table 1 and FIG. 6, when the width W of the peripheral portion on the back surface is 2 mm or less, the short circuit current is higher than that of the comparative example, and a high output is obtained. Therefore, it can be seen that the width W of the peripheral portion of the back surface of the substrate is preferably 2 mm or less.

本発明は上記実施例のセルに限定されるものではなく、半導体基板を用いた光起電力セルであれば適用することができるものである。   The present invention is not limited to the cell of the above embodiment, but can be applied to any photovoltaic cell using a semiconductor substrate.

本発明に従う一実施例の光起電力装置を示す模式的断面図。The typical sectional view showing the photovoltaic device of one example according to the present invention. 図1に示す実施例における光起電力セルの構造を示す拡大断面図。The expanded sectional view which shows the structure of the photovoltaic cell in the Example shown in FIG. 本発明に従う実施例において用いる単結晶シリコンウェハをエッチングするときの状態を示す断面図。Sectional drawing which shows a state when etching the single crystal silicon wafer used in the Example according to this invention. 従来の比較例の単結晶シリコンウェハをエッチングするときの状態を示す断面図。Sectional drawing which shows a state when etching the single crystal silicon wafer of the conventional comparative example. 従来の比較例の光起電力装置を示す模式的断面図。The typical sectional view showing the photovoltaic device of the conventional comparative example. 単結晶シリコンウェハの裏面周辺部の幅Wと短絡電流の相対値との関係を示す図。The figure which shows the relationship between the width W of the back surface periphery part of a single crystal silicon wafer, and the relative value of a short circuit current.

符号の説明Explanation of symbols

1…単結晶シリコン基板
1a…単結晶シリコン基板の主面
1b…単結晶シリコン基板の側面
1c…単結晶シリコン基板の裏面周辺部
1d…単結晶シリコン基板の裏面
2…i型非晶質シリコン層
3…p型非晶質シリコン層
4…透明電極
5…i型非晶質シリコン層
6…n型非晶質シリコン層
7…透明電極
8,9…集電極
10…光起電力セル
11…ガラス板
12…裏面保護フィルム
13…充填材
14…入射光
20…レジスト膜
DESCRIPTION OF SYMBOLS 1 ... Single crystal silicon substrate 1a ... Main surface of single crystal silicon substrate 1b ... Side surface of single crystal silicon substrate 1c ... Back surface peripheral part of single crystal silicon substrate 1d ... Back surface of single crystal silicon substrate 2 ... i-type amorphous silicon layer 3 ... p-type amorphous silicon layer 4 ... transparent electrode 5 ... i-type amorphous silicon layer 6 ... n-type amorphous silicon layer 7 ... transparent electrode 8,9 ... collecting electrode 10 ... photovoltaic cell 11 ... glass Plate 12 ... Back surface protective film 13 ... Filler 14 ... Incident light 20 ... Resist film

Claims (8)

主面にテクスチャー構造の凹凸が形成された半導体基板を用いた光起電力セルを備える光起電力装置において、
前記半導体基板の側面及び裏面周辺部にもテクスチャー構造の凹凸が形成されていることを特徴とする光起電力装置。
In a photovoltaic device comprising a photovoltaic cell using a semiconductor substrate with textured irregularities formed on the main surface,
The photovoltaic device according to claim 1, wherein unevenness having a texture structure is also formed on a side surface and a back surface peripheral portion of the semiconductor substrate.
前記凹凸が形成されている裏面周辺部が、基板周辺の側面端部から内側に2mm以下までの領域であることを特徴とする請求項1に記載の光起電力装置。   2. The photovoltaic device according to claim 1, wherein the peripheral portion of the back surface on which the unevenness is formed is a region of 2 mm or less inward from the side edge portion around the substrate. 前記光起電力セルが複数並べて設けられ、これらを電気的に直列に接続することによって太陽電池モジュールが構成されていることを特徴とする請求項1または2に記載の光起電力装置。   3. The photovoltaic device according to claim 1, wherein a plurality of the photovoltaic cells are provided side by side, and a solar cell module is configured by electrically connecting them in series. 4. 前記半導体基板が結晶系半導体基板であることを特徴とする請求項1〜3のいずれか1項に記載の光起電力装置。   The photovoltaic device according to claim 1, wherein the semiconductor substrate is a crystalline semiconductor substrate. 前記結晶系半導体基板が、n型もしくはp型結晶系シリコン基板であることを特徴とする請求項4に記載の光起電力装置。   5. The photovoltaic device according to claim 4, wherein the crystalline semiconductor substrate is an n-type or p-type crystalline silicon substrate. 前記n型もしくはp型結晶系シリコン基板の主面上に、i型非晶質シリコン層を介してp型もしくはn型非晶質シリコン層が設けられていることを特徴とする請求項5に記載の光起電力装置。   6. The p-type or n-type amorphous silicon layer is provided on the main surface of the n-type or p-type crystalline silicon substrate via an i-type amorphous silicon layer. The photovoltaic device described. 前記n型もしくはp型結晶系シリコン基板の裏面上に、i型非晶質シリコン層を介してn型もしくはp型非晶質シリコン層が設けられていることを特徴とする請求項5または6に記載の光起電力装置。   7. An n-type or p-type amorphous silicon layer is provided on the back surface of the n-type or p-type crystalline silicon substrate via an i-type amorphous silicon layer. A photovoltaic device according to claim 1. 前記半導体基板の裏面において周辺部以外の領域を覆った状態で前記基板をウェットエッチングすることにより、前記凹凸が形成されていることを特徴とする請求項1〜7のいずれか1項に記載の光起電力装置。
The said unevenness | corrugation is formed by wet-etching the said board | substrate in the state which covered areas other than a peripheral part in the back surface of the said semiconductor substrate, The any one of Claims 1-7 characterized by the above-mentioned. Photovoltaic device.
JP2005103097A 2005-03-31 2005-03-31 Photovoltaic device Expired - Fee Related JP4557772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005103097A JP4557772B2 (en) 2005-03-31 2005-03-31 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005103097A JP4557772B2 (en) 2005-03-31 2005-03-31 Photovoltaic device

Publications (2)

Publication Number Publication Date
JP2006286820A true JP2006286820A (en) 2006-10-19
JP4557772B2 JP4557772B2 (en) 2010-10-06

Family

ID=37408408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005103097A Expired - Fee Related JP4557772B2 (en) 2005-03-31 2005-03-31 Photovoltaic device

Country Status (1)

Country Link
JP (1) JP4557772B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103511A (en) * 2008-09-24 2010-05-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and manufacturing method thereof
JP2012044024A (en) * 2010-08-20 2012-03-01 Mitsubishi Chemicals Corp Solar battery module
WO2015068341A1 (en) * 2013-11-08 2015-05-14 パナソニックIpマネジメント株式会社 Solar cell
JP2016072522A (en) * 2014-09-30 2016-05-09 株式会社カネカ Manufacturing method of silicon substrate for solar cell, manufacturing method of solar cell, and manufacturing method of solar cell module
JP2018113462A (en) * 2013-02-26 2018-07-19 パナソニックIpマネジメント株式会社 Solar cell module

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148876A (en) * 1980-04-21 1981-11-18 Shunpei Yamazaki Manufacture of mis type photoelectric converter
JPS60216585A (en) * 1984-04-12 1985-10-30 Matsushita Electric Ind Co Ltd Solar cell element
JPH03276682A (en) * 1990-03-26 1991-12-06 Sharp Corp Semiconductor device
JPH042055U (en) * 1990-04-19 1992-01-09
JPH05259488A (en) * 1992-03-11 1993-10-08 Hitachi Ltd Silicon solar cell device and manufacture thereof
JPH05343712A (en) * 1992-06-05 1993-12-24 Hitachi Ltd Manufacture of tandem heterogeneous photoelectric conversion element
JPH06244444A (en) * 1993-02-18 1994-09-02 Hitachi Ltd Light confining structure and photodetector using structure thereof
JPH11112011A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Manufacture of photovolatic element
JP2000101111A (en) * 1998-09-17 2000-04-07 Sharp Corp Manufacture of solar cell
JP2001044470A (en) * 1999-07-30 2001-02-16 Hitachi Ltd Solar battery, manufacture of the solar battery and condenser solar battery module
JP2001189478A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Semiconductor element and manufacturing method therefor
JP2003063900A (en) * 2001-08-28 2003-03-05 Daido Steel Co Ltd Method for treating surface of single crystal semiconductor substrate
JP2003101053A (en) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd Solar battery device and manufacturing method therefor
JP2003258287A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Semiconductor device, photovoltaic device and manufacturing method thereof
JP2003258277A (en) * 2002-03-01 2003-09-12 Mitsubishi Electric Corp Solar cell
JP2003282458A (en) * 2002-03-26 2003-10-03 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2003282905A (en) * 2002-03-26 2003-10-03 Sanyo Electric Co Ltd Solar cell and manufacturing method therefor
JP2004047776A (en) * 2002-07-12 2004-02-12 Honda Motor Co Ltd Photovoltaic cell and method for manufacturing the same
JP2004281758A (en) * 2003-03-17 2004-10-07 Sharp Corp Solar cell and method for manufacturing the same
JP2005260149A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Method of manufacturing photovoltaic device

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56148876A (en) * 1980-04-21 1981-11-18 Shunpei Yamazaki Manufacture of mis type photoelectric converter
JPS60216585A (en) * 1984-04-12 1985-10-30 Matsushita Electric Ind Co Ltd Solar cell element
JPH03276682A (en) * 1990-03-26 1991-12-06 Sharp Corp Semiconductor device
JPH042055U (en) * 1990-04-19 1992-01-09
JPH05259488A (en) * 1992-03-11 1993-10-08 Hitachi Ltd Silicon solar cell device and manufacture thereof
JPH05343712A (en) * 1992-06-05 1993-12-24 Hitachi Ltd Manufacture of tandem heterogeneous photoelectric conversion element
JPH06244444A (en) * 1993-02-18 1994-09-02 Hitachi Ltd Light confining structure and photodetector using structure thereof
JPH11112011A (en) * 1997-09-30 1999-04-23 Sanyo Electric Co Ltd Manufacture of photovolatic element
JP2000101111A (en) * 1998-09-17 2000-04-07 Sharp Corp Manufacture of solar cell
JP2001044470A (en) * 1999-07-30 2001-02-16 Hitachi Ltd Solar battery, manufacture of the solar battery and condenser solar battery module
JP2001189478A (en) * 1999-12-28 2001-07-10 Sanyo Electric Co Ltd Semiconductor element and manufacturing method therefor
JP2003063900A (en) * 2001-08-28 2003-03-05 Daido Steel Co Ltd Method for treating surface of single crystal semiconductor substrate
JP2003101053A (en) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd Solar battery device and manufacturing method therefor
JP2003258277A (en) * 2002-03-01 2003-09-12 Mitsubishi Electric Corp Solar cell
JP2003258287A (en) * 2002-03-05 2003-09-12 Sanyo Electric Co Ltd Semiconductor device, photovoltaic device and manufacturing method thereof
JP2003282458A (en) * 2002-03-26 2003-10-03 Sanyo Electric Co Ltd Semiconductor device and method of manufacturing the same
JP2003282905A (en) * 2002-03-26 2003-10-03 Sanyo Electric Co Ltd Solar cell and manufacturing method therefor
JP2004047776A (en) * 2002-07-12 2004-02-12 Honda Motor Co Ltd Photovoltaic cell and method for manufacturing the same
JP2004281758A (en) * 2003-03-17 2004-10-07 Sharp Corp Solar cell and method for manufacturing the same
JP2005260149A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Method of manufacturing photovoltaic device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010103511A (en) * 2008-09-24 2010-05-06 Semiconductor Energy Lab Co Ltd Photoelectric conversion device, and manufacturing method thereof
US8872021B2 (en) 2008-09-24 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
US9450132B2 (en) 2008-09-24 2016-09-20 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and manufacturing method thereof
JP2012044024A (en) * 2010-08-20 2012-03-01 Mitsubishi Chemicals Corp Solar battery module
JP2018113462A (en) * 2013-02-26 2018-07-19 パナソニックIpマネジメント株式会社 Solar cell module
WO2015068341A1 (en) * 2013-11-08 2015-05-14 パナソニックIpマネジメント株式会社 Solar cell
JPWO2015068341A1 (en) * 2013-11-08 2017-03-09 パナソニックIpマネジメント株式会社 Solar cell
JP2016072522A (en) * 2014-09-30 2016-05-09 株式会社カネカ Manufacturing method of silicon substrate for solar cell, manufacturing method of solar cell, and manufacturing method of solar cell module

Also Published As

Publication number Publication date
JP4557772B2 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
JP4257332B2 (en) Silicon-based thin film solar cell
US10084107B2 (en) Transparent conducting oxide for photovoltaic devices
CN107710419B (en) Solar cell and solar cell module
JP2009152222A (en) Manufacturing method of solar cell element
JP2009135338A (en) Solar cell, and manufacturing method of solar cell
JP6360471B2 (en) Photoelectric conversion element, photoelectric conversion module, and photovoltaic power generation system
JP6785427B2 (en) Solar cell elements and solar cell modules
US20130157404A1 (en) Double-sided heterojunction solar cell based on thin epitaxial silicon
JP5642355B2 (en) Solar cell module
US9761749B2 (en) Photoelectric conversion device
US20160233368A1 (en) Solar cell
JPWO2011065571A1 (en) PHOTOELECTRIC CONVERSION MODULE, ITS MANUFACTURING METHOD, AND POWER GENERATION DEVICE
WO2013002102A1 (en) Photoelectric conversion device
US8507310B2 (en) Method for manufacturing thin-film photoelectric conversion device
KR101729745B1 (en) Solar cell and manufacturing method thereof
JP4557772B2 (en) Photovoltaic device
WO2015118935A1 (en) Photoelectric conversion element and solar cell module provided with same
JP5948148B2 (en) Photoelectric conversion device
JP5640948B2 (en) Solar cell
JP2023155871A (en) Solar cell, photovoltaic module, and method for preparing solar cell
JP2007035914A (en) Thin film photoelectric converter
JP4169463B2 (en) Photovoltaic element manufacturing method
KR20120064364A (en) Method for manufacturing the solar cell
CN115528136A (en) Back contact battery, manufacturing method thereof, battery assembly and photovoltaic system
WO2014050193A1 (en) Photoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100720

R151 Written notification of patent or utility model registration

Ref document number: 4557772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees