JPS61245162A - X-ray mask - Google Patents

X-ray mask

Info

Publication number
JPS61245162A
JPS61245162A JP60086807A JP8680785A JPS61245162A JP S61245162 A JPS61245162 A JP S61245162A JP 60086807 A JP60086807 A JP 60086807A JP 8680785 A JP8680785 A JP 8680785A JP S61245162 A JPS61245162 A JP S61245162A
Authority
JP
Japan
Prior art keywords
film
ray
boron
carbon
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60086807A
Other languages
Japanese (ja)
Inventor
Masao Yamada
雅雄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60086807A priority Critical patent/JPS61245162A/en
Publication of JPS61245162A publication Critical patent/JPS61245162A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Abstract

PURPOSE:To obtain an optically superior flat carbon membrane to be used for the mask support on a silicon wafer by forming the carbon membrane made of BxC1-x contg. boron and carbon, and controlling stress of the carbon membrane. CONSTITUTION:The silicon wafer 11 is fixed to a glass ring 10, and a BxC1-x film (0.6<x<0.8) contg. boron and carbon in place of a conventional BN film is formed by the sputtering process. Then, a tantalum Ta pattern 17 and a polyimide film 18 are formed by the conventional process to complete an X-ray mask. At that time, when boron is increased, tensile stress is produced, and when it is decreased, compressive stress is produced, and consequently, the stress of the carbon membrane 22 can be controlled by changing an amt. of boron, thus permitting an optically superior flat carbon membrane for X-ray exposure to be obtained.

Description

【発明の詳細な説明】 〔概要〕 ボロンまたはボロンと窒素をドープしたダイヤモンドも
しくはアモルファス炭素膜をX線マスクのマスク支持体
メンブレンとして用いる。
DETAILED DESCRIPTION OF THE INVENTION [Summary] A diamond or amorphous carbon film doped with boron or boron and nitrogen is used as a mask support membrane of an X-ray mask.

〔産業上の利用分野〕[Industrial application field]

本発明は応力の小なるX線メンブレンを製造する方法に
関するもので、さらに詳しく言えば、例えばX線マスク
の製造において、X線を吸収する吸収体を金(Au) 
、タンタル(Ta)、タングステン(W)の如き高融点
金属の薄膜で形成し、その金属パターンの支持体である
X線メンブレンの応力制御に関する。
The present invention relates to a method of manufacturing an X-ray membrane with low stress, and more specifically, in manufacturing an X-ray mask, for example, the absorber that absorbs X-rays is made of gold (Au).
, tantalum (Ta), tungsten (W), etc., and relates to stress control of an X-ray membrane that is a support for the metal pattern.

〔従来の技術〕[Conventional technology]

例えばシリコンウェハ(以下ウェハという)の上に塗布
されたホトレジスト膜の露光に従来はガラスマスクを用
い、紫外線露光によってホトレジストの露光を行ってき
た。
For example, a glass mask has conventionally been used to expose a photoresist film coated on a silicon wafer (hereinafter referred to as a wafer), and the photoresist has been exposed to ultraviolet light.

ところが、最近は集積回路を高集積化するために形成さ
れるべきベターン幅やパターン間隔が微細化される傾向
にあり、そのためには、波長の短い光が回折が起り難い
ので、電子ビーム(HB)やX線が用いられるようにな
ってきた。
However, recently, in order to increase the integration density of integrated circuits, the pattern width and pattern spacing to be formed have become smaller. ) and X-rays have come into use.

X線露光を第2図の断面図を参照して説明すると、ウェ
ハ11の上にホトレジスト膜12が塗布されていて、X
線吸収体で作ったパターン13が設けられたX線マスク
14をウェハ11の上方に配置し、X線を矢印に示す方
向に照射して露光をなす。
To explain X-ray exposure with reference to the cross-sectional view of FIG. 2, a photoresist film 12 is coated on a wafer 11, and
An X-ray mask 14 provided with a pattern 13 made of a radiation absorber is placed above the wafer 11, and X-rays are irradiated in the direction shown by the arrow for exposure.

X線マスク14は第3図の断面図に示され、それを作る
には、ウェハ15(図に見て幅100fiのもの)の上
にポリイミドを塗布して第1のポリイミド膜16を形成
し、全面にTaを堆積(deposi Lion) シ
、それをパターニングしてTaパターン17を形成し、
次いで全面にポリイミドを塗布して第2のポリイミド膜
18を形成し、最後にシリコンを斜線で示す部分を残す
如くにエツチングしてマスクを完成する。
The X-ray mask 14 is shown in cross-section in FIG. 3, and is made by coating a wafer 15 (100 fi wide in the figure) with polyimide to form a first polyimide film 16. , Deposit Ta on the entire surface (deposit lion), pattern it to form a Ta pattern 17,
Next, polyimide is applied to the entire surface to form a second polyimide film 18, and finally the silicon is etched leaving the shaded area to complete the mask.

第1のポリイミド膜はメンブレンと呼称され、それはX
線を通す材料、すなわち、ポリイミドの他に窒化はう素
(BN) 、窒化シリコン(SiN)などで2μI11
〜5μmの膜厚に形成され、パターンはX線吸収体と呼
称され、Ta+ Au、 Wの如きX線を通さない重金
属で1.0μmの厚さに堆積された ・膜をエツチング
して形成される。第2のポリイミド膜は保護膜として作
用する。
The first polyimide film is called a membrane, and it is
The material for passing the wire, i.e. boron nitride (BN), silicon nitride (SiN), etc. in addition to polyimide, has a 2μI11
The pattern is called an X-ray absorber, and is formed by etching a film deposited to a thickness of 1.0 μm with heavy metals such as Ta+Au and W that do not transmit X-rays. Ru. The second polyimide film acts as a protective film.

X線吸収体ではTaが比較的応力が小さいので多用され
ているものであり、それの薄膜はスパッタリング法で堆
積される。スパッタリングは10−2〜10−’ To
rrの真空度のアルゴン(Ar)雰囲気のチャンバ内で
なされ、Taのマグネトロンスパッター法(通常のDC
,あるいはRfスパッター法も含む)によりポリイミド
層の上にTaを堆積させる。
Ta is often used in X-ray absorbers because it has relatively low stress, and its thin film is deposited by sputtering. Sputtering is 10-2 to 10-' To
The Ta magnetron sputtering method (ordinary DC
, or Rf sputtering method) is used to deposit Ta on the polyimide layer.

X線マスクに炭素膜を用いる技術については広く研究が
なされていて、特開昭57−128031号公報には、
「ダイヤモンド状炭素膜を基板材料として」用い、また
[窒化シリコン、酸化シリコン、硼素添加シリコン、窒
化硼素の内鍔れか1種の薄膜にダイヤモンド状炭素膜を
積層した複合膜を基板材料として」用いる露光用マスク
が、特開昭58−4534号公報には、[ダイヤモンド
またはダイヤモンドと無定形炭素の混合物からなる薄膜
をX線透過体として有する」X線リソグラフィー用マス
クが、さらに特開昭59−9921号公報には、「水素
添加アモルファス炭素から成る」X線マスク用フィルム
とそれの製造方法が開示されている。
The technology of using carbon films in X-ray masks has been extensively researched, and Japanese Patent Application Laid-open No. 128031/1983 describes
``A diamond-like carbon film is used as a substrate material,'' and [a composite film in which a diamond-like carbon film is laminated on a thin film of one of silicon nitride, silicon oxide, boron-doped silicon, or boron nitride is used as a substrate material.'' The exposure mask to be used is disclosed in JP-A No. 58-4534, and an X-ray lithography mask [having a thin film made of diamond or a mixture of diamond and amorphous carbon as an X-ray transmitter] is further described in JP-A-58-4534. Japanese Patent No. 9921 discloses an X-ray mask film "made of hydrogenated amorphous carbon" and a method for producing the same.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第4図に炭素膜22をウェハ11上に成膜した場合の構
造が模式的に示されるが、炭素11i!22は圧縮応力
をもっているために、図示の如く上方に凸に反り、それ
に追随してウェハ11も同様に反っている。
FIG. 4 schematically shows the structure when the carbon film 22 is formed on the wafer 11. Carbon 11i! Since the wafer 22 has compressive stress, it curves upward in a convex manner as shown in the figure, and the wafer 11 also curves accordingly.

このウェハの中心部分をエツチングで除去して図示の如
く周辺部分11aのみを残すと、それまで炭素膜22を
支えていたウェハ部分がなくなったため炭素膜はのびて
しまい、その表面に波うったようなしわが発生すること
が確認された。
When the central part of the wafer is removed by etching and only the peripheral part 11a is left as shown in the figure, the wafer part that had previously supported the carbon film 22 is no longer present, and the carbon film stretches out, creating a wave-like appearance on its surface. It was confirmed that wrinkles were generated.

本発明はこのような点に鑑みて創作されたもので、成膜
後において引張り応力を有する炭素膜を作る方法を提供
することを目的とする。
The present invention was created in view of these points, and an object of the present invention is to provide a method for producing a carbon film having tensile stress after film formation.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明実施例の断面図である。 FIG. 1 is a sectional view of an embodiment of the present invention.

第1図において、X線マスクのマスク支持体となる膜2
2を、 BxCl−x  (60< x < 80%)
またはBxNyCl−x−y  (60< x < 8
0%、20<y<40%)で成膜した。
In FIG. 1, a membrane 2 serving as a mask support of an X-ray mask is shown.
2, BxCl-x (60<x<80%)
or BxNyCl-x-y (60<x<8
0%, 20<y<40%).

〔作用〕[Effect]

上記のマスク支持体となるメンブレンにおいては、共有
結合時の原子半径の大小を利用してメンブレンに張りを
もたせるものである。
In the membrane serving as the mask support described above, tension is imparted to the membrane by utilizing the size of the atomic radius at the time of covalent bonding.

〔実施例〕〔Example〕

第1図は本発明にかかるX線マスクの断面図であり、こ
のX線マスクにおいてマスク支持体となる膜22(X線
メンブレンとも呼称される)が下記の如くにして作られ
たものである。
FIG. 1 is a cross-sectional view of an X-ray mask according to the present invention, in which a membrane 22 (also referred to as an X-ray membrane) serving as a mask support is made as follows. .

ボロン(B)および炭素(C)はそれぞれ単体では圧縮
応力をもつこと、およびボロンナイトライド(BN、窒
化ボロン)においては、Bが多い(rich)ときは引
張応力を、Bが少ない(low)ときは圧縮応力をもつ
ことが知られている。
Boron (B) and carbon (C) each have compressive stress when used alone, and boron nitride (BN, boron nitride) has tensile stress when B is rich (rich) and when B is low (low). It is known that there is compressive stress.

一つの例を挙げると、シリコン基板にボロンをイオン注
入法で注入し次いでアニールすると、ボロンが拡散され
た領域は引張応力をもつ。その理由は、シリコン基板内
のシリコン原子配列において、そのどれか1つが共有結
合時に原子半径の小なるもので代えられると、その原子
と隣りのシリコン原子との間の距離が大になり拡散領域
は引張応力をもち、他方シリコン原子の1つが原子半径
の大なる原子と代えられると、当該原子と隣りのシリコ
ン原子との間の距離が小になり拡散領域は圧縮応力をも
つに至るからであると解される。
For example, when boron is implanted into a silicon substrate by ion implantation and then annealed, the region where boron is diffused has tensile stress. The reason for this is that in the arrangement of silicon atoms in a silicon substrate, if any one of them is replaced by one with a smaller atomic radius during a covalent bond, the distance between that atom and the neighboring silicon atom increases, resulting in a diffusion region. has a tensile stress; on the other hand, if one of the silicon atoms is replaced by an atom with a larger atomic radius, the distance between that atom and the neighboring silicon atom becomes smaller, and the diffusion region has a compressive stress. It is understood that there is.

それと全く同じ理由で、BHにおいてBが多いときは引
張応力、Bが少ないときは圧縮応力をもつのであり、本
発明においてはこの原理を利用するものである。
For exactly the same reason, when there is a large amount of B in BH, there is a tensile stress, and when there is a small amount of B, there is a compressive stress, and this principle is utilized in the present invention.

すなわち、炭素に共有結合半径の異なる材料を入れるこ
とによって炭素膜の応力を制御するものであって、Bx
Cl−xまたはBxNyCt−x−yの)C+3’の値
を変えることによって応力を制御するものである。
That is, the stress in the carbon film is controlled by adding materials with different covalent bond radii to carbon, and Bx
The stress is controlled by changing the value of C+3' of Cl-x or BxNyCt-x-y.

上記した炭素膜はスパッタ法または化学気相成長(CV
D)法で作成可能である。スパッタ法によるときは、タ
ーゲットにB、CまたはCとBの複合材を用い、ガスは
Ar/CHg混合ガスまたはAr/Ch / N2混合
ガスとし、通常のスパック技術でメンフ゛レンを成舅臭
する。
The carbon film described above can be formed by sputtering or chemical vapor deposition (CV).
D) can be created by law. When using the sputtering method, B, C or a composite material of C and B is used as the target, Ar/CHg mixed gas or Ar/Ch 2 /N2 mixed gas is used as the gas, and membrane is formed using the usual sputtering technique.

CVD法によるときは、BJs /CH,4+  Bz
k /C,H婦、 BL)I、/ C2)+6およびN
2またはNH3ガスを使用し、通常の技術でメンブレン
を成膜することができる。
When using the CVD method, BJs /CH, 4+ Bz
k /C, H, BL)I, /C2)+6 and N
The membrane can be deposited using conventional techniques using 2 or NH3 gas.

本発明者の実験によると、上記のBxCl−x+BxN
yCx−x−yにおいて、それぞれ60< X < 8
0%。
According to the inventor's experiments, the above BxCl-x+BxN
In yCx-x-y, respectively 60<X<8
0%.

60< x < 80%、20<y<40%に設定した
It was set to 60<x<80% and 20<y<40%.

X線マスクの製造においては、第2図を参照して説明し
た従来技術において、シリコンウェハ11をガラスリン
グlOの上に付け、BNNi2O成膜に代えて、BxC
l−xまたはBxNyCx−x−yの膜(X線メンブレ
ン)22を上記のスパッター法またはCVD法で成膜し
、以後従来技術の場合と同じ工程で、Ta(またはWも
しく番よ八U)パターン17、ポリイミド膜18を形成
することによって第1図に示すマ女りを完成した。
In manufacturing an X-ray mask, in the conventional technique explained with reference to FIG.
A film (X-ray membrane) 22 of l-x or BxNyCx-x-y is formed by the above-mentioned sputtering method or CVD method, and then Ta (or W or ) By forming a pattern 17 and a polyimide film 18, the matrix shown in FIG. 1 was completed.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように、本発明によれば、ボロンまたは
ボロンと窒素をドープしたダイヤモンド状またはアモル
ファス炭素膜をX線メンブレンとして使用することによ
り、単独で使用することのできなかったダイヤモンド状
またはアモルファス状の炭素をX線メンブレンとして利
用することが可能になり、X線露光用の平坦な膜を得る
に有効である。
As described above, according to the present invention, by using a diamond-like or amorphous carbon film doped with boron or boron and nitrogen as an X-ray membrane, a diamond-like or amorphous carbon film that cannot be used alone can be used. This makes it possible to use shaped carbon as an X-ray membrane, and is effective in obtaining a flat film for X-ray exposure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の断面図、 第2図はX線露光を説明する断面図、 第3図は従来例の断面図、 第4図は炭素膜の反りを説明する断面図である。 第1図と第2図において、 10はガラスリング、 11はシリコンウェハ、 11aはシリコンウェハの周辺部分、 12はレジスト、 13は吸収体パターン、 14はX線マスク、 17はAu層(またはW、7a層)、 18は第2のポリイミド膜、 22はBxC:t−xまたはBxNyCt−X−yで作
ったマスク支持体となる膜である。 縞明電光例#r(i711D 第1図 j!jljj X#atsil明l5lr面図 第2図 XtILzx7前dot3 膚東成の反、すを電先9月すS逮ケ面唄第4図
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a sectional view illustrating X-ray exposure, Fig. 3 is a sectional view of a conventional example, and Fig. 4 is a sectional view illustrating warping of a carbon film. . 1 and 2, 10 is a glass ring, 11 is a silicon wafer, 11a is a peripheral part of the silicon wafer, 12 is a resist, 13 is an absorber pattern, 14 is an X-ray mask, 17 is an Au layer (or W , 7a layer), 18 is a second polyimide film, and 22 is a film made of BxC:t-x or BxNyCt-Xy to serve as a mask support. Striped lightning example #r (i711D Figure 1j!jljj

Claims (3)

【特許請求の範囲】[Claims] (1)中心部分が除去されたシリコンウェハ上にマスク
支持体となる膜(22)が設けられ、該膜上にX線吸収
パターンおよび保護膜が形成されてなるX線露光のため
のマスクにして、該膜(22)はボロンと炭素を含むこ
とを特徴とするX線マスク。
(1) A mask for X-ray exposure in which a film (22) serving as a mask support is provided on a silicon wafer from which the central portion has been removed, and an X-ray absorption pattern and a protective film are formed on the film. An X-ray mask characterized in that the film (22) contains boron and carbon.
(2)前記膜(22)はB_xC_1_−_x(0.6
<x<0.8)であることを特徴とする特許請求の範囲
第1項記載のX線マスク。
(2) The film (22) is B_xC_1_-_x(0.6
The X-ray mask according to claim 1, characterized in that <x<0.8).
(3)前記膜(22)はB_xN_yC_1_−_x_
−_y(0.6<x<0.8、0.2<y<0.4)で
あることを特徴とする特許請求の範囲第1項記載のX線
マスク。
(3) The film (22) is B_xN_yC_1_-_x_
-_y (0.6<x<0.8, 0.2<y<0.4).
JP60086807A 1985-04-23 1985-04-23 X-ray mask Pending JPS61245162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60086807A JPS61245162A (en) 1985-04-23 1985-04-23 X-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60086807A JPS61245162A (en) 1985-04-23 1985-04-23 X-ray mask

Publications (1)

Publication Number Publication Date
JPS61245162A true JPS61245162A (en) 1986-10-31

Family

ID=13897075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60086807A Pending JPS61245162A (en) 1985-04-23 1985-04-23 X-ray mask

Country Status (1)

Country Link
JP (1) JPS61245162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125930A (en) * 1987-11-11 1989-05-18 Fujitsu Ltd X-ray mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01125930A (en) * 1987-11-11 1989-05-18 Fujitsu Ltd X-ray mask

Similar Documents

Publication Publication Date Title
US5663018A (en) Pattern writing method during X-ray mask fabrication
US4941942A (en) Method of manufacturing a mask support of sic for x-ray lithography masks
JPH0557729B2 (en)
JPH0590137A (en) Exposure mask
JPS61245162A (en) X-ray mask
EP0949538B1 (en) Mask for scattering-type charged-particle beam lithography, charged-particle beam lithography apparatus comprising the same, and lithography process using the same
JPH0992616A (en) Membrane, mask and aligner or device fabrication system employing them
JP2874683B2 (en) Mask for electronic beam apparatus and method of manufacturing the same
JPH01161718A (en) Manufacture of x-ray mask
KR100289818B1 (en) Thin film mask used in X-ray lithography process and its manufacturing method
JPS6153725A (en) Formation of mask for x-ray exposure
JPS61245160A (en) Manufacture of x-ray mask
JPS63155618A (en) Mask for x-ray exposure
JPH02252229A (en) X-ray exposure mask and its manufacture
JPH0469410B2 (en)
JP2543927B2 (en) X-ray mask manufacturing method
JPS60202441A (en) Mask for forming pattern for semiconductor device
JPS63115332A (en) Mask for x-ray exposure
JPS62106626A (en) Manufacture of exposure mask
JPH0758679B2 (en) Method for manufacturing mask for X-ray exposure
JPH02138722A (en) Manufacture of mask for x-ray lithography
JPH01183119A (en) Preparation of x-ray mask
JP2538902B2 (en) X-ray exposure mask
JPS61110427A (en) Formation of pattern
JPH02177529A (en) X-ray mask and manufacture thereof