JPS5923104B2 - Manufacturing method for soft X-ray exposure mask - Google Patents

Manufacturing method for soft X-ray exposure mask

Info

Publication number
JPS5923104B2
JPS5923104B2 JP51034832A JP3483276A JPS5923104B2 JP S5923104 B2 JPS5923104 B2 JP S5923104B2 JP 51034832 A JP51034832 A JP 51034832A JP 3483276 A JP3483276 A JP 3483276A JP S5923104 B2 JPS5923104 B2 JP S5923104B2
Authority
JP
Japan
Prior art keywords
mask
etching
layer
soft
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51034832A
Other languages
Japanese (ja)
Other versions
JPS52117557A (en
Inventor
隆 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP51034832A priority Critical patent/JPS5923104B2/en
Priority to US05/782,379 priority patent/US4198263A/en
Publication of JPS52117557A publication Critical patent/JPS52117557A/en
Publication of JPS5923104B2 publication Critical patent/JPS5923104B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は軟X線露光用マスクの製造方法に関し、特に
マスクズレを生ぜずかつ大面積のマスクの製造を可能に
する軟X線露光用マスクの製造方法を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a mask for soft X-ray exposure, and particularly provides a method for manufacturing a mask for soft X-ray exposure that does not cause mask displacement and enables manufacturing of a large-area mask. It is.

従来半導体集積回路装置の製造に光製版技術が用いられ
ていた。
Conventionally, optical plate-making technology has been used to manufacture semiconductor integrated circuit devices.

し力化光製版技術の解像能力はこれに用いた光の波長に
直接関係する干渉や回折効果によつて制限され、安定に
再現されうる最少線幅はおよそ2μ程度である。この光
による解像の限界を克服するために走査電子線露光方式
およびX線露光方式が開発された。しかし前者は電子ビ
ームを順次走査して露光するために時間がかかフ リ、
マスタマスクの製造には用いられるが半導体基板に直接
露光することは経済的でない。一方、光の代りに波長が
数オングストロム尤の軟X線を用いるX線転写方式と称
せられる技術は上記走査電子線方式に比して安価でかつ
経済的である。軟′−X線に対するマスクは、マスク材
料とこれを支持するとともに軟X線を透過する薄膜とか
らなつている。このマスク材料の厚さはマスク材料をパ
ターンづけする技術によつて制限され、厚さは最小線幅
を1μとすると0.5μ程度迄である。これにO 対し
て軟X線を透過する薄膜の厚さは、X線の波長、薄膜の
材質にもよるが、せいぜい10μ程度である。従来X線
を透過する薄膜としてはシリコンもしくは有機物のフィ
ルムが用いられてきた。
The resolution ability of photolithography technology is limited by interference and diffraction effects that are directly related to the wavelength of the light used, and the minimum line width that can be stably reproduced is about 2 μm. A scanning electron beam exposure method and an X-ray exposure method have been developed to overcome this limitation of resolution by light. However, the former method takes a long time because the electron beam is scanned sequentially for exposure.
Although it is used for manufacturing master masks, it is not economical to directly expose a semiconductor substrate. On the other hand, a technique called an X-ray transfer method that uses soft X-rays with a wavelength of several angstroms instead of light is cheaper and more economical than the scanning electron beam method. A mask for soft x-rays consists of a mask material and a thin film that supports the mask material and is transparent to the soft x-rays. The thickness of this mask material is limited by the technique of patterning the mask material, and the thickness is up to about 0.5 microns, assuming a minimum line width of 1 micron. On the other hand, the thickness of a thin film that transmits soft X-rays is about 10 μm at most, depending on the wavelength of the X-rays and the material of the thin film. Conventionally, silicon or organic films have been used as thin films that transmit X-rays.

有機物5 フィルムは大面積のマスクの製造を容易にす
るも、フィルムと半導体基板のシリコンとの熱膨張係数
の差による「マスクズレ」を生ずるという致命的な欠点
がある。これは単に転写時の温度制御のみならず、マス
ク製作工程での温度制御が正確に行0 なわれないとマ
スクの精度が保たれないからである。一方、シリコン薄
膜の場合には基板と同じ材質であるため上記の「マスク
ズレ」の問題はないが、有機物フィルムに比して脆いた
め微小部分のマス”5 クは容易に作れるが大面積のマ
スクの製造は従来困難とされていた。
Organic Substance 5 Although films facilitate the manufacture of large-area masks, they have the fatal drawback of causing "mask misalignment" due to the difference in thermal expansion coefficient between the film and the silicon of the semiconductor substrate. This is because the precision of the mask cannot be maintained unless temperature control is performed not only during transfer but also during the mask manufacturing process. On the other hand, in the case of a silicon thin film, since it is made of the same material as the substrate, there is no problem with the above-mentioned mask misalignment, but it is more brittle than an organic film, so it is easy to make a mask for a minute area, but a mask for a large area can be easily made. Manufacturing has traditionally been considered difficult.

シリコン薄膜によるマスクの製造の一例を断面図にて第
1図および第2図に示oりす。
An example of manufacturing a mask using a silicon thin film is shown in cross-sectional views in FIGS. 1 and 2.

これはシリコン基板を部分的に薄くしてこの部分をマス
クにするもので、図の1はシリコン基板で、この1主面
にボロンを高濃度に含む層2を拡散またはエピタキシヤ
ル成長などの手段で形成し次にマスク材3が構成される
。次にアルカリ液にて裏面よりエツチングを施すと、ボ
ロンを高濃度に含むシリコン層2はシリコン基板よりも
エツチングされにくいためシリコン基板はその露出面側
からエツチングされて第2図の如くなる。しかしこの方
法は選択性が完全でないことと、液相エツチングにおい
ては第3図に示す如くエツジの部分はエツチレートが速
いため溝(図における矢印)を形成し、さらに時には孔
となり、またエツチングのバラツキを生ずる部分の面積
は可成の部分を占めマスクの有効面積が減少し、またエ
ツチング面が一様でないという欠点をもつている。この
発明は上記従来の欠点を除去するためになされたもので
、シリコン薄膜で比較的大きい面積の軟X線露光用マス
クを製造する目的で、その概要は薄膜マスクでマスクパ
ターンを有する面上に支持部材を部分的に置く構造とし
、シリコンの選択エツチングを二段階に別け選択性を向
上し、表面の均一性をよくすることによつて達成される
In this method, a silicon substrate is partially thinned and this part is used as a mask. 1 in the figure is a silicon substrate, and a layer 2 containing a high concentration of boron is formed on this 1 main surface by means such as diffusion or epitaxial growth. Then, the mask material 3 is formed. Next, when etching is performed from the back side using an alkaline solution, the silicon layer 2 containing a high concentration of boron is more difficult to etch than the silicon substrate, so the silicon substrate is etched from the exposed side, resulting in the result as shown in FIG. However, this method does not have perfect selectivity, and in liquid phase etching, as shown in Figure 3, the etching rate is fast at the edge portions, forming grooves (arrows in the figure) and sometimes forming holes, and also causing variations in etching. The area where the etching occurs occupies a considerable portion, which reduces the effective area of the mask, and has the disadvantage that the etched surface is not uniform. This invention was made to eliminate the above-mentioned conventional drawbacks, and the purpose is to manufacture a mask for soft X-ray exposure with a relatively large area using a silicon thin film. This is achieved by using a structure in which the support member is placed partially, and by dividing the selective etching of the silicon into two stages to improve the selectivity and improve the surface uniformity.

次にこの発明の実施例につき説明する。第4図に示す1
1はシリコンウエハで不純物濃度が1018個/Cc以
下、直径75111厚さ600μ、のn型(100)に
なり、この1主面に四塩化ケイ素(SiCl4)の水素
還元によつて1170℃で不純物濃度が一例の9×10
19個/Ccのボロンを含み厚さ15μの第1のエピタ
キシヤル層12を形成した。
Next, embodiments of this invention will be described. 1 shown in Figure 4
1 is a silicon wafer that becomes n-type (100) with an impurity concentration of 1018 particles/Cc or less, a diameter of 75111, and a thickness of 600μ, and impurities are added to the main surface of this 1 at 1170°C by hydrogen reduction of silicon tetrachloride (SiCl4). The concentration is 9×10 as an example.
A first epitaxial layer 12 containing 19 boron atoms/Cc and having a thickness of 15 μm was formed.

次に後の選択エツチングが不純物の濃度依存性によつて
行なわれるために濃度勾配を可能な限り急にするために
モノシラン(SiN4)の熱分解によつて1000℃で
一例の8×1014個/Ccのボロンを含む厚さ3.8
μの第2のエピタキシヤル層13を形成したのち、さら
に積層して層厚150Xのクロム層14を一例の真空蒸
着により被着した。これはのちに施す金めつきの被着を
容易にするためである。上記第1および第2の各エピタ
キシヤル成長層12,13(以下エピタキシヤル層と略
称する)につき例示された不純物濃度はシリコン基板に
対する第1のエピタキシヤル層、第1のエピタキシヤル
層と第2のエピタキシヤル層とのエツチングレートを後
に述べる10:1,200:1というように大きくする
ためで、第1のエピタキシヤル層の不純物濃度は2×1
019個/Cc以上、第2のエピタキシヤル層の不純物
濃度は5×10!5個/Cc以下にすれば好適する。
Then, in order to make the concentration gradient as steep as possible since the subsequent selective etching is carried out depending on the impurity concentration, monosilane (SiN4) is thermally decomposed at 1000° C. to make the concentration gradient as steep as possible. Thickness including Cc boron: 3.8
After forming the second epitaxial layer 13 of .mu., a further layer of chromium 14 having a layer thickness of 150.times. was deposited by vacuum evaporation, as an example. This is to facilitate the application of gold plating which will be applied later. The impurity concentrations exemplified for the first and second epitaxial growth layers 12 and 13 (hereinafter referred to as epitaxial layers) are the same as those for the first epitaxial layer, the first epitaxial layer and the second epitaxial growth layer on the silicon substrate. This is to increase the etching rate with the first epitaxial layer to 10:1 and 200:1, which will be described later, and the impurity concentration of the first epitaxial layer is 2×1.
It is preferable that the impurity concentration of the second epitaxial layer is 5×10!5 impurities/Cc or more.

次に走査電子線露光によつて厚さ0.8μの所望のレジ
ストのパターン15を形成した。
Next, a desired resist pattern 15 having a thickness of 0.8 μm was formed by scanning electron beam exposure.

次にレジス口5をマスクとして0.5μの金16を選択
めつきでつけ、その後レジストを除去した。
Next, using the resist opening 5 as a mask, 0.5 μm gold 16 was selectively plated, and then the resist was removed.

次に支持部材層となるポリイミド樹脂層17を厚さ10
μ被着し、第5図に示すように上記マスクのパターンの
ない部位に幅400μの格子状に配夕!ルた。次に、シ
リコンウエハ11に対しては第6図に示すように上記処
理を施した面にシリコンのエツチング液に対する保護膜
18を被着してシリコンウエハの露出主面(上記処理を
施した主面の反対主面)の周辺部19を幅5m11t残
して容量比がHF:HNO3=3:97・・・・・・・
・・・・・・・・・・・・・・1のシリコンエツチング
液で厚さ400μを除去した。
Next, a polyimide resin layer 17 that will become a supporting member layer is formed to a thickness of 10 mm.
As shown in FIG. 5, the mask is coated with μ and distributed in a grid pattern with a width of 400 μ on the non-patterned area of the mask! Ruta. Next, as shown in FIG. 6, the silicon wafer 11 is coated with a protective film 18 against silicon etching solution on the surface that has been subjected to the above-mentioned treatment. The capacitance ratio is HF:HNO3=3:97, leaving the peripheral part 19 of the main surface (opposite to the main surface) with a width of 5m11t.
・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 400 μm in thickness was removed with silicone etching solution No. 1.

次に第7図に示す周辺部を幅71t11の保護膜で被覆
しエチレンジアミン:水:ピロカテO−)V−17CC
:8CC:3g・・・・・・2の組成のシリコンエツチ
ング液でシリコンウエハをエツチングした。
Next, the peripheral part shown in Fig. 7 was covered with a protective film having a width of 71t11.
:8CC:3g...A silicon wafer was etched with a silicon etching solution having a composition of 2.

この組成2のエツチング液は上記ウエハ11と第1のエ
ピタキシヤル層12の不純物濃度比では10:1の選択
性を有する。そしてシリコン11のエツチング後の第1
のエピタキシヤル層12の表面の粗さは約2μであつた
。次に周辺部を幅97F!l保護膜で被覆しHF:HN
O3:CH3COOH=1:3:8・・・・・・3の組
成のエツチング液中で第1のエピタキシヤル成長層に対
する選択エツチングが達成される。
This etching solution having composition 2 has a selectivity of 10:1 in terms of the impurity concentration ratio between the wafer 11 and the first epitaxial layer 12. And the first one after etching silicon 11.
The surface roughness of the epitaxial layer 12 was about 2μ. Next, the width of the surrounding area is 97F! l Covered with a protective film HF:HN
Selective etching of the first epitaxially grown layer is achieved in an etching solution having a composition of O3:CH3COOH=1:3:8...3.

すなわち、第9図に示すように、上記の式3に示される
エツチング液21を入れた容器22内にシ,リコン基板
23,23・・・を浸し、かつ液中に一例の炭素C電極
24と白金Pt電極25を並べ、炭素電極24を正に、
白金電極25を負にして両端の電極電位が40mVにな
る如く過酸化水素(rα)を過酸化水素注加口26から
制御しつつ導入して行なう選択エツチング方法で達成さ
れる。この組成のエツチング液は上述の7第1のエピタ
キシヤル層12と第2のエピタキシヤル層13の不純物
の濃度比では200:1の選択性を有する。上記第1の
エピタキシヤル層12のエツチング後の第2のエピタキ
シヤル層13の表面の粗さは1000Xのすぐれた滑面
が得られ該層の厚さ3.8μに比しX線の透過に対して
は全く無視できる。ウエハ11と第1のエピタキシヤル
層12のエツチングはウエハを毎分40回転の公転と毎
分20回転の自転とによつて行なつた。これは表面の均
一性をうるために有効である。また第1のエピタキシヤ
ル層12の選択エツチングではウエハを自公転させない
と選択性は30:1にまで低下する。次に保護膜18を
除去して第8図に示すようにX線露光用マスクが得られ
た。上述のようにして形成されたマスクを用いてアルミ
ニウムの波長834Xの軟X線を照射したところ良好な
パターンを得ることができた。
That is, as shown in FIG. 9, silicon substrates 23, 23, . and the platinum Pt electrodes 25 are arranged, and the carbon electrode 24 is directly aligned,
This is achieved by a selective etching method in which hydrogen peroxide (rα) is controlled and introduced from the hydrogen peroxide inlet 26 so that the platinum electrode 25 is made negative and the electrode potential at both ends is 40 mV. The etching solution having this composition has a selectivity of 200:1 in terms of the impurity concentration ratio between the first epitaxial layer 12 and the second epitaxial layer 13 described above. The surface roughness of the second epitaxial layer 13 after etching the first epitaxial layer 12 is an excellent smooth surface of 1000X, and compared to the thickness of this layer of 3.8 μm, it is less susceptible to X-ray transmission. It can be completely ignored. Etching of the wafer 11 and the first epitaxial layer 12 was performed by rotating the wafer at 40 revolutions per minute and rotating at 20 revolutions per minute. This is effective for obtaining surface uniformity. Further, in the selective etching of the first epitaxial layer 12, the selectivity decreases to 30:1 unless the wafer is rotated. Next, the protective film 18 was removed to obtain an X-ray exposure mask as shown in FIG. When aluminum was irradiated with soft X-rays having a wavelength of 834X using the mask formed as described above, a good pattern could be obtained.

すなわち、この発明の軟X線露光用マスクの製造方法に
よれば、薄いシリコンで形成される軟X線露光用マスク
を強固に、かつ露光の透過面を高度に平滑に形成するの
が容易で、解像性能がすぐれるマスクの製造が達成でき
、稠密で微細なパターンが形成できる顕著な利点がある
That is, according to the method for manufacturing a soft X-ray exposure mask of the present invention, it is easy to form a soft X-ray exposure mask made of thin silicon that is strong and has a highly smooth exposure surface. , it is possible to manufacture a mask with excellent resolution performance, and it has the remarkable advantage that a dense and fine pattern can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来の軟X線露光用マスクの製造
方法を説明するための断面図、第3図は従来の軟X線露
光用マスクおよびその製造方法の欠点を説明するための
部分断面図、第4図ないし第8図はこの発明の一実施例
の軟X線露光用マスクの製造方法を工程順に説明するい
ずれも断面図、ノ第9図は第2エピタキシヤル成長層の
エツチングに用いるエツチング装置の断面図である。 11・・・・・・シリコンウエハ、12・・・・・・第
1のエピタキシヤル層、13・・・・・・第2のエピタ
キシヤル層、14,16・・・・・・金属層、17・・
・・・・支持部材層(ポτ りイミド樹脂層)、19・
・・・・・ウエハの周縁部、21・・・・・・エツチン
グ液、22・・・・・・エツチング容器、23・・・・
・・(第1エピタキシヤル成長層をエツチングする段階
の)シリコンウエハ、24・・・・・・炭素電極、25
・・・・・・白金電極、26・・・・・・過酸化水素注
加90。
FIGS. 1 and 2 are cross-sectional views for explaining a conventional method of manufacturing a mask for soft X-ray exposure, and FIG. 3 is a cross-sectional view for explaining the drawbacks of a conventional mask for soft X-ray exposure and its manufacturing method. FIGS. 4 to 8 are partial cross-sectional views for explaining the manufacturing method of a soft X-ray exposure mask according to an embodiment of the present invention in the order of steps, and FIG. FIG. 3 is a sectional view of an etching device used for etching. 11... Silicon wafer, 12... First epitaxial layer, 13... Second epitaxial layer, 14, 16... Metal layer, 17...
...Supporting member layer (polyimide resin layer), 19.
...Wafer periphery, 21...Etching liquid, 22...Etching container, 23...
... Silicon wafer (at the stage of etching the first epitaxial growth layer), 24 ... Carbon electrode, 25
...Platinum electrode, 26...Hydrogen peroxide injection 90.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物濃度が10^1^8個/cc以下のシリコン
基板の1主面にボロンの不純物濃度が2×10^1^9
個/cc以上の第1のエピタキシャル成長層を形成する
工程と、前記第1のエピタキシャル成長層上に不純物濃
度が5×10^1^5個/cc以下の第2のエピタキシ
ャル成長層を形成する工程と、前記第2のエピタキシャ
ル成長層にこれとなじみのよい金属層を介してマスク形
成予定域に軟X線を透過させない金属のマスクパターン
層を形成する工程と、前記第2のエピタキシャル成長層
におけるマスクパターン層の設けられてない部位に支持
部材層を形成する工程と、前記シリコン基板の他主面周
縁部を除きエチレンジアミンと水とピロカテコールの組
成比が17cc:8cc:3gである蝕刻液で蝕刻する
工程と、前記第1のエピタキシャル成長層のシリコン基
板周縁部で覆われていない露出部を弗酸と硝酸と酢酸の
組成比が1:3:8である蝕刻液で蝕刻する工程とを具
備した軟X線露光用マスクの製造方法。
1 Boron impurity concentration is 2×10^1^9 on one main surface of a silicon substrate with an impurity concentration of 10^1^8 pieces/cc or less
forming a first epitaxial growth layer having an impurity concentration of 5×10^1^5 impurities/cc or less on the first epitaxial growth layer; a step of forming a mask pattern layer of a metal that does not transmit soft X-rays in the area where the mask is to be formed via a metal layer that is compatible with the second epitaxial growth layer; a step of forming a support member layer on a portion where it is not provided; and a step of etching with an etching solution having a composition ratio of ethylenediamine, water, and pyrocatechol of 17 cc: 8 cc: 3 g, excluding the peripheral edge of the other main surface of the silicon substrate. , etching the exposed portion of the first epitaxial growth layer that is not covered by the peripheral edge of the silicon substrate with an etchant having a composition ratio of hydrofluoric acid, nitric acid, and acetic acid of 1:3:8. A method for manufacturing an exposure mask.
JP51034832A 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask Expired JPS5923104B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP51034832A JPS5923104B2 (en) 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask
US05/782,379 US4198263A (en) 1976-03-30 1977-03-29 Mask for soft X-rays and method of manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51034832A JPS5923104B2 (en) 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask

Publications (2)

Publication Number Publication Date
JPS52117557A JPS52117557A (en) 1977-10-03
JPS5923104B2 true JPS5923104B2 (en) 1984-05-30

Family

ID=12425162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51034832A Expired JPS5923104B2 (en) 1976-03-30 1976-03-30 Manufacturing method for soft X-ray exposure mask

Country Status (1)

Country Link
JP (1) JPS5923104B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538231Y2 (en) * 1988-09-29 1993-09-28

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312274A (en) * 1976-07-21 1978-02-03 Oki Electric Ind Co Ltd Production of mask for x-ray exposure
JPS56132343A (en) * 1980-03-22 1981-10-16 Chiyou Lsi Gijutsu Kenkyu Kumiai Mask for x-ray exposure and its manufacture
US4646465A (en) * 1984-06-22 1987-03-03 Suiseki Fujimoto Method of inoculating mushroom basidiospores seed basidiospore bed for inoculation, culture container for seed basidiospore bed, and boring apparatus for host wood for inoculation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538231Y2 (en) * 1988-09-29 1993-09-28

Also Published As

Publication number Publication date
JPS52117557A (en) 1977-10-03

Similar Documents

Publication Publication Date Title
JPS6217850B2 (en)
US4978421A (en) Monolithic silicon membrane device fabrication process
US4941942A (en) Method of manufacturing a mask support of sic for x-ray lithography masks
JPH0243330B2 (en)
CN110998436B (en) Cortex and method for producing cortex
US4198263A (en) Mask for soft X-rays and method of manufacture
JPH10275773A (en) Film mask for lithography by short-wavelength radiation
JPS5923104B2 (en) Manufacturing method for soft X-ray exposure mask
JPS5923105B2 (en) Manufacturing method for soft X-ray exposure mask
EP0424375B1 (en) Monolithic channeling mask having amorphous/single crystal construction
JPH0345526B2 (en)
JP4333107B2 (en) Transfer mask and exposure method
US4368215A (en) High resolution masking process for minimizing scattering and lateral deflection in collimated ion beams
JPS62234333A (en) Formation of mask for processing fine groove
WO1987007400A2 (en) Monolithic channeling mask
JPS641926B2 (en)
JPS6169133A (en) Exposing process of soft x-ray
KR20040095731A (en) Charged particle beam exposure mask and manufacturing method thereof
JPS631740B2 (en)
JP3366270B2 (en) Method of manufacturing mask for X-ray exposure
JPH0322686B2 (en)
JPH049371B2 (en)
JPH0311086B2 (en)
JPS5882522A (en) X-ray exposure mask and manufacture thereof
JPS6153725A (en) Formation of mask for x-ray exposure