JPH0469410B2 - - Google Patents

Info

Publication number
JPH0469410B2
JPH0469410B2 JP8811483A JP8811483A JPH0469410B2 JP H0469410 B2 JPH0469410 B2 JP H0469410B2 JP 8811483 A JP8811483 A JP 8811483A JP 8811483 A JP8811483 A JP 8811483A JP H0469410 B2 JPH0469410 B2 JP H0469410B2
Authority
JP
Japan
Prior art keywords
film
coating
ray
absorbing member
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8811483A
Other languages
Japanese (ja)
Other versions
JPS59213131A (en
Inventor
Katsuhiro Kawabuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58088114A priority Critical patent/JPS59213131A/en
Publication of JPS59213131A publication Critical patent/JPS59213131A/en
Publication of JPH0469410B2 publication Critical patent/JPH0469410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、X線露光に使用されるX線露光用マ
スクの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an X-ray exposure mask used for X-ray exposure.

[発明の技術的背景とその問題点] 近時、より高性能な半導体集積回路を製造する
ために、1[μm]或いはそれ以下の寸法を有す
る微細パターンを、半導体基板上に形成する要求
が高まつている。X線(主に波長4〜13Åの軟X
線)を使用したパターン転写技術であるX線露光
は、塵埃の影響を受けにくい、転写されたパター
ンの精度が極めて高い等の多くの特徴があり、特
にサブミクロンパターン形成において有力な技術
とされている。
[Technical background of the invention and its problems] Recently, in order to manufacture higher-performance semiconductor integrated circuits, there has been a demand for forming fine patterns with dimensions of 1 [μm] or less on semiconductor substrates. It's increasing. X-rays (mainly soft X-rays with a wavelength of 4 to 13 Å)
X-ray exposure, which is a pattern transfer technology using X-rays (rays), has many characteristics such as being less susceptible to dust and having extremely high precision in the transferred patterns, and is considered to be a particularly effective technology for forming submicron patterns. ing.

第1図はX線露光の原理を示す模式図である。
図中1はX線露光用マスクで、このマスク1はX
線に対し透過率の高い材料からなる薄膜基板2を
支持環3に固定すると共に、薄膜基板2の下面に
X線吸収部材、例えば厚さ0.5〜1.0[μm]の金
からなる所望のマスクパターン4を取着して形成
されている。マスク1の下方にはレジスタ5を塗
布された試料6が配置され、またマスク1の上方
にはX線源7が配置される。そして、X線源7か
らマスク1にX線を照射することにより、マスク
1を透過したX線が試料6上のレジスト5に照射
され、同レジスタ5にパターン4が露光されるこ
とになる。
FIG. 1 is a schematic diagram showing the principle of X-ray exposure.
1 in the figure is a mask for X-ray exposure, and this mask 1
A thin film substrate 2 made of a material with high transmittance for radiation is fixed to a support ring 3, and a desired mask pattern made of an X-ray absorbing material, for example, gold with a thickness of 0.5 to 1.0 [μm] is placed on the lower surface of the thin film substrate 2. 4 is attached. A sample 6 coated with a resistor 5 is placed below the mask 1, and an X-ray source 7 is placed above the mask 1. Then, by irradiating the mask 1 with X-rays from the X-ray source 7, the X-rays that have passed through the mask 1 are irradiated onto the resist 5 on the sample 6, and the pattern 4 is exposed on the resist 5.

X線露光用マスクに対する要求として、薄膜基
板上に形成されたX線吸収材料から成るマスクパ
ターンの断面形状は矩形でなければならない。前
記第1図に示した如くX線源7から発生したX線
束7は、薄膜基板3上に形成されたマスクパター
ン4、例えば厚さ0.5[μm]の金パターン4a,
4bの像を、ウエーハ6上に塗布したレジスト5
に形成する。そして、マスクパターン4が金パタ
ーン4aの如く台形状の断面形状を有する場合、
レジスト5中に転写される像は、δの幅だけ端部
がぼけてしまう。このため、マスクパターン4の
断面は、金パターン4bの様に矩形でなければな
らない。
As a requirement for an X-ray exposure mask, the cross-sectional shape of a mask pattern made of an X-ray absorbing material formed on a thin film substrate must be rectangular. As shown in FIG. 1, the X-ray flux 7 generated from the X-ray source 7 is transmitted to a mask pattern 4 formed on a thin film substrate 3, such as a gold pattern 4a with a thickness of 0.5 [μm],
4b is applied to the resist 5 on the wafer 6.
to form. When the mask pattern 4 has a trapezoidal cross-sectional shape like the gold pattern 4a,
The edges of the image transferred into the resist 5 are blurred by the width δ. Therefore, the cross section of the mask pattern 4 must be rectangular like the gold pattern 4b.

このような要求、即ち薄膜基板上に、矩形断面
を有するX線吸収材料のパターンを形成するため
には、次のような方法が知られている(第42回応
用物理学会学術講演会(1981年)講演予講集9P
−G−6)この方法では、まず第2図aに示す如
くシリコン基板11上に、チタニウム薄膜12お
よび金薄膜13を順次蒸着形成し、さらにその上
にプラズマ気相成長法を用いてシリコン窒化膜1
4を形成する。ここで、金薄膜13は後工程では
金の電気メツキの際の導電層として作用する。ま
た、チタニウム薄膜12は金薄膜13とシリコン
基板11との密着性維持のために必要である。次
いで、第2図bに示す如くレジスト15を回転塗
布しこのレジスト15を露光現像してレジストパ
ターンを形成する。その後、反応性イオンエツチ
ング技術を用い、第2図cに示す如く上記レジス
ト15をマスクとしてシリコン窒化膜14を選択
エツチングする。これにより、シリコン窒化膜1
4のエツチング断面形状が矩形状となる。次い
で、金の電気メツキ技術を用い、第2図dに示す
如く金膜16を選択的にシリコン窒化膜14の溝
部に形成する。続いて、第2図eに示す如く全面
にポリイミド膜17を披着し、さらにシリコ基板
11の一部を裏面からエツチングし除去する。次
いで、チタニウム薄膜12および金薄膜13の露
出した部分を除去することによつて、第2図fに
示す如きマスクが作製されることになる。
In order to meet such requirements, that is, to form a pattern of X-ray absorbing material with a rectangular cross section on a thin film substrate, the following method is known (as described in the 42nd Annual Conference of the Japan Society of Applied Physics (1981)). 2017) Lecture preliminaries 9P
-G-6) In this method, first, a titanium thin film 12 and a gold thin film 13 are sequentially deposited on a silicon substrate 11 as shown in FIG. Membrane 1
form 4. Here, the gold thin film 13 acts as a conductive layer during gold electroplating in a subsequent process. Further, the titanium thin film 12 is necessary to maintain adhesion between the gold thin film 13 and the silicon substrate 11. Next, as shown in FIG. 2B, a resist 15 is spin-coated, and this resist 15 is exposed and developed to form a resist pattern. Thereafter, using a reactive ion etching technique, the silicon nitride film 14 is selectively etched using the resist 15 as a mask, as shown in FIG. 2c. As a result, silicon nitride film 1
The etched cross-sectional shape of No. 4 is rectangular. Next, using a gold electroplating technique, a gold film 16 is selectively formed in the groove portion of the silicon nitride film 14, as shown in FIG. 2d. Subsequently, as shown in FIG. 2e, a polyimide film 17 is deposited on the entire surface, and a part of the silicon substrate 11 is etched and removed from the back surface. Next, by removing the exposed portions of the titanium thin film 12 and the gold thin film 13, a mask as shown in FIG. 2f is produced.

しかしながら、この種の製造方法にあつては次
の(1)〜(4)のような問題があつた。
However, this type of manufacturing method has the following problems (1) to (4).

(1) チタニウム薄膜12及び金薄膜13を形成す
る工程が必要であり、またこれらの薄膜12,
13を最終的に除去する必要があり工程が複雑
である。
(1) A process of forming a titanium thin film 12 and a gold thin film 13 is required, and these thin films 12,
13 needs to be removed finally, making the process complicated.

(2) 金薄膜13の除去時にX線吸収部材の金膜1
6も多少エツチングされ、全膜16の膜厚が減
少する。
(2) When removing the gold thin film 13, the gold film 1 of the X-ray absorbing member
6 is also etched to some extent, and the thickness of the entire film 16 is reduced.

(3) 反応性イオンエツチングの条件次第ではエツ
チング終了後の金薄膜13の表面に変成層或い
は堆積層を生じ、金の電気メツキに支障をきた
す。
(3) Depending on the conditions of reactive ion etching, a metamorphosed layer or a deposited layer may be formed on the surface of the gold thin film 13 after etching, which may interfere with gold electroplating.

(4) シリコン基板11の裏面に金がメツキされる
のを防止するための措置が必要である。
(4) Measures must be taken to prevent gold plating on the back side of the silicon substrate 11.

[発明の目的] 本発明の目的は、矩形の断面形状を有するX線
吸収部材からなるマスクパターンを容易かつ高精
度に形成することができるX線露光用マスクの製
造方法を提供することにある。
[Object of the Invention] An object of the present invention is to provide a method for manufacturing an X-ray exposure mask that can easily and accurately form a mask pattern made of an X-ray absorbing member having a rectangular cross-sectional shape. .

[発明の概要] 本発明の骨子は、基板とその上に形成すべきX
線吸収部材との間に、基板エツチングの際のマス
クとなるストツパ膜及び導体膜を形成することに
ある。
[Summary of the Invention] The gist of the present invention is to provide a substrate and an X to be formed on the substrate.
The purpose is to form a stopper film and a conductor film, which serve as a mask during substrate etching, between the line absorbing member and the line absorbing member.

シリコン基板のエツチングは、通常KOH等の
エツチング溶液で行なわれるが、タングステン等
もシリコンと同様にこのようなエツチング溶液で
エツチングされる性質をもつ。そのため、シリコ
ン基板とX線吸収部材との間に耐エツチング性の
高い薄膜がない場合には、シリコン基板のエツチ
ングがX線吸収部材とシリコン基板の界面にまで
進行すると、タングステン等のX線吸収部材がエ
ツチング溶液に接触しX線吸収部材が一部エツチ
ングされることになる。シリコン基板のエツチン
グは均一には進まないため、場所によつてX線吸
収部材がエツチングされる時間が異なり、X線吸
収部材の膜厚がX線露光用マスク内で変動し、X
線マスクの精度が劣化する。このようなX線吸収
部材のエツチングを防止するためにシリコン基板
と絶縁性薄膜との間に基板より耐エツチング性の
高い薄膜と導体膜を形成しておく。耐エツチング
性の高い薄膜としてはシリコン酸化膜などを用い
る。導体膜は上述の選択気相成長を行なわせるの
に必要であり、多結晶シリコン膜などを用いるこ
とができる。
Etching of silicon substrates is normally carried out with an etching solution such as KOH, but tungsten and the like also have the property of being etched with such an etching solution, just like silicon. Therefore, if there is no thin film with high etching resistance between the silicon substrate and the X-ray absorbing member, if etching of the silicon substrate progresses to the interface between the X-ray absorbing member and the silicon substrate, the X-ray absorbing material such as tungsten will The member will come into contact with the etching solution and the X-ray absorbing member will be partially etched. Etching of a silicon substrate does not proceed uniformly, so the etching time for the X-ray absorbing member differs depending on the location, and the film thickness of the X-ray absorbing member varies within the X-ray exposure mask.
Line mask accuracy deteriorates. In order to prevent such etching of the X-ray absorbing member, a thin film and a conductive film having higher etching resistance than the substrate are formed between the silicon substrate and the insulating thin film. A silicon oxide film or the like is used as the thin film with high etching resistance. The conductor film is necessary for performing the above-mentioned selective vapor phase growth, and a polycrystalline silicon film or the like can be used.

本発明はこのような点に着目し、X線露光用マ
スクの製造方法において、基板上に該基板より耐
エツチング性の高い第1の被膜を形成したのち、
この被膜上に導体若しくは半導体からなる第2の
被膜を形成し、次いで第2の被膜上に絶縁物から
なる第3の被膜を形成し、次いで上記第3の被膜
を所望のマスクパターンに応じてパターニング
し、次いで気相成長法を用い上記第3の被膜には
成長層が形成されない条件下で前記第2の被膜の
露出した部分にX線吸収部材を選択的に形成し、
しかるのち前記基板の一部を前記第1の被膜が形
成された面の反対側から該被膜が露出するまで除
去するようにした方法である。
The present invention has focused on such points, and in a method for manufacturing an X-ray exposure mask, after forming a first coating having higher etching resistance than the substrate on a substrate,
A second film made of a conductor or semiconductor is formed on this film, then a third film made of an insulator is formed on the second film, and then the third film is applied in accordance with a desired mask pattern. patterning, and then selectively forming an X-ray absorbing member on the exposed portion of the second coating using a vapor phase growth method under conditions such that no growth layer is formed on the third coating;
Thereafter, a part of the substrate is removed from the side opposite to the surface on which the first coating is formed until the coating is exposed.

[発明の効果] 本発明によれば、反応性イオンエツチング法等
を用い絶縁性の第3の被膜を垂直にエツチングす
ることができ、このエツチング側面に沿つてX線
吸収部材を形成しているので、X線吸収部材の断
面形状を矩形状に形成することができる。また、
第1及び第2の被膜を除去する必要がないので、
工程の簡略化をはかり得る。さらに、基板エツチ
ングの際に第1の被膜がストツパ膜として作用す
るため、第2の被膜やX線吸収部材の膜厚が減少
する等の不都合はない。また、前記した従来法の
欠点(3)〜(4)も効果的に解決することができ、X線
露光用マスクの信頼性向上をはかり得る。
[Effects of the Invention] According to the present invention, the insulating third film can be vertically etched using a reactive ion etching method or the like, and the X-ray absorbing member is formed along the etched side surface. Therefore, the cross-sectional shape of the X-ray absorbing member can be formed into a rectangular shape. Also,
Since there is no need to remove the first and second coatings,
The process can be simplified. Furthermore, since the first film acts as a stopper film during substrate etching, there is no problem such as reduction in the thickness of the second film or the X-ray absorbing member. Further, the disadvantages (3) to (4) of the conventional method described above can be effectively solved, and the reliability of the X-ray exposure mask can be improved.

[発明の実施例] 以下、本発明の詳細を図示の実施例によつて説
明する。第3図a〜eは本発明の一実施例に係わ
るX線露光用マスクの製造工程を示す模式図であ
る。まず、第3図aに示す如く、シリコン基板2
1上に熱酸化技術を用いてシリコン酸化膜を22
(耐エツチング性の高い第1の被膜)を0.3[μm]
の厚さに形成する。続いて、シリコン酸化膜21
上に気相成長技術を用いて多結晶シリコン膜23
(第2の被膜)を0.3[μm]の厚さに形成し、こ
の上に気相成長技術を用いてシリコン窒化膜24
(絶縁性の第3の被膜)を0.5[μm]の厚さの形
成する、その後、シリコン窒化膜24上にレジス
ト25を回転塗布し、このレジスト25を露光現
像してレジストパターンを形成する。次いで、第
3図bに示す如く反応性イオンエツチング技術を
用い、上記レジスト25をマスクとしてシリコン
窒化膜24をエツチングする。これにより、シリ
コン窒化膜24のエツチング断面形状が矩形状と
なる。次いで、レジスト25を除去したのち、第
3図cに示す如く気相成長技術を用い、500[℃]
で金属タングステン26(X線吸収部材)を膜厚
0.3[μm]だけ選択成長させる。なお、この選択
成長は気相成長時の条件を適当に選ぶことにより
容易に行なえる。
[Embodiments of the Invention] Details of the present invention will be explained below with reference to illustrated embodiments. FIGS. 3a to 3e are schematic diagrams showing the manufacturing process of an X-ray exposure mask according to an embodiment of the present invention. First, as shown in FIG. 3a, a silicon substrate 2
A silicon oxide film 22 is formed on 1 using thermal oxidation technology.
(first coating with high etching resistance) 0.3 [μm]
Form to a thickness of . Next, silicon oxide film 21
Polycrystalline silicon film 23 is deposited on top using vapor phase growth technology.
(second film) is formed to a thickness of 0.3 [μm], and on top of this a silicon nitride film 24 is formed using vapor phase growth technology.
(Insulating third film) is formed to a thickness of 0.5 [μm]. Thereafter, a resist 25 is spin-coated on the silicon nitride film 24, and this resist 25 is exposed and developed to form a resist pattern. Next, as shown in FIG. 3B, the silicon nitride film 24 is etched using the resist 25 as a mask using a reactive ion etching technique. As a result, the etched cross-sectional shape of the silicon nitride film 24 becomes rectangular. Next, after removing the resist 25, as shown in FIG.
The film thickness of metallic tungsten 26 (X-ray absorption material) is
Selectively grow by 0.3 [μm]. Note that this selective growth can be easily performed by appropriately selecting the conditions during vapor phase growth.

次いで、第3図dに示す如くシリコン窒化膜2
4及びタングステン26上に膜厚1[μm]のポ
リイミド膜27を形成する。しかるのち、KOH
溶液を用い第3図eに示す如くシリコン基板21
の中央部を裏面からエツチングする。エツチング
はシリコン酸化膜22で停止するのでタングステ
ン26は全くエツチングされない。かくして形成
されたX線露光用マスクは、前記シリコン窒化膜
24およびポリイミド膜27がX線を透過し、前
記タングステン26がX線を透過しないので、X
線露光に用いることが可能となる。
Next, as shown in FIG. 3d, a silicon nitride film 2 is formed.
A polyimide film 27 having a thickness of 1 [μm] is formed on the polyimide film 4 and the tungsten 26. Afterwards, KOH
As shown in FIG. 3e, a silicon substrate 21 is prepared using a solution.
Etch the center part from the back side. Since the etching stops at the silicon oxide film 22, the tungsten 26 is not etched at all. The X-ray exposure mask formed in this way does not transmit X-rays because the silicon nitride film 24 and the polyimide film 27 transmit X-rays, and the tungsten 26 does not transmit X-rays.
It becomes possible to use it for line exposure.

このように本実施例方法によれば、反応性イオ
ンエツチング技術等を用いてエツチングしたシリ
コン窒化膜24の垂直な側面に沿つてタングステ
ン26を成長させているので、タングステン26
が断面を矩形状に形成することができ、マスクパ
ターンの断面を矩形状に形成できる。また、シリ
コン酸化膜22がシリコン基板21のエツチング
の際のストツパとして作用するため、タングステ
ン26がエツチングされる等の不都合はない。さ
らに、第1及び第2の被膜22,23として透明
膜を用いているので、これらの被膜22,23を
除去する工程が不要となり、工程の簡略化をはか
り得る。
As described above, according to the method of this embodiment, the tungsten 26 is grown along the vertical side surfaces of the silicon nitride film 24 that has been etched using reactive ion etching technology.
can be formed to have a rectangular cross section, and the cross section of the mask pattern can be formed to be rectangular. Furthermore, since the silicon oxide film 22 acts as a stopper during etching of the silicon substrate 21, there is no problem such as etching of the tungsten 26. Furthermore, since transparent films are used as the first and second coatings 22 and 23, the process of removing these coatings 22 and 23 is not necessary, and the process can be simplified.

なお、本発明は上述した実施例に限定されるも
のではない。例えば、前記第3図cで示したX線
吸収部材の形成工程の後に、第4図aに示す如く
シリコン窒化膜24を除去し、その後同図bに示
す如くポリイミド膜27を形成し、しかるのち同
図cに示す如くシリコン基板21の裏面エツチン
グを行なうようにしてもよい。また、第3図cで
示した工程の後にシリコン基板21の裏面エツチ
ングを施し第5図に示す構造を得るようにしても
よい。
Note that the present invention is not limited to the embodiments described above. For example, after the step of forming the X-ray absorbing member shown in FIG. 3c, the silicon nitride film 24 is removed as shown in FIG. 4a, and then the polyimide film 27 is formed as shown in FIG. Later, the back surface of the silicon substrate 21 may be etched as shown in FIG. Alternatively, the structure shown in FIG. 5 may be obtained by etching the back surface of the silicon substrate 21 after the step shown in FIG. 3c.

また、前記第1の被膜としては、シリコン酸化
膜に限らず、シリコン窒化膜、シリコン窒化・酸
化膜、窒化ホウ素膜或いはこれらの複合膜を用い
てもよい。また、第3の被膜は絶縁膜であればよ
く、第1の被膜と同一のものであつてもよい。さ
らに、前記X線吸収部材としてはタングステンの
他にモリブデンを用いるようにしてもよい。ま
た、前記第2の被膜は多結晶シリコン膜に限るも
のではなく、シリサイドを用いてもよく、要は半
導体若しくは導電体であればよい。その他、本発
明の要旨を逸脱しない範囲で、種々変形して実施
することができる。
Further, the first film is not limited to a silicon oxide film, but may be a silicon nitride film, a silicon nitride/oxide film, a boron nitride film, or a composite film thereof. Further, the third coating may be an insulating film, and may be the same as the first coating. Furthermore, molybdenum may be used instead of tungsten as the X-ray absorbing member. Furthermore, the second film is not limited to a polycrystalline silicon film, but may be made of silicide, and may be any semiconductor or conductor. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はX線露光の原理を示す模式図、第2図
a〜fは従来のX線露光用マスクの製造工程を示
す断面模式図、第3図a〜eは本発明の一実施例
に係わるX線露光用マスク製造工程を示す断面模
式図、第4図a〜cおよび第5図はそれぞれ変形
例を示す断面模式図である。 21……シリコン基板、22……シリコン酸化
膜(第1の被膜)、23……多結晶シリコン膜
(第2の被膜)、24……シリコン窒化膜(第3の
被膜)、25……レジスト、26……タングステ
ン(X線吸収部材)、27……ポリイミド膜(有
機物膜)。
Fig. 1 is a schematic diagram showing the principle of X-ray exposure, Fig. 2 a-f is a cross-sectional schematic diagram showing the manufacturing process of a conventional X-ray exposure mask, and Fig. 3 a-e is an embodiment of the present invention. FIGS. 4a to 4c and 5 are schematic cross-sectional views showing modifications of the X-ray exposure mask manufacturing process, respectively. 21... Silicon substrate, 22... Silicon oxide film (first film), 23... Polycrystalline silicon film (second film), 24... Silicon nitride film (third film), 25... Resist , 26...Tungsten (X-ray absorbing member), 27...Polyimide film (organic film).

Claims (1)

【特許請求の範囲】 1 基板上の該基板より耐エツチング性の高い、
X線に対して透明な第1の被膜を形成する工程
と、上記第1の被膜上に導体若しくは半導体から
なるX線に対して透明な第2の被膜を形成する工
程と、上記第2の被膜上に絶縁膜からなる第3の
被膜を形成する工程と、上記第3の被膜を所望の
マスクパターンに応じてパターニングする工程
と、次いで気相成長法を用い上記第3の被膜には
成長層が形成されない条件下で前記第2の被膜の
露出した部分にX線吸収部材を選択的に形成する
工程と、しかるのち前記基板の一部を前記第1の
被膜が形成された面の反対側から該被膜が露出す
るまで除去する工程とを具備したことを特徴とす
るX線露光用マスクの製造方法。 2 前記X線吸収部材を形成する工程ののち、前
記第3の被膜およびX線吸収部材上に有機物膜を
形成するようにしたことを特徴とする特許請求の
範囲第1項記載のX線露光用マスクの製造方法。 3 前記X線吸収部材を形成する工程ののち、前
記第3の被膜を除去し、次いでX線吸収部材およ
び第2の被膜上に有機物膜を形成し、しかるのち
前記基板の除去工程を施すようにしたことを特徴
とする特許請求の範囲第1項記載のX線露光用マ
スクの製造方法。 4 前記基板として、シリコンを用いたことを特
徴とする特許請求の範囲第1項記載のX線露光用
マスクの製造方法。 5 前記第3の被膜としてシリコン酸化膜、シリ
コン窒化膜、シリコン酸化・窒化膜、窒化ホウ素
膜或いはこれらの複合膜を用い、前記X線吸収部
材としてタングステン或いはモリブデンを用いた
ことを特徴とする特許請求の範囲第1項記載のX
線露光用マスクの製造方法。 6 前記第2の被膜として、多結晶シリコン膜或
いはシリサイド膜を用いたことを特徴とする特許
請求の範囲第1項記載のX線露光用マスクの製造
方法。 7 前記第1の被膜として、シリコン酸化膜、シ
リコン窒化膜、シリコン酸化・窒化膜、窒化ホウ
素膜或いはこれらの複合膜を用いたことを特徴と
する特許請求の範囲第1項記載のX線露光用マス
クの製造方法。
[Claims] 1. Higher etching resistance than the substrate on the substrate,
a step of forming a first coating transparent to X-rays; a step of forming a second coating made of a conductor or a semiconductor and transparent to X-rays on the first coating; a step of forming a third film made of an insulating film on the film; a step of patterning the third film according to a desired mask pattern; selectively forming an X-ray absorbing member on the exposed portion of the second coating under conditions where no layer is formed, and then forming a portion of the substrate opposite the surface on which the first coating is formed A method for manufacturing an X-ray exposure mask, comprising a step of removing the film from the side until the film is exposed. 2. The X-ray exposure according to claim 1, wherein after the step of forming the X-ray absorbing member, an organic film is formed on the third coating and the X-ray absorbing member. Method of manufacturing masks for use. 3 After the step of forming the X-ray absorbing member, removing the third coating, forming an organic film on the X-ray absorbing member and the second coating, and then performing the step of removing the substrate. A method of manufacturing an X-ray exposure mask according to claim 1, characterized in that: 4. The method of manufacturing an X-ray exposure mask according to claim 1, wherein silicon is used as the substrate. 5. A patent characterized in that a silicon oxide film, a silicon nitride film, a silicon oxide/nitride film, a boron nitride film, or a composite film thereof is used as the third film, and tungsten or molybdenum is used as the X-ray absorbing member. X described in claim 1
A method for manufacturing a mask for line exposure. 6. The method of manufacturing an X-ray exposure mask according to claim 1, wherein a polycrystalline silicon film or a silicide film is used as the second film. 7. X-ray exposure according to claim 1, characterized in that the first film is a silicon oxide film, a silicon nitride film, a silicon oxide/nitride film, a boron nitride film, or a composite film thereof. Method of manufacturing masks for use.
JP58088114A 1983-05-19 1983-05-19 Manufacture of x-ray exposing mask Granted JPS59213131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58088114A JPS59213131A (en) 1983-05-19 1983-05-19 Manufacture of x-ray exposing mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58088114A JPS59213131A (en) 1983-05-19 1983-05-19 Manufacture of x-ray exposing mask

Publications (2)

Publication Number Publication Date
JPS59213131A JPS59213131A (en) 1984-12-03
JPH0469410B2 true JPH0469410B2 (en) 1992-11-06

Family

ID=13933858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58088114A Granted JPS59213131A (en) 1983-05-19 1983-05-19 Manufacture of x-ray exposing mask

Country Status (1)

Country Link
JP (1) JPS59213131A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715877B2 (en) * 1985-07-19 1995-02-22 日本電信電話株式会社 X-ray mask
JPS6446927A (en) * 1987-08-18 1989-02-21 Matsushita Electronics Corp Manufacture of x-ray mask
US5051326A (en) * 1989-05-26 1991-09-24 At&T Bell Laboratories X-Ray lithography mask and devices made therewith

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185437A (en) * 1981-05-11 1982-11-15 Nec Corp Production of x-ray exposure mask
JPS585744A (en) * 1981-07-02 1983-01-13 Dainippon Ink & Chem Inc Method and device for classification of original as well as tone setup method of electronic color separator and device used for it
JPS5887821A (en) * 1981-11-20 1983-05-25 Toshiba Corp Manufacture of mask for x-ray lithography
JPS5890729A (en) * 1981-11-25 1983-05-30 Nec Corp Manufacture of x-ray mask

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185437A (en) * 1981-05-11 1982-11-15 Nec Corp Production of x-ray exposure mask
JPS585744A (en) * 1981-07-02 1983-01-13 Dainippon Ink & Chem Inc Method and device for classification of original as well as tone setup method of electronic color separator and device used for it
JPS5887821A (en) * 1981-11-20 1983-05-25 Toshiba Corp Manufacture of mask for x-ray lithography
JPS5890729A (en) * 1981-11-25 1983-05-30 Nec Corp Manufacture of x-ray mask

Also Published As

Publication number Publication date
JPS59213131A (en) 1984-12-03

Similar Documents

Publication Publication Date Title
US5580615A (en) Method of forming a conductive film on an insulating region of a substrate
JPH0469410B2 (en)
EP0103844B1 (en) X-ray mask
JPH05216216A (en) Formation of stencil mask
JP2904145B2 (en) Aperture for charged beam writing apparatus and method of manufacturing the same
JP3226250B2 (en) Transfer mask
JP3297996B2 (en) X-ray mask and manufacturing method thereof
JP2874683B2 (en) Mask for electronic beam apparatus and method of manufacturing the same
JP2762104B2 (en) Method of manufacturing mask for X-ray exposure
JPH0744147B2 (en) High resolution X-ray mask including absorber pattern with high aspect ratio
JP3280074B2 (en) X-ray mask manufacturing method
JPH0428132B2 (en)
JPS5923104B2 (en) Manufacturing method for soft X-ray exposure mask
JPS60120526A (en) Formation of minute pattern
JP3114286B2 (en) X-ray exposure mask and method of manufacturing the same
JP2771542B2 (en) Manufacturing method of exposure mask
JPS5934632A (en) Manufacture of x-ray mask
JPH11119431A (en) Metallic pattern forming method
JPH02138722A (en) Manufacture of mask for x-ray lithography
JPS62106626A (en) Manufacture of exposure mask
JPH0744148B2 (en) Method for manufacturing double-sided absorber X-ray mask
JPS5989422A (en) Manufacture of x-ray mask
JPH07283113A (en) Aperture and its manufacture
JPS61245162A (en) X-ray mask
JPS6084817A (en) Mask for sor light exposure