JPH05286705A - Iron nitride grain and its production - Google Patents

Iron nitride grain and its production

Info

Publication number
JPH05286705A
JPH05286705A JP4091124A JP9112492A JPH05286705A JP H05286705 A JPH05286705 A JP H05286705A JP 4091124 A JP4091124 A JP 4091124A JP 9112492 A JP9112492 A JP 9112492A JP H05286705 A JPH05286705 A JP H05286705A
Authority
JP
Japan
Prior art keywords
iron
iron nitride
carbonyl
mixture
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4091124A
Other languages
Japanese (ja)
Other versions
JP3276390B2 (en
Inventor
Isao Nakatani
功 中谷
Takashi Shinko
貴史 新子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Nittetsu Mining Co Ltd
Original Assignee
National Research Institute for Metals
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Nittetsu Mining Co Ltd filed Critical National Research Institute for Metals
Priority to JP09112492A priority Critical patent/JP3276390B2/en
Publication of JPH05286705A publication Critical patent/JPH05286705A/en
Application granted granted Critical
Publication of JP3276390B2 publication Critical patent/JP3276390B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/0622Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with iron, cobalt or nickel

Abstract

PURPOSE:To obtain isotropic iron nitride grains having a specified size by heat-treating iron carbonyl and an org. solvent contg. surfactant in a specified two-stage temp. range in the presence of a compd. generating gaseous ammonia or gaseous ammonia. CONSTITUTION:A soln. of the iron carbonyl and surfactant (e.g. N- diethyleneisobutenyl succinimide) in a solvent (e.g. kerosine) is added to a main reaction vessel 100, gaseous NH3 is bubbled through the liq. mixture 104 from an inlet pipe 118, hence the mixture is sufficiently mixed, and the mixture is heated to about 185 deg.C by a heater 102 (amines can be used in this case instead of NH3). An auxiliary reaction vessel 126 is heated to about 90 deg.C. Heating is continued until the entire iron carbonyl is consumed to obtain a seed crystal. The seed crystal is placed into the main reaction vessel 100, almost the same liq. mixture is dripped, and gaseous NH3 is passed to keep the main and auxiliary reaction vessels at the temp. The process is repeated, and isotropic iron nitride grains having 20nm to 1um diameter are obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、塗料又はトナ
ー若しくはキャリア等の粉末磁性材料に適する窒化鉄粒
子と、その製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to iron nitride particles suitable for powder magnetic materials such as paints, toners and carriers, and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、新しい機能性材料としての磁
性流体が注目されてきている。
2. Description of the Related Art Magnetic fluid as a new functional material has been attracting attention.

【0003】例えば、磁性塗料、あるいは画像形成装置
用の磁性トナーや磁性キャリア等、粉末磁性材料として
は、磁化の値が大きく、等方的な形状を有し、且つ均一
なサイズ、特に20nm〜100μm程度の微粒子が必
要とされる。ここで、等方的な形状とは、針状、棒状、
板状、扁平状等、異方的形状以外の形状のことであり、
長径と短径があまり違わない回転楕円体、長辺と短辺が
あまり違わない直方体や多面体、又はそれに類する不定
形等を指す。
For example, as a magnetic powder, a powder magnetic material such as a magnetic toner or a magnetic carrier for an image forming apparatus, which has a large magnetization value, has an isotropic shape, and has a uniform size, particularly from 20 nm. Fine particles of about 100 μm are required. Here, the isotropic shape means a needle shape, a rod shape,
It is a shape other than an anisotropic shape such as a plate shape or a flat shape,
It refers to a spheroid whose major axis and minor axis do not differ much, a rectangular parallelepiped or polyhedron whose major side and minor side do not differ much, and similar irregular shapes.

【0004】そのため従来は、球状に焼結させたフェラ
イト粒子、あるいはカルボニル鉄粉が用いられていた。
Therefore, conventionally, spherically sintered ferrite particles or carbonyl iron powder has been used.

【0005】しかしながら、フェライトは磁化が小さ
く、画像形成装置用としてはあまり適さない。
However, ferrite has a small magnetization, and is not suitable for an image forming apparatus.

【0006】一方、カルボニル鉄粉は、そのままで球状
性がよく、その磁化も大きいが、酸化に対して安定でな
く燃焼しやすくて危険であり、しかも画像形成装置用に
好適な1μm以下のサイズの粉体を得にくい等の欠点を
有している。
On the other hand, carbonyl iron powder has a good spherical shape as it is, and its magnetization is large, but it is dangerous because it is not stable against oxidation and easily burns, and moreover, it has a size of 1 μm or less suitable for an image forming apparatus. It has drawbacks such as difficulty in obtaining powder of

【0007】そのため、化学的に安定で大きな磁化を有
する磁性材料として、窒化鉄が注目されている。
Therefore, iron nitride is attracting attention as a magnetic material that is chemically stable and has a large magnetization.

【0008】現在、窒化鉄微粒子の製造法としては、次
のものが公知である。即ち、 特公昭59−34125号公報等で開示されている、
アンモニアガス雰囲気中で鉄粉末を500℃以上の温度
で加熱窒化する方法(アンモニア窒化法)、 特開平2−164443号公報等で開示されている、
鉄カルボニルFe(CO)5蒸気を、N2ガスのグロー放電
プラズマ中で分解反応させる方法(プラズマCVD
法)、 特開平3−187907号公報で開示されている、鉄
カルボニルの炭化水素油溶液とアンモニアガスとを約2
00℃で反応させる方法(気相−液相反応法)、及び 減圧したアンモニアガス雰囲気中で鉄を加熱蒸発させ
る方法(ガス中蒸発法)が知られている。
At present, the following are known methods for producing iron nitride fine particles. That is, as disclosed in Japanese Patent Publication No. 59-34125,
A method of heating and nitriding iron powder at a temperature of 500 ° C. or higher in an ammonia gas atmosphere (ammonia nitriding method) is disclosed in JP-A-2-164443.
Method of decomposing iron carbonyl Fe (CO) 5 vapor in glow discharge plasma of N 2 gas (plasma CVD
Method), and a hydrocarbon oil solution of iron carbonyl and ammonia gas, which are disclosed in Japanese Patent Laid-Open No. 3-187907, are used in an amount of about 2
There are known a method of reacting at 00 ° C. (gas phase-liquid phase reaction method) and a method of heating and evaporating iron in a decompressed ammonia gas atmosphere (gas evaporation method).

【0009】アンモニア窒化法では、形成される窒化鉄
粒子の大きさは、原料となる鉄粒子の大きさによって決
まり、現在のところ、最低粒径は1μmである。ガス中
蒸発法では、いくつかの粒子が鎖状に連結していて、単
一の粒子を得ることが困難であり、更に製造過程でのエ
ネルギー効率も悪く、また生産性において乏しい。プラ
ズマCVD法や気相−液相反応法は、窒化鉄磁性流体の
製造のために開発された方法であり、磁性流体に最適な
10nm程度の超微粒子が得られる。現在のところ、こ
れらの方法から、20nm以上の粒子は得られておら
ず、また、プラズマCVD法は、広い適用範囲を有する
方法ではあるものの、当該方法を行なうための反応装置
は複雑で高価なものであり、且つその操業には高度なテ
クニックが要求されるため、技術的経済的に必ずしも効
率の良い方法でなく、したがって気相−液相反応法か
ら、所望粒径の窒化鉄粒子を合成することが期待され
る。
In the ammonia nitriding method, the size of the iron nitride particles formed is determined by the size of the iron particles used as the raw material, and the minimum particle size is 1 μm at present. In the gas evaporation method, it is difficult to obtain a single particle because several particles are connected in a chain, and further, the energy efficiency in the manufacturing process is poor and the productivity is poor. The plasma CVD method and the gas phase-liquid phase reaction method are methods developed for producing iron nitride magnetic fluid, and ultrafine particles of about 10 nm, which are optimal for magnetic fluid, can be obtained. At present, particles of 20 nm or more have not been obtained from these methods, and although the plasma CVD method has a wide range of application, the reaction apparatus for carrying out the method is complicated and expensive. However, it is not always an efficient method in terms of technology and economy because it requires high technique for its operation. Therefore, iron nitride particles having a desired particle size can be synthesized from the gas phase-liquid phase reaction method. Expected to do.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、既に述
べたように、磁性塗料、あるいは画像形成装置用の磁性
トナーや磁性キャリア等、粉末磁性材料としては、20
nm〜100μm程度の微粒子が必要とされるのに対し
て、従来の気相−液相反応法では、20nm以上の粒径
で等方的形状の窒化金属粒子を製造することができな
い。
However, as described above, as a magnetic powder, a powder magnetic material such as a magnetic toner or a magnetic carrier for an image forming apparatus, 20
While fine particles of about nm to 100 μm are required, the conventional vapor-liquid phase reaction method cannot produce isotropic metal nitride particles having a particle size of 20 nm or more.

【0011】本発明は、このような従来の気相−液相反
応法での限界に鑑みてなされたもので、20nm以上
の、なかんずくアンモニア窒化法を用いても製造するこ
とのできなかった20nm〜1μm程度の粒径で等方的
形状の窒化鉄粒子と、その製造方法を提供することを課
題としている。
The present invention has been made in view of such a limitation in the conventional gas-liquid phase reaction method, and is 20 nm or more, which is 20 nm which cannot be produced even by using the ammonia nitriding method. An object of the present invention is to provide an isotropic iron nitride particle having a particle size of about 1 μm and a method for producing the same.

【0012】[0012]

【課題を解決するための手段】本発明は上記の課題を、
鉄カルボニルと界面活性剤の添加された有機溶媒とを、
アンモニアガスを発生する窒素含有化合物乃至アンモニ
アガス自身の導入下に、加熱処理することによって、解
決した。
The present invention solves the above problems by
Iron carbonyl and an organic solvent added with a surfactant,
The problem was solved by performing heat treatment while introducing a nitrogen-containing compound that generates ammonia gas or ammonia gas itself.

【0013】加熱処理された混合液に、アンモニアガス
を発生する窒素含有化合物乃至アンモニアガス自身の導
入下に、更に、鉄カルボニルと界面活性剤の添加された
有機溶媒とを断続的に加えながら、二段階の所定温度域
で加熱処理すれば、好適である。
Introducing a nitrogen-containing compound generating ammonia gas or ammonia gas itself into the heat-treated mixed liquid, and further intermittently adding iron carbonyl and an organic solvent to which a surfactant has been added, It is preferable to perform heat treatment in a two-step predetermined temperature range.

【0014】[0014]

【作用】窒化鉄磁性流体の製造のための気相−液相反応
法においては、最初に鉄カルボニルとアンモニアガスと
を反応させて、窒化鉄の前駆物質である鉄アンミンカル
ボニル錯体Fe2(CO)5(NH2)2、Fe3(CO)9(NH)
2を反応溶液内に次々に形成し、蓄積された当該鉄アン
ミンカルボニル錯体が、ある臨界濃度を越えると、当該
鉄アンミンカルボニル錯体は分解し始め、窒化鉄Fe3
N微粒子核を形成する。
In the gas phase-liquid phase reaction method for producing iron nitride magnetic fluid, iron carbonyl and ammonia gas are first reacted to form iron ammine carbonyl complex Fe 2 (CO 2) which is a precursor of iron nitride. ) 5 (NH 2 ) 2 , Fe 3 (CO) 9 (NH)
When the iron ammine carbonyl complex accumulated in the reaction solution one after another exceeds a certain critical concentration, the iron ammine carbonyl complex starts to decompose and iron nitride Fe 3
N fine particle nuclei are formed.

【0015】しかしながら、この窒化鉄の微粒子核は不
安定であり、鉄アンミンカルボニル錯体の濃度が臨界濃
度を下回った状態で、当該微粒子核をそのままにしてお
くと、生成した窒化鉄微粒子核は、再び溶媒中に溶解さ
れたり、分解したりして、20nm以上の粒子を得るこ
とができない。
However, the iron nitride fine particle nuclei are unstable, and when the iron ammine carbonyl complex concentration is below the critical concentration and the fine particle nuclei are left as they are, the generated iron nitride fine particle nuclei are It is again dissolved in the solvent or decomposed, and particles of 20 nm or more cannot be obtained.

【0016】このように不安定な窒化鉄であるが、窒化
鉄微粒子形成過程を鋭意研究の結果、窒化鉄の形成は、
鉄カルボニルとアンモニアガスとの反応による鉄アンミ
ンカルボニル錯体が、その臨界濃度以上の濃度を維持す
る限り、窒化鉄の微粒子核の表面において、優先的に且
つ以前よりも容易になされることが認められた。その結
果、一旦生成した窒化鉄の微粒子核は消滅することな
く、その表面において一層ずつ増大し、当該微粒子は成
長を続ける。
As described above, although iron nitride is unstable, as a result of earnest research on the formation process of iron nitride fine particles, the formation of iron nitride was
It has been observed that the iron ammine carbonyl complex produced by the reaction of iron carbonyl with ammonia gas is preferentially and easier than before on the surface of the fine iron nucleus of iron nitride, as long as it maintains a concentration above its critical concentration. It was As a result, the iron nitride fine particle nuclei that have been generated do not disappear, but increase on the surface one by one, and the fine particles continue to grow.

【0017】以上の過程を経ることで、球状の窒化鉄粒
子が形成され、その直径は、ほぼ反応時間に依存し、鉄
カルボニルとアンモニアガスの供給量により所望のサイ
ズまで増大させることが可能である。
Through the above process, spherical iron nitride particles are formed, and the diameter thereof depends almost on the reaction time, and it can be increased to a desired size by the supply amount of iron carbonyl and ammonia gas. is there.

【0018】本発明においては、窒化鉄粒子を形成する
にあたり、窒化鉄の原料物質として、鉄カルボニルを、
原料ガスとしてアンモニアを用いるが、アンモニアに代
えて、アミン類等の液状或いは固体として反応系に導入
できる任意の窒素化合物を用いることもできる。溶媒と
しては、例えば、炭化水素類、或いはその混合物、ケト
ン類、エーテル類、エステル類、アミン類等が、当該溶
媒に添加される界面活性剤としては、アミン類が好適で
あるが、これらに限定されない。
In the present invention, when forming iron nitride particles, iron carbonyl is used as a raw material of iron nitride,
Although ammonia is used as the source gas, any nitrogen compound that can be introduced into the reaction system as a liquid or solid such as amines can be used instead of ammonia. As the solvent, for example, hydrocarbons, or a mixture thereof, ketones, ethers, esters, amines, etc., and as the surfactant to be added to the solvent, amines are preferable. Not limited.

【0019】鉄カルボニルに代えて、コバルトカルボニ
ルやニッケルカルボニルを原料とすれば、窒化鉄以外の
窒化金属磁性粒子を製造することも可能である。
By using cobalt carbonyl or nickel carbonyl as a raw material instead of iron carbonyl, it is possible to produce metal nitride magnetic particles other than iron nitride.

【0020】[0020]

【実施例】以下に本発明の実施例をあげて、さらに具体
的に説明する。
EXAMPLES The present invention will be described in more detail below with reference to examples.

【0021】(1)種結晶形成段階 図1に示される合成装置は、底部に加熱装置102を配設
した耐熱性の主反応槽100の上蓋部に、複数の気密性導
入フランジが形成されている。主反応槽100内の溶液104
を撹拌できるように、一つの導入フランジ106には、撹
拌装置108の回転軸が挿入されていて、当該回転軸の槽
側先端には撹拌子110が取り付けられている。導入管112
を通って、含窒素化合物が、導入管114を通って、不活
性ガスが、それぞれ導入フランジ116を介して主反応槽1
00、溶液104に導入されるようになっている。反応温度
を制御するために、熱電対118が同じ導入フランジ116を
介して主反応槽100に導入されている。予め秤量・混合さ
れた鉄カルボニルと有機溶媒と界面活性剤とからなる溶
液120が、管路122を介して主反応槽100に導入されるよ
うになっている。別の導入フランジ124を介して、耐熱
性の副反応槽126が主反応槽100に接続されている。当該
副反応槽126の周囲には、加熱装置128が配設されてい
て、主反応槽100と副反応槽126との間には、副反応槽12
6から主反応槽100へ落下する液滴量を調整するための流
量調節用コック130が取り付けられている。更に副反応
槽128の上方には、還流用の冷却塔132が取り付けられ
て、未反応の鉄カルボニルを副反応槽126に戻すように
なっている。また当該冷却塔132を介して、反応で生じ
たガスや余剰の原料ガスが流れ、トラップで処理した
後、安全なガスのみ系外に放出される。
(1) Stage of Forming Seed Crystal In the synthesis apparatus shown in FIG. 1, a plurality of airtight introduction flanges are formed on the upper lid of the heat-resistant main reaction tank 100 having the heating device 102 at the bottom. There is. Solution 104 in main reaction tank 100
In order to be able to stir, the rotary shaft of the stirrer 108 is inserted into one of the introduction flanges 106, and the stirrer 110 is attached to the tank-side end of the rotary shaft. Introductory pipe 112
Through the introduction pipe 114, and the inert gas through the introduction flange 116, respectively.
00, the solution 104 is introduced. A thermocouple 118 is introduced into the main reaction vessel 100 via the same introduction flange 116 to control the reaction temperature. A solution 120 consisting of iron carbonyl, which has been weighed and mixed in advance, an organic solvent, and a surfactant, is introduced into the main reaction tank 100 via a pipe 122. A heat-resistant side reaction tank 126 is connected to the main reaction tank 100 via another introduction flange 124. A heating device 128 is provided around the side reaction tank 126, and the side reaction tank 12 is provided between the main reaction tank 100 and the side reaction tank 126.
A flow rate adjusting cock 130 for adjusting the amount of droplets falling from 6 to the main reaction tank 100 is attached. Further, a cooling tower 132 for reflux is attached above the side reaction tank 128 to return unreacted iron carbonyl to the side reaction tank 126. Further, the gas generated by the reaction and the surplus raw material gas flow through the cooling tower 132, and after being processed by the trap, only the safe gas is released to the outside of the system.

【0022】原料として、アルドリッヒ(Aldrich)社製
で純度96.5%の鉄カルボニルを、溶媒として、和光
純薬製のケロシン、界面活性剤として、花王製のN-ジ
エチレンイソブテニルサクシンイミド(アミン)、並び
に日本酸素製で純度99.99%のアンモニアガスを用
いた。
Iron carbonyl manufactured by Aldrich and having a purity of 96.5% is used as a raw material, kerosene manufactured by Wako Pure Chemical Industries, Ltd. as a solvent, and N-diethyleneisobutenylsuccinimide manufactured by Kao as a surfactant ( Amine) and ammonia gas manufactured by Nippon Oxygen and having a purity of 99.99%.

【0023】先ず、内容量300mlの主反応槽100に
おいて、鉄カルボニル80.0g、アミン11.3g、
ケロシン50.1gからなる混合溶液104中に、導入管1
18を介して、アンモニアガスを流量390ml/min
でバブリングしながら十分混合し、加熱装置102によっ
て185℃まで加熱する。同時に副反応槽126を90℃
に加熱する。この2段階の温度域を用いて、主反応槽10
0中の鉄カルボニルが全て消費されるまで加熱処理し
て、種結晶を試料113として63.4g得た。このよう
にして得られた磁性窒化鉄粒子の平均粒径を透過型電子
顕微鏡の高倍率写真から求めた結果を、表1に示す。
First, in a main reaction vessel 100 having an internal volume of 300 ml, 80.0 g of iron carbonyl, 11.3 g of amine,
Introducing tube 1 into mixed solution 104 consisting of 50.1 g of kerosene
Ammonia gas flow rate of 390 ml / min via 18
While bubbling with, thoroughly mix and heat to 185 ° C. by the heating device 102. At the same time, the side reaction tank 126 is set to 90 ° C.
Heat to. The main reaction tank 10
Heat treatment was performed until all the iron carbonyl in 0 was consumed, and 63.4 g of a seed crystal was obtained as sample 113. The average particle size of the magnetic iron nitride particles thus obtained is shown in Table 1 as a result obtained from a high magnification photograph of a transmission electron microscope.

【0024】(2)粒子増大化段階 次に、この種結晶を、同じ合成装置を用いて増大化させ
る。
(2) Particle Enlargement Step Next, this seed crystal is enlarged using the same synthesizer.

【0025】主反応槽100に、上記種結晶形成段階で得
られた種結晶23.0gを入れ、鉄カルボニル80重量
部、アミン6.4重量部、ケロシン35.1重量部から
なる混合溶液120を121.5g滴下し、更にアンモニ
アガスを390ml/minでバブリングしながら十分
混合し、主反応槽100を185℃に、副反応槽126を90
℃に昇温し、副反応槽126に上昇した鉄カルボニルが全
て消費されるまで反応させて試料114を60.8g得
た。次に、この試料114のうち、23.0gを主反応槽1
00に入れ、再び混合溶液120を121.5g滴下し、更
にアンモニアガスを390ml/minでバブリングし
ながら十分混合し、同様の加熱操作を行なって試料115
を60.7g得た。これと同じ操作を繰り返し、試料11
6を56.0g、試料117を62.1g得た。それぞれの
合成条件と得られた窒化鉄粉体の平均粒径、飽和磁化値
を表1に示す。
The main reaction vessel 100 was charged with 23.0 g of the seed crystal obtained in the seed crystal formation step, and a mixed solution 120 consisting of 80 parts by weight of iron carbonyl, 6.4 parts by weight of amine, and 35.1 parts by weight of kerosene was prepared. (121.5 g) was added dropwise, and ammonia gas was bubbled at 390 ml / min to thoroughly mix the mixture, and the main reaction tank 100 was heated to 185 ° C.
The temperature was raised to 0 ° C., and the reaction was continued until all the iron carbonyl that had risen in the side reaction tank 126 was consumed to obtain 60.8 g of sample 114. Next, 23.0 g of this sample 114 is used in the main reactor 1
Into 00, 121.5 g of mixed solution 120 was dropped again, and ammonia gas was bubbled at 390 ml / min to thoroughly mix, and the same heating operation was performed to prepare sample 115.
Was obtained in an amount of 60.7 g. Repeat the same operation as above to prepare sample 11
56.0 g of 6 and 62.1 g of sample 117 were obtained. Table 1 shows the respective synthesis conditions, the average particle size of the obtained iron nitride powder, and the saturation magnetization value.

【0026】なお、平均粒径の測定には、高倍率電子顕
微鏡写真上で300個の粒子について粒径を測定し、算
術平均値を求めた。また飽和磁化の測定には振動試料磁
力計を用いて、最大10kOeの磁界をかけ、磁化曲線
を測定し、飽和漸近則により磁界を無限大に外捜して求
めた。スラリー中の窒化鉄粉末成分の飽和磁化は、スラ
リーの比重と溶媒の比重を用いて算出した。
The average particle size was measured by measuring the particle size of 300 particles on a high-magnification electron micrograph and determining the arithmetic mean value. A vibrating sample magnetometer was used to measure the saturation magnetization, a magnetic field of maximum 10 kOe was applied, the magnetization curve was measured, and the magnetic field was infinitely searched for by the saturation asymptotic rule. The saturation magnetization of the iron nitride powder component in the slurry was calculated using the specific gravity of the slurry and the specific gravity of the solvent.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【発明の効果】請求項1の窒化鉄粒子においては、20
nm〜1μm程度の粒径で、等方的形状を有しているの
で、粒子同士の分離性がよく、粉体としての取り扱いが
容易であり、顔料や染料による着色が容易である。
According to the iron nitride particles of claim 1, 20
Since the particles have a particle size of about 1 nm to 1 μm and have an isotropic shape, the particles can be easily separated from each other, can be easily handled as a powder, and can be easily colored with a pigment or a dye.

【0029】請求項2の窒化鉄粒子の製造方法において
は、鉄カルボニルと界面活性剤の添加された有機溶媒と
を、アンモニアガスを発生する窒素含有化合物乃至アン
モニアガス自身の導入下に、二段階の所定温度域で加熱
処理し、磁化の値が大きく且つ粒径の揃った窒化鉄粒子
が得られ、このように得られた窒化鉄粒子は、粒子表面
を親油性にも親水性にも適宜に変えることができ、水性
溶媒中、又は油溶媒中にそれぞれ懸濁させることができ
る。そして当該粒子を液体中に懸濁させて、保存、輸送
並びにその他の取り扱いができるので、当該粒子が燃焼
することもなく安全であり、また取り扱い作業も容易で
ある。
In the method for producing iron nitride particles according to claim 2, iron carbonyl and an organic solvent to which a surfactant is added are introduced in two steps by introducing a nitrogen-containing compound that generates ammonia gas or ammonia gas itself. By heat treatment in a predetermined temperature range, iron nitride particles having a large magnetization value and a uniform particle size are obtained. The iron nitride particles thus obtained have a particle surface that is lipophilic or hydrophilic. And can be suspended respectively in an aqueous solvent or an oil solvent. Since the particles can be suspended in a liquid for storage, transportation and other handling, the particles are safe without burning and the handling work is easy.

【0030】また、請求項3の製造方法においては、鉄
カルボニルと界面活性剤の添加された有機溶媒とを、断
続的に増量するので、窒化鉄の製造時間が短縮される。
Further, in the manufacturing method of claim 3, the amount of iron carbonyl and the organic solvent to which the surfactant is added are intermittently increased, so that the manufacturing time of iron nitride is shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】窒化鉄粒子の合成装置の概略図である。FIG. 1 is a schematic diagram of an apparatus for synthesizing iron nitride particles.

【符号の説明】[Explanation of symbols]

100 主反応槽 108 撹拌装置 126 副反応槽 132 冷却塔 100 Main Reaction Tank 108 Stirrer 126 Side Reaction Tank 132 Cooling Tower

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 G03G 9/107 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location G03G 9/107

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 20nm〜1μm程度の粒径を有し、等
方的形状の窒化鉄粒子。
1. An isotropic iron nitride particle having a particle size of about 20 nm to 1 μm.
【請求項2】 鉄カルボニルと界面活性剤の添加された
有機溶媒とを、アンモニアガスを発生する窒素含有化合
物乃至アンモニアガス自身の導入下に、二段階の所定温
度域で加熱処理することを特徴とする窒化鉄粒子の製造
方法。
2. Iron carbonyl and an organic solvent to which a surfactant has been added are heat-treated in a two-step predetermined temperature range while introducing a nitrogen-containing compound that generates ammonia gas or ammonia gas itself. And a method for producing iron nitride particles.
【請求項3】 加熱処理された混合液に、アンモニアガ
スを発生する窒素含有化合物乃至アンモニアガス自身の
導入下に、鉄カルボニルと界面活性剤の添加された有機
溶媒とを断続的に加えながら、二段階の所定温度域で加
熱処理することを特徴とする請求項2に記載の窒化鉄粒
子の製造方法。
3. An iron carbonyl and an organic solvent to which a surfactant is added are intermittently added to the heat-treated mixed liquid while introducing a nitrogen-containing compound that generates ammonia gas or ammonia gas itself, The method for producing iron nitride particles according to claim 2, wherein the heat treatment is performed in two predetermined temperature ranges.
JP09112492A 1992-04-10 1992-04-10 Iron nitride particles and method for producing the same Expired - Lifetime JP3276390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09112492A JP3276390B2 (en) 1992-04-10 1992-04-10 Iron nitride particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09112492A JP3276390B2 (en) 1992-04-10 1992-04-10 Iron nitride particles and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05286705A true JPH05286705A (en) 1993-11-02
JP3276390B2 JP3276390B2 (en) 2002-04-22

Family

ID=14017781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09112492A Expired - Lifetime JP3276390B2 (en) 1992-04-10 1992-04-10 Iron nitride particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP3276390B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051814A (en) * 2009-08-31 2011-03-17 Teijin Ltd Iron nitride fine particle and colloidal solution containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051814A (en) * 2009-08-31 2011-03-17 Teijin Ltd Iron nitride fine particle and colloidal solution containing the same

Also Published As

Publication number Publication date
JP3276390B2 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
US9017576B2 (en) Methods to synthesize NiPt bimetallic nanoparticles by a reversed-phase microemulsion, deposition of NiPt bimetallic nanoparticles on a support, and application of the supported catalyst for CO2 reforming of methane
US5064464A (en) Process for producing ultrafine metal particles
Choi et al. Synthesis of cobalt boride nanoparticles using RF thermal plasma
Suh et al. Size-controlled synthesis of Fe–Ni alloy nanoparticles by hydrogen reduction of metal chlorides
US20080131350A1 (en) Method for Production of Metal Nitride and Oxide Powders Using an Auto-Ignition Combustion Synthesis Reaction
JP2008045202A (en) Method for producing metal nanopowder using gas-phase reaction method
CN104787756A (en) Macroscopic preparation method for graphene quantum dots
EP1565403B1 (en) Method for synthesis of carbon nanotubes
US7531158B2 (en) Vapor phase synthesis of double-walled carbon nanotubes
CN101728049A (en) Synthetic method and equipment of magnetic liquid taking carbon coated metal nano particles as magnetic carriers
Bulychev Obtaining nanosized materials in plasma discharge and ultrasonic cavitation
Kudryashova et al. Synthesis of yttrium–aluminum garnet using a microreactor with impinging jets
Crouse et al. Reagent control over the size, uniformity, and composition of Co–Fe–O nanoparticles
JP3276390B2 (en) Iron nitride particles and method for producing the same
JP2011184725A (en) Method for synthesizing cobalt nanoparticle by hydrothermal reduction process
Nasiri et al. Effect of alumina percentage on size and superparamagnetic properties of Ni-Al2O3 nanocomposite synthesized by solution combustion
KR100596677B1 (en) Massive synthesis method of double-walled carbon nanotubes using the vapor phase growth
JP3255958B2 (en) Magnetic fluid or magnetic particle manufacturing equipment
JP3363938B2 (en) Method for producing spherical iron nitride fine particles by sintering method
Wang et al. Synthesis of monodisperse and high-purity α-Si3N4 powder by carbothermal reduction and nitridation
JP3412189B2 (en) Method for producing iron nitride particles
Oktay et al. Physical properties of thorium oxalate powders and their influence on the thermal decomposition
JPS62283900A (en) Production of aln whisker
Lei et al. (Fe 1− x Ni x) 3 N nanoparticles: the structure, magnetic and photocatalytic properties for water splitting
Lee et al. Kinetic study on the hydrogen reduction of ferrous chloride vapor for preparation of iron powder

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term