JPH04280809A - Production of highly conductive hollow carbon - Google Patents

Production of highly conductive hollow carbon

Info

Publication number
JPH04280809A
JPH04280809A JP3041774A JP4177491A JPH04280809A JP H04280809 A JPH04280809 A JP H04280809A JP 3041774 A JP3041774 A JP 3041774A JP 4177491 A JP4177491 A JP 4177491A JP H04280809 A JPH04280809 A JP H04280809A
Authority
JP
Japan
Prior art keywords
carbon
hollow
substrate
base material
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3041774A
Other languages
Japanese (ja)
Inventor
Hideki Ueno
秀樹 上野
Takayuki Mishima
隆之 三島
Jun Shiotani
塩谷 準
Norihiko Yasuda
安田 則彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3041774A priority Critical patent/JPH04280809A/en
Publication of JPH04280809A publication Critical patent/JPH04280809A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a hollow carbon material capable of arbitrarily controlling shape and dimension by removing a substrate from a carbon composite obtained by forming a carbon layer on the substrate containing a transition metal and removable by heat treatment, etc. CONSTITUTION:A substrate 1 consisting of a transition metal (alloy) and removable by heat treatment or chemical treatment is prepared. A hydrocarbon capable of forming a carbon by pyrolyzing at a temperature lower than the melting point of the substrate 1 is subjected to vapor phase pyrolysis to deposit a carbon layer 2 on the substrate 1. Then the substrate 1 is removed from a carbon composite 3 consisting of the carbon layer 2 and substrate 1 to provide a hollow carbon material 4.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高い導電性を有する中
空炭素材料を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hollow carbon materials having high electrical conductivity.

【0002】0002

【従来の技術】導電性の中空炭素材料の製造方法として
は、次の様な2種類のものが知られている。
2. Description of the Related Art Two types of methods for producing conductive hollow carbon materials are known as follows.

【0003】第1の方法は、有機前駆体(例えば、フェ
ノール樹脂、ポリアクリロニトリル、レーヨンなど)を
適当な雰囲気下で熱処理することにより有機前駆体を炭
化、黒鉛化することにより導電性の炭素材料を得る方法
である。有機前駆体は、炭素以外の原子(例えば、窒素
)を含むので、炭化、黒鉛化時に炭素以外の原子はガス
化し脱離するために、得られた炭素材料には微小空孔が
できる。この微小空孔径を任意に制御することは従来困
難であったが、空孔径を任意に制御できる炭素繊維の製
造方法が開示されている(特公平1−53362号公報
参照)。それによれば炭素収率の高い有機物と炭素収率
の低い有機物または除去可能な無機物の2層構造を有す
る前駆体を用い、熱処理または薬品処理によって内側層
の炭素収率の低い有機物または無機物を除去する。内側
層の有機物あるいは無機物の直径を変えることで任意の
中空径を有する炭素繊維を得ることができるとしている
The first method is to heat-treat an organic precursor (for example, phenol resin, polyacrylonitrile, rayon, etc.) in an appropriate atmosphere to carbonize and graphitize it, thereby producing a conductive carbon material. This is the way to obtain. Since the organic precursor contains atoms other than carbon (for example, nitrogen), the atoms other than carbon are gasified and eliminated during carbonization and graphitization, so that micropores are formed in the obtained carbon material. Conventionally, it has been difficult to arbitrarily control the diameter of the micropores, but a method for producing carbon fibers that allows the diameter of the pores to be arbitrarily controlled has been disclosed (see Japanese Patent Publication No. 1-53362). According to this, a precursor with a two-layer structure of an organic substance with a high carbon yield and an organic substance with a low carbon yield or a removable inorganic substance is used, and the organic substance or inorganic substance with a low carbon yield in the inner layer is removed by heat treatment or chemical treatment. do. It is said that carbon fibers with any hollow diameter can be obtained by changing the diameter of the organic or inorganic material in the inner layer.

【0004】第2の方法は、炭化水素(例えば、メタン
、ベンゼン)を気相熱分解する方法である。この方法で
は炭化水素を気相熱分解することにより直接炭素材料を
得ることができるため、有機前駆体の熱処理によって得
られる炭素材料に見られる異種原子のガス化と脱離によ
る微小空孔は形成されず、緻密な炭素材料が得られる。 また多くの場合、気相熱分解法によって得られた炭素材
料は易黒鉛化性であり、3000℃以上の高温処理によ
って単結晶グラファイトに匹敵する導電性を示す。 またこの黒鉛化した炭素材料を母材として黒鉛層間化合
物を形成することによって、105S/cmを越える金
属と同等の導電性を得ることも可能である。この気相熱
分解法によって得られる炭素材料に中空部分が賦与され
ている例としては気相成長炭素繊維が挙げられる。気相
成長炭素繊維は、鉄などの金属微粒子(粒径、例えば、
5〜20nm)を触媒とし、炭化水素を約1100℃で
気相熱分解することによって得られると同時に、繊維中
央に触媒金属の粒径とほぼ同一の直径を有する中空が形
成される。
[0004] The second method involves gas-phase thermal decomposition of hydrocarbons (eg, methane, benzene). In this method, carbon materials can be obtained directly by gas-phase pyrolysis of hydrocarbons, so micropores are formed due to gasification and desorption of foreign atoms found in carbon materials obtained by heat treatment of organic precursors. A dense carbon material can be obtained. Further, in many cases, carbon materials obtained by vapor phase pyrolysis are easily graphitized, and exhibit electrical conductivity comparable to single crystal graphite when treated at high temperatures of 3000° C. or higher. Furthermore, by forming a graphite intercalation compound using this graphitized carbon material as a base material, it is also possible to obtain conductivity exceeding 105 S/cm equivalent to that of metal. An example of a carbon material obtained by this vapor phase pyrolysis method in which a hollow portion is provided is vapor grown carbon fiber. Vapor-grown carbon fiber is made of fine metal particles such as iron (particle size, e.g.
It is obtained by gas-phase pyrolysis of hydrocarbons at about 1100° C. using a catalyst (5 to 20 nm), and at the same time, a hollow having a diameter almost the same as the particle size of the catalyst metal is formed in the center of the fiber.

【0005】[0005]

【発明が解決しようとする課題】以上に述べた従来の導
電性の中空炭素材料の製造方法においては次の様な問題
点がある。有機前駆体を熱処理する第1の方法において
は、炭素材料を得るための有機前駆体として、通常フェ
ノール樹脂、ポリアクリロニトリル、レーヨンなどが用
いられるが、これらを熱処理して得られる炭素材料の電
導度は高々103S/cmである。この値は有機前駆体
の熱処理物によって得られた値であり、炭素材料に中空
が形成されている場合、炭素材料の実質的な電導度は更
に低い値である。また得られた炭素材料は難黒鉛化性で
あるため、たとえ3000℃を越える高温での処理を行
っても、電導度の増加はほとんどみられず、また、黒鉛
構造が形成されていないため、黒鉛層間化合物の形成に
よる高導電性を得ることができない。即ち、この方法に
よると、中空の制御はある程度可能なものの、高導電性
は実現し得ない。
[Problems to be Solved by the Invention] The conventional method for producing conductive hollow carbon materials described above has the following problems. In the first method of heat-treating an organic precursor, phenol resin, polyacrylonitrile, rayon, etc. are usually used as the organic precursor to obtain a carbon material, and the conductivity of the carbon material obtained by heat-treating these materials is is at most 103 S/cm. This value is a value obtained by heat-treating the organic precursor, and when a hollow is formed in the carbon material, the substantial electrical conductivity of the carbon material is an even lower value. In addition, the obtained carbon material is difficult to graphitize, so even if it is treated at a high temperature exceeding 3000°C, there is almost no increase in electrical conductivity, and since no graphite structure is formed, High conductivity cannot be obtained due to the formation of graphite intercalation compounds. That is, according to this method, although it is possible to control the hollow space to some extent, high conductivity cannot be achieved.

【0006】また、第2の方法においては、気相熱分解
によって得られる気相成長炭素繊維は通常5〜20nm
の粒径を有する金属微粒子の触媒作用により製造され、
同時に5〜20nm径の中空が形成される。この繊維の
電導度は103S/cm程度と従来の有機前駆体を用い
た方法とほぼ同一であるが、炭素繊維は易黒鉛化炭素で
あり3000℃以上の高温処理によって黒鉛構造が発達
し、黒鉛層間化合物の形成により105S/cmと金属
並の導電性が実現される。しかし、気相成長炭素繊維の
中空径は、触媒金属粒子の粒径に依存するが、粒径を2
0nm以上にした場合、触媒作用が極度に低下するため
、炭素繊維の中空径は20nmまでに制限されている。 従って、μmオーダー径の中空を形成することは不可能
であり、中空部の工業的利用も実現していない。
In the second method, the vapor-grown carbon fiber obtained by vapor-phase pyrolysis usually has a thickness of 5 to 20 nm.
Produced by the catalytic action of fine metal particles having a particle size of
At the same time, hollows with a diameter of 5 to 20 nm are formed. The electrical conductivity of this fiber is about 103 S/cm, which is almost the same as that of the conventional method using organic precursors, but carbon fiber is easily graphitized carbon, and a graphite structure develops by high temperature treatment at 3000°C or higher. By forming the interlayer compound, conductivity of 105 S/cm, which is comparable to metal, is achieved. However, the hollow diameter of vapor-grown carbon fibers depends on the particle size of the catalyst metal particles, but the particle size is
If the diameter is 0 nm or more, the catalytic action is extremely reduced, so the hollow diameter of the carbon fiber is limited to 20 nm. Therefore, it is impossible to form a hollow space with a diameter on the order of μm, and industrial use of the hollow space has not been realized.

【0007】従来の導電性の中空炭素材料の製造方法に
おいては、導電性あるいは、中空部分の制御の少なくと
も一方を犠牲にせねばならないといった問題点がある。 本発明の目的は、中空部分の制御が容易である高い導電
性を有する中空炭素材料の製造方法を提供することにあ
る。
[0007] Conventional methods for manufacturing conductive hollow carbon materials have the problem that at least one of the conductivity and the control of the hollow portion must be sacrificed. An object of the present invention is to provide a method for manufacturing a hollow carbon material having high conductivity and allowing easy control of the hollow portion.

【0008】[0008]

【課題を解決するための手段】本発明の要旨は、熱処理
または薬品処理により除去可能な遷移金属または遷移金
属を含む合金からなる基材上に、基材の融点よりも低い
温度で、炭化水素からなる原料を気相熱分解することに
より炭素層を形成し、基材および炭素層からなる炭素複
合体を得た後、基材を熱処理または薬品処理により除去
し、中空部分を有する炭素材料を形成することからなる
高導電性中空炭素材料の製造方法に存する。
[Means for Solving the Problems] The gist of the present invention is to apply hydrocarbons onto a substrate made of a transition metal or an alloy containing a transition metal that can be removed by heat treatment or chemical treatment at a temperature lower than the melting point of the substrate. A carbon layer is formed by vapor-phase pyrolysis of a raw material consisting of a carbon material, a carbon composite consisting of a base material and a carbon layer is obtained, and then the base material is removed by heat treatment or chemical treatment to form a carbon material having a hollow portion. The present invention resides in a method of manufacturing a highly conductive hollow carbon material, which comprises forming a highly conductive hollow carbon material.

【0009】基材は、熱処理あるいは薬品処理によって
除去可能な金属からなる。基材は、遷移金属あるいは遷
移金属を含む合金である。基材は、例えば、鉄、コバル
ト、ニッケル、銅等の遷移金属、あるいはステンレス等
の遷移金属を含む合金などである。基材の形状は、線材
、線材から形成された織物、テープ、粉末、発泡体、ま
たはその他の成形品の形状であってよい。基材の形状お
よび寸法は、所望の中空炭素材料に応じて、選択する。
[0009] The base material is made of metal that can be removed by heat treatment or chemical treatment. The base material is a transition metal or an alloy containing a transition metal. The base material is, for example, a transition metal such as iron, cobalt, nickel, or copper, or an alloy containing a transition metal such as stainless steel. The shape of the substrate may be in the form of a wire, a fabric formed from a wire, a tape, a powder, a foam, or other molded article. The shape and dimensions of the substrate are selected depending on the desired hollow carbon material.

【0010】原料として用いる炭化水素は、ガスとなり
得る炭化水素、例えば、メタン、エタン、プロパン等の
脂肪族化合物CnH2n+2;アルケン、アルキン等の
不飽和炭化水素、即ち、1つまたはそれ以上の2重結合
または3重結合を有する炭化水素;ベンゼン、ナフタレ
ン、アントラセン、ピレン等の芳香族炭化水素である。
The hydrocarbons used as raw materials are hydrocarbons that can become gases, such as aliphatic compounds CnH2n+2 such as methane, ethane, and propane; unsaturated hydrocarbons such as alkenes and alkynes, that is, one or more double Hydrocarbons having bonds or triple bonds; aromatic hydrocarbons such as benzene, naphthalene, anthracene, and pyrene.

【0011】炭化水素を気相熱分解し、炭素を基材上に
堆積させる。気相熱分解は、減圧下あるいは適当なキャ
リアガス存在下で、基材融点よりも低い温度に、基材お
よび炭化水素を加熱することによって行う。基材および
炭化水素の加熱は、基材に直接通電することによる方法
、基材近傍に配置されたヒーターによる方法等によって
行う。加熱温度は、通常600〜1500℃、好ましく
は900〜1200℃である。炭化水素の供給量は、通
常、4〜10cc/hであり、成長室内の炭化水素分圧
は1Torr程度であることが望ましい。
[0011] Hydrocarbons are vapor-phase pyrolyzed and carbon is deposited on a substrate. Gas phase pyrolysis is carried out by heating the substrate and hydrocarbon to a temperature below the substrate melting point under reduced pressure or in the presence of a suitable carrier gas. Heating of the base material and the hydrocarbon is carried out by applying electricity directly to the base material, by using a heater placed near the base material, or the like. The heating temperature is usually 600 to 1500°C, preferably 900 to 1200°C. The amount of hydrocarbon supplied is usually 4 to 10 cc/h, and the hydrocarbon partial pressure in the growth chamber is preferably about 1 Torr.

【0012】炭化水素の気相熱分解時に原料分解エネル
ギーを供給する補助手段として、プラズマ放電、光照射
、イオン照射などを併用することもできる。気相熱分解
による炭素層形成時に、原料分解エネルギー供給補助手
段を併用すると、エネルギー供給補助手段によるエネル
ギーは熱エネルギーの代替となり、より低温で高い導電
性を有する炭素層を形成することが可能である。例えば
、基材としてステンレス鋼(SUS304)を用い、原
料としてベンゼンを用い、気相熱分解時に、13.56
MHzの高周波電界を印加し、プラズマ放電させた場合
、950℃程度に基材を加熱することによって1×10
3〜5×103S/cmの電導度が得られ、この電導度
は同温度による従来の気相熱分解や有機物の熱処理によ
って得られる炭素材料のものよりも高い。
[0012] Plasma discharge, light irradiation, ion irradiation, etc. can also be used in combination as an auxiliary means for supplying raw material decomposition energy during gas phase thermal decomposition of hydrocarbons. When a raw material decomposition energy supply auxiliary means is used in conjunction with the formation of a carbon layer by vapor phase pyrolysis, the energy supplied by the energy supply auxiliary means can substitute for thermal energy, making it possible to form a carbon layer with high conductivity at a lower temperature. be. For example, if stainless steel (SUS304) is used as the base material and benzene is used as the raw material, 13.56
When a high frequency electric field of MHz is applied and a plasma discharge is caused, 1×10
An electrical conductivity of 3 to 5 x 103 S/cm is obtained, which is higher than that of carbon materials obtained by conventional gas phase pyrolysis or heat treatment of organic matter at the same temperature.

【0013】得られた基材および炭素層からなる炭素複
合体から、基材を除去して、中空炭素材料を得る。基材
の除去は、基材の融点以上の温度に加熱する熱処理また
は酸などの薬品による薬品処理によって行える。
[0013] The base material is removed from the obtained carbon composite consisting of the base material and the carbon layer to obtain a hollow carbon material. Removal of the base material can be performed by heat treatment to a temperature higher than the melting point of the base material or chemical treatment using chemicals such as acids.

【0014】得られた中空炭素材料を1500〜300
0℃、例えば3000℃で加熱し、黒鉛化した後、この
中空炭素材料に適当な化学種を層間に挿入し、層間化合
物を形成することにより、更に導電性を増すことができ
る。適当な化学種は、電子受容性試薬または電子供与性
試薬である。電子受容性試薬の例は、ハロゲン(例えば
、Cl2、Br2、I2、ICl、ICl3、IBr)
、ルイス酸、プロトン酸(例えば、PF5、AsF5、
SbF5、AgClO4、AgBF4、BF3、BCl
3、BBr3、FSO2OOSO2F、(NO2)(S
bF6)、(NO)SbCl6、(NO2)(BF4)
、SO3、TiF4、NbF5、TaF5、NbCl5
、TaCl5、MnCl2、MoCl4、MoCl5、
MoOCl4、NiCl2、ZnCl2、CrO2Cl
2、FeCl3、CdCl2、AuCl3、CrCl3
、AlCl3、AlBr3、GaBr3、PtCl4、
SbCl5、UCl5、SOCl2、XeF6、H2S
O4、HClO4、HNO3、FSO3H、CF3SO
3H)である。電子供与性試薬の例は、Li、Na、K
、Rb、Cs、Ba、Sr、Ca、Eu、Yb、Sm、
Tmである。
[0014] The obtained hollow carbon material
After graphitizing by heating at 0° C., for example, 3000° C., the conductivity can be further increased by inserting an appropriate chemical species between the layers of this hollow carbon material to form an interlayer compound. Suitable species are electron-accepting or electron-donating reagents. Examples of electron-accepting reagents are halogens (e.g. Cl2, Br2, I2, ICl, ICl3, IBr)
, Lewis acids, protic acids (e.g. PF5, AsF5,
SbF5, AgClO4, AgBF4, BF3, BCl
3, BBr3, FSO2OOSO2F, (NO2) (S
bF6), (NO)SbCl6, (NO2) (BF4)
, SO3, TiF4, NbF5, TaF5, NbCl5
, TaCl5, MnCl2, MoCl4, MoCl5,
MoOCl4, NiCl2, ZnCl2, CrO2Cl
2, FeCl3, CdCl2, AuCl3, CrCl3
, AlCl3, AlBr3, GaBr3, PtCl4,
SbCl5, UCl5, SOCl2, XeF6, H2S
O4, HClO4, HNO3, FSO3H, CF3SO
3H). Examples of electron donating reagents are Li, Na, K
, Rb, Cs, Ba, Sr, Ca, Eu, Yb, Sm,
It is Tm.

【0015】本発明の製造方法の概略を図1に示す。遷
移金属あるいは遷移金属を含む合金からなる基材1を気
相合成装置の成長室内に設置し、成長室内を10−3m
mHg程度に減圧するかあるいは適当なガス雰囲気(好
ましくはアルゴン、窒素等の不活性ガス雰囲気あるいは
水素等の還元性ガス雰囲気)のもとで、直接あるいは間
接的な方法により基材を融点よりも低い温度に加熱する
。図示するような円形断面の線材の場合、円形断面の直
径は、通常、8〜100μmである。次いで、成長室内
に原料炭化水素を導入し、気相熱分解によって基材上に
炭素層2を形成し、炭素複合体3を得る。炭素層の厚さ
は、通常1〜100μmである。また、炭素層の厚さは
中空形成のための基材径によって決まり、炭素層形成後
の直径は基材の直径の1.4倍以上であることが望まし
い。炭素複合体3を真空中で基材1の融点より高い温度
で熱処理するかあるいは適当な薬品(例えば硫酸、塩酸
)で処理することにより、炭素複合体3から基材1を除
去して中空炭素材料4を得る。
FIG. 1 shows an outline of the manufacturing method of the present invention. A base material 1 made of a transition metal or an alloy containing a transition metal is placed in a growth chamber of a vapor phase synthesis apparatus, and the inside of the growth chamber is 10-3 m.
The base material is heated below its melting point by direct or indirect methods under reduced pressure to about mHg or in an appropriate gas atmosphere (preferably an inert gas atmosphere such as argon or nitrogen, or a reducing gas atmosphere such as hydrogen). Heat to low temperature. In the case of a wire having a circular cross section as shown in the figure, the diameter of the circular cross section is usually 8 to 100 μm. Next, a raw material hydrocarbon is introduced into the growth chamber, and a carbon layer 2 is formed on the base material by vapor phase pyrolysis to obtain a carbon composite 3. The thickness of the carbon layer is usually 1 to 100 μm. Further, the thickness of the carbon layer is determined by the diameter of the base material for forming the hollow, and it is desirable that the diameter after forming the carbon layer is 1.4 times or more the diameter of the base material. The base material 1 is removed from the carbon composite 3 by heat treating the carbon composite 3 at a temperature higher than the melting point of the base material 1 in a vacuum or by treating it with an appropriate chemical (e.g. sulfuric acid, hydrochloric acid) to form a hollow carbon. Obtain material 4.

【0016】本発明において基材の形状をかえることに
より中空の形状および寸法は任意に制御することができ
る。また、基材を構成する材料を選択することによりそ
の基材に含まれる遷移金属の効果により、従来のものに
比べ高い導電性を有する炭素層を形成することが可能で
あり、更に、黒鉛化温度の低減にも有効となり得る。
In the present invention, the shape and dimensions of the hollow space can be controlled as desired by changing the shape of the base material. In addition, by selecting the material that constitutes the base material, it is possible to form a carbon layer with higher conductivity than conventional ones due to the effect of the transition metal contained in the base material. It can also be effective in reducing temperature.

【0017】[0017]

【実施例】以下に実施例を示し、本発明を具体的に説明
する。 実施例1 直径20μmのステンレス鋼SUS304の線材を基材
とし、炭素層の成長室内に静置し、成長室内を10−2
mmHgまで減圧し、基材を900℃に加熱した。次い
で、系内圧力を1mmHgに保つように、ベンゼン蒸気
を成長室内に導入した。高周波電界(13.56MHz
、100W)を印加し、プラズマ放電を起こし、基材上
に炭素層を形成し、直径約60μmの炭素複合体を得た
。この炭素複合体を1500および2000℃で真空中
で熱処理することによって基材を除去し、約20μmの
中空径を有する炭素材料を得た。この中空炭素材料の電
導度は1500℃で処理したものでは3.4×103S
/cm、2000℃で処理したものは6.5×103S
/cmと高い電導度を示した。
[Examples] The present invention will be explained in detail with reference to Examples below. Example 1 A wire rod of stainless steel SUS304 with a diameter of 20 μm was used as a base material, and it was placed in a growth chamber of a carbon layer, and the growth chamber was heated to 10-2.
The pressure was reduced to mmHg and the substrate was heated to 900°C. Next, benzene vapor was introduced into the growth chamber so as to maintain the internal pressure at 1 mmHg. High frequency electric field (13.56MHz
, 100 W) was applied to generate plasma discharge to form a carbon layer on the base material to obtain a carbon composite with a diameter of about 60 μm. The base material was removed by heat-treating this carbon composite in vacuum at 1500 and 2000° C. to obtain a carbon material having a hollow diameter of about 20 μm. The conductivity of this hollow carbon material is 3.4×103S when treated at 1500℃.
/cm, 6.5 x 103S for those treated at 2000℃
It showed a high conductivity of /cm.

【0018】実施例2 直径8μm、30μmおよび100μmの3種の銅線上
に実施例1と同様の手順で炭素層を形成した。その後、
1500℃および3000℃で熱処理を行い、銅線の除
去を行った。その結果、銅線の直径と同一の中空径を有
する繊維状中空炭素材料を得た。この繊維状中空炭素材
料の電導度を測定した。結果を表1に示すが、高い電導
度が得られた。
Example 2 Carbon layers were formed on three types of copper wires having diameters of 8 μm, 30 μm and 100 μm in the same manner as in Example 1. after that,
Heat treatment was performed at 1500°C and 3000°C to remove the copper wire. As a result, a fibrous hollow carbon material having the same hollow diameter as the diameter of the copper wire was obtained. The electrical conductivity of this fibrous hollow carbon material was measured. The results are shown in Table 1, and high electrical conductivity was obtained.

【0019】[0019]

【表1】     基材径       繊維径      熱処
理温度         電 導 度      8μ
m       30μm    1500℃    
1.0×103S/cm      8μm     
  85μm    3000℃    0.9×10
4S/cm    30μm       98μm 
   1500℃    0.4×103S/cm  
  30μm        65μm    300
0℃    1.0×104S/cm  100μm 
    154μm    1500℃    1.0
×103S/cm  100μm     180μm
    3000℃    7.2×103S/cm
[Table 1] Base material diameter Fiber diameter Heat treatment temperature Electrical conductivity 8μ
m 30μm 1500℃
1.0×103S/cm 8μm
85μm 3000℃ 0.9×10
4S/cm 30μm 98μm
1500℃ 0.4×103S/cm
30μm 65μm 300
0℃ 1.0×104S/cm 100μm
154μm 1500℃ 1.0
×103S/cm 100μm 180μm
3000℃ 7.2×103S/cm

【0020】実施例3 直径30μmの銅線上に実施例1と同様の手順で炭素層
を形成した後、3000℃で熱処理を行い、銅線の除去
および黒鉛化処理を行い、直径72μm、中空径30μ
mの中空黒鉛繊維を得た。この中空黒鉛繊維をガラス製
容器に入れ、10−3mmHgに減圧した後、ICl蒸
気を容器内に導入し、黒鉛層間化合物を形成した。その
後大気中に取出し、この中空黒鉛層間化合物繊維の電導
度を測定したところ、8.1×104S/cmの高電導
度を示した。
Example 3 After forming a carbon layer on a copper wire with a diameter of 30 μm in the same manner as in Example 1, heat treatment was performed at 3000° C. to remove the copper wire and graphitize the wire. 30μ
m hollow graphite fibers were obtained. This hollow graphite fiber was placed in a glass container, and after the pressure was reduced to 10 −3 mmHg, ICl vapor was introduced into the container to form a graphite intercalation compound. Thereafter, it was taken out into the atmosphere and the electrical conductivity of this hollow graphite intercalation compound fiber was measured, and it showed a high electrical conductivity of 8.1 x 104 S/cm.

【0021】実施例4 直径30μmの銅線上に実施例1と同様の手順で炭素層
を形成し、得た直径67μmの炭素複合体を18mol
/lの硫酸に浸漬した。これにより基材である銅が溶解
し、炭素複合体より除去され、中空炭素材料を得ること
ができた。中空炭素材料の電導度は0.6×103S/
cmであった。
Example 4 A carbon layer was formed on a copper wire with a diameter of 30 μm in the same manner as in Example 1, and 18 mol of the carbon composite with a diameter of 67 μm was obtained.
/l of sulfuric acid. As a result, the base material copper was dissolved and removed from the carbon composite, making it possible to obtain a hollow carbon material. The conductivity of the hollow carbon material is 0.6×103S/
It was cm.

【0022】実施例5 ニッケルで作られた発泡金属シート(空孔径400μm
、気孔率97%)を基材として用い、実施例1と同様の
手順によって発泡金属シート上に炭素層を形成した。 その後2000℃の真空中で熱処理し、ニッケルを除去
し、シート状の中空炭素材料(寸法50mm×25mm
×1.5mm、中空径50μm、空孔径400μm)を
得た。 中空炭素材料の電導度は2×102S/cmであった。
Example 5 Foamed metal sheet made of nickel (pore diameter 400 μm)
, porosity 97%) was used as the base material, and a carbon layer was formed on the foamed metal sheet by the same procedure as in Example 1. After that, heat treatment was performed in a vacuum at 2000°C to remove nickel, and a sheet-shaped hollow carbon material (dimensions 50 mm x 25 mm) was prepared.
x 1.5 mm, hollow diameter 50 μm, and pore diameter 400 μm). The conductivity of the hollow carbon material was 2×10 2 S/cm.

【0023】[0023]

【発明の効果】本発明の方法によれば、中空の形状およ
び寸法が任意に制御でき、高導電性を有する中空炭素材
料が得られる。本発明によって得られる中空炭素材料は
、軽量導電材料として利用することが可能である。また
、中空の制御によって、表面積の制御や断熱性などの諸
特性の制御も可能となる。本発明によって得られる中空
炭素材料は、電気材料、電子材料、熱機械材料、電気化
学材料として利用するとその効果は極めて大きく、具体
的には、電磁シールド、電池電極などとして使用できる
According to the method of the present invention, the shape and dimensions of the hollow can be arbitrarily controlled, and a hollow carbon material having high conductivity can be obtained. The hollow carbon material obtained by the present invention can be used as a lightweight conductive material. Furthermore, by controlling the hollow space, it is also possible to control various properties such as surface area and heat insulation. The hollow carbon material obtained by the present invention is extremely effective when used as an electrical material, electronic material, thermomechanical material, or electrochemical material, and specifically, it can be used as an electromagnetic shield, a battery electrode, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の中空炭素材料の製造方法を示す概
略図である。
FIG. 1 is a schematic diagram showing a method for manufacturing a hollow carbon material of the present invention.

【符号の説明】[Explanation of symbols]

1  基材 2  炭素層 3  炭素複合体 4  中空炭素材料 1 Base material 2 Carbon layer 3 Carbon composite 4 Hollow carbon material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  熱処理または薬品処理により除去可能
な遷移金属または遷移金属を含む合金からなる基材上に
、基材の融点よりも低い温度で、炭化水素からなる原料
を気相熱分解することにより炭素層を形成し、基材およ
び炭素層からなる炭素複合体を得た後、基材を熱処理ま
たは薬品処理により除去し、中空部分を有する炭素材料
を形成することからなる高導電性中空炭素材料の製造方
法。
Claim 1: Vapor-phase pyrolysis of a raw material consisting of a hydrocarbon at a temperature lower than the melting point of the substrate on a substrate consisting of a transition metal or an alloy containing a transition metal that can be removed by heat treatment or chemical treatment. to form a carbon layer to obtain a carbon composite consisting of a base material and carbon layer, and then remove the base material by heat treatment or chemical treatment to form a carbon material having a hollow part.Highly conductive hollow carbon Method of manufacturing the material.
JP3041774A 1991-03-07 1991-03-07 Production of highly conductive hollow carbon Pending JPH04280809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3041774A JPH04280809A (en) 1991-03-07 1991-03-07 Production of highly conductive hollow carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3041774A JPH04280809A (en) 1991-03-07 1991-03-07 Production of highly conductive hollow carbon

Publications (1)

Publication Number Publication Date
JPH04280809A true JPH04280809A (en) 1992-10-06

Family

ID=12617726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3041774A Pending JPH04280809A (en) 1991-03-07 1991-03-07 Production of highly conductive hollow carbon

Country Status (1)

Country Link
JP (1) JPH04280809A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342014A (en) * 2000-03-31 2001-12-11 Osaka Gas Co Ltd Method of preparing nano-scale acicular materials
JP2006512746A (en) * 2002-12-23 2006-04-13 マイクロセル コーポレーション Manufacturing method supported on substrate of microfibrous fuel cell
JP2006247758A (en) * 2005-03-08 2006-09-21 Nagoya Institute Of Technology Method of manufacturing carbon nano-structural material, field emission display and scanning probe microscope
US8048584B2 (en) 2003-03-07 2011-11-01 Microcell Corporation Fuel cell structures and assemblies

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342014A (en) * 2000-03-31 2001-12-11 Osaka Gas Co Ltd Method of preparing nano-scale acicular materials
JP2006512746A (en) * 2002-12-23 2006-04-13 マイクロセル コーポレーション Manufacturing method supported on substrate of microfibrous fuel cell
US8048584B2 (en) 2003-03-07 2011-11-01 Microcell Corporation Fuel cell structures and assemblies
JP2006247758A (en) * 2005-03-08 2006-09-21 Nagoya Institute Of Technology Method of manufacturing carbon nano-structural material, field emission display and scanning probe microscope

Similar Documents

Publication Publication Date Title
US6156256A (en) Plasma catalysis of carbon nanofibers
US7927701B2 (en) Vapor grown carbon fiber reinforced composite materials and methods of making and using same
US6699582B2 (en) Fine carbon fiber, method for producing the same and electrically conducting material comprising the fine carbon fiber
Wang et al. Synthesis of large area aligned carbon nanotube arrays from C 2 H 2–H 2 mixture by rf plasma-enhanced chemical vapor deposition
EP2431325A1 (en) Carbon nanotubes and process for producing same
US8119198B2 (en) Three-dimensional carbon fibers and method and apparatus for their production
KR20050121426A (en) Method for preparing catalyst for manufacturing carbon nano tubes
JPS61500561A (en) Manufacturing method of carbon fiber by vapor deposition from methane
JP3841684B2 (en) Fine carbon fiber, method for producing the same, and conductive material containing the fine carbon fiber
US6565971B2 (en) Fine carbon fiber and method for producing the same
JPH04280809A (en) Production of highly conductive hollow carbon
JP3524542B2 (en) Manufacturing method of carbon nanotube
KR20010104262A (en) Carbon fibrils and method for producing same
KR102237464B1 (en) A preparation method of a carbon material having sp2-hybridization in which the contents of pyridinic nitrogen and pyrrolic nitrogen are controlled and a carbon material prepared thereby
JPH0536533B2 (en)
JP2005112659A (en) Apparatus and method for manufacturing carbon nanotube
KR101383821B1 (en) Direct synthesis method of carbon nanotube using intermetallic nano-catalysts formed on surface of various metal substrates and the structure thereof
JPH0362791B2 (en)
KR102440177B1 (en) Method and Apparatus for Manufacturing Carbon Nano Fiber
JPH08151207A (en) Carbon tube and its production
Kokai et al. Catalytic growth of nickel-encapsulated and hollow graphitic carbon nanoparticles during laser vaporization of cellulose char containing nickel
KR20130138568A (en) A carbon hybrid structure comprising a graphene layer and hollow carbon tubes
JPS59207820A (en) Highly electrically conductive carbon based heat-treated material
JPH02210060A (en) Production of highly graphitized yarn
KR100503123B1 (en) Method for the formation of open structure carbon nanotubes field emitter by plasma chemical vapor deposition