JPH02210060A - Production of highly graphitized yarn - Google Patents

Production of highly graphitized yarn

Info

Publication number
JPH02210060A
JPH02210060A JP7477488A JP7477488A JPH02210060A JP H02210060 A JPH02210060 A JP H02210060A JP 7477488 A JP7477488 A JP 7477488A JP 7477488 A JP7477488 A JP 7477488A JP H02210060 A JPH02210060 A JP H02210060A
Authority
JP
Japan
Prior art keywords
carbon
graphitizable
fiber
layer
highly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7477488A
Other languages
Japanese (ja)
Other versions
JPH0341592B2 (en
Inventor
Akio Takahashi
昭夫 高橋
Jun Tsukamoto
遵 塚本
Kikuko Kawasaki
河崎 菊子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7477488A priority Critical patent/JPH02210060A/en
Publication of JPH02210060A publication Critical patent/JPH02210060A/en
Publication of JPH0341592B2 publication Critical patent/JPH0341592B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain the title yarn without damaging a base material of carbon yarn and a coating layer by carrying out formation of readily graphitized coated layer using chemical deposition method by infrared heating and heat treatment followed by the formation in a pressurized atmosphere. CONSTITUTION:First, a readily graphitized carbon coated layer is formed on the base material of carbon yarn in a pressurized atmosphere by infrared chemical gas-phase deposition. Successively, the base material of carbon yarn having the readily graphitized coated layer is heat-treated in a pressurized atmosphere at >=2,800 deg.C to give the aimed yarn. The atmospheric pressure is preferably >=5kg/cm<2>.G. Cyanoacetylene is preferable as a hydrocarbon, a raw material of the readily graphitized carbon coated layer. Thermal decomposition of hydrocarbon in chemical gas-phase deposition is carried out preferably at 1,100-1,500 deg.C.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、基材の被覆形成処理方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a coating forming treatment method for a base material.

[従来の技術] 炭素繊維を基材とし、黒鉛を被覆層とする被覆繊維を製
造する方法として、特開昭59−187622号明細書
に記載された方法がある。この方法は、炭素繊維に直接
通電することによってそれを加熱するとともに、その炭
素繊維に化学蒸着法(CVD法)により易黒鉛化炭素の
被覆層を形成し、次いでその被覆化炭素繊維を2500
℃以上の温度に加熱して、該易黒鉛化炭素を黒鉛化する
ものである。
[Prior Art] As a method for producing coated fibers using carbon fiber as a base material and graphite as a coating layer, there is a method described in JP-A-59-187622. This method heats the carbon fibers by directly applying electricity to them, forms a coating layer of graphitizable carbon on the carbon fibers by chemical vapor deposition (CVD), and then coats the coated carbon fibers with 2500
The graphitizable carbon is graphitized by heating to a temperature of .degree. C. or higher.

[発明が解決しようとする課題] しかしながら、かかる方法は、炭素繊維の加熱を、それ
に直接通電することによって生ずるジュール熱を利用し
て行うため、炭素繊維に易黒鉛化炭素の被覆層が形成さ
れてくると、それに伴って被覆炭素繊維としてみた熱容
量や抵抗値が連続的に変化してくる。そのため、繊維軸
方向において大きな温度分布ができ、局部的加熱が起っ
て炭素繊維が切れてしまうのである。
[Problems to be Solved by the Invention] However, in this method, carbon fibers are heated using Joule heat generated by directly applying electricity to them, so a coating layer of easily graphitizable carbon is formed on the carbon fibers. As the temperature increases, the heat capacity and resistance value of the coated carbon fiber will change continuously. Therefore, a large temperature distribution occurs in the fiber axis direction, causing localized heating and causing the carbon fiber to break.

また、前記方法により得られた易黒鉛化炭素繊維を、常
圧の不活性ガス雰囲気中にて2800℃以上の温度で加
熱し、黒鉛化を試みたが、該繊維の切断や羽毛等の損傷
を生じて連続的な被覆黒鉛長繊維を得ることが不可能で
あった。特に3500℃付近の高温はど炭素の昇化が著
しく、該繊維の切断が起り、連続的な被覆黒鉛長繊維を
得ることができない。
In addition, attempts were made to graphitize the graphitizable carbon fiber obtained by the above method by heating it at a temperature of 2,800°C or higher in an inert gas atmosphere at normal pressure, but the fibers were cut and the feathers were damaged. It was impossible to obtain continuous coated graphite long fibers. In particular, at high temperatures around 3,500° C., carbon elevation is significant and the fibers are cut, making it impossible to obtain continuous coated graphite long fibers.

本発明の目的は、上述したような従来の方法の欠点を解
消し、基材および被覆層に損傷を与えることなく、基材
にCVD法により易黒鉛化層を被覆形成した後、高黒鉛
化処理することのできる方。
The purpose of the present invention is to eliminate the drawbacks of the conventional methods as described above, and to form a highly graphitizable layer on a base material by CVD method without damaging the base material and the coating layer. Someone who can handle it.

法を提供することにある。It is about providing law.

[課題を解決するための手段] 本発明は、上記目的を達成するために下記の構成を有す
る。
[Means for Solving the Problems] The present invention has the following configuration to achieve the above object.

「炭素繊維基材上に、赤外線加熱による化学気相蒸着法
により易黒鉛化層を被覆形成した後、2800℃以上の
温度で加熱処理して高黒鉛化繊維を製造する方法であっ
て、該易黒鉛化層の形成と加熱処理とを加圧雰囲気下で
行うことを特徴とする長繊維状高黒鉛化繊維の製造方法
。」 本発明の炭素繊維基材としては、炭素含有率が95wt
%以上の炭素を主成分とする材料であって、ポリアクリ
ルニトリル系、ピッチ系、セルローズ系、ビニロン系、
リグニン/ポバール系など、どのようなものであっても
よい。しかして、炭素繊維は、通常、5〜30μm程度
の単糸径を有するものを使用する。なお、形態は、モノ
フィラメントであってもよいし、総デニールが数千〜致
方デニールのマルチフィラメントであってもよい。
``A method for producing highly graphitizable fibers by coating a carbon fiber base material with an easily graphitizable layer by chemical vapor deposition using infrared heating, and then heat-treating the layer at a temperature of 2,800°C or higher. A method for producing a long fibrous highly graphitizable fiber, characterized in that forming an easily graphitizable layer and heat treatment are performed in a pressurized atmosphere.
% or more of carbon as a main component, including polyacrylonitrile-based, pitch-based, cellulose-based, vinylon-based,
It may be of any type, such as lignin/poval type. Therefore, the carbon fiber used usually has a single yarn diameter of about 5 to 30 μm. In addition, the form may be a monofilament or a multifilament having a total denier of several thousand to several thousand denier.

本発明におけるCVD法は、炭化水素を気相状態で熱分
解することにより、易黒鉛化炭素となる、いろいろな縮
合環をもつ化合物を基材上に堆積させる方法である。本
発明においては、このCVD法において、赤外線加熱を
用いることにより易黒鉛化炭素の被覆層を形成する。
The CVD method in the present invention is a method in which compounds having various condensed rings, which become graphitizable carbon, are deposited on a substrate by thermally decomposing hydrocarbons in a gas phase. In the present invention, a coating layer of graphitizable carbon is formed by using infrared heating in this CVD method.

上記、原料ガスとしての炭化水素としては、06〜C1
4の芳香族炭化水素、例えば、ベンゼン、ナフタレン、
アントラセンとその誘導体、及びC3〜C8の脂環族炭
化水素、例えば、シクロプロパン、シクロブタン、シク
ロペンタン、シクロヘキサン、シクロへブタン、シクロ
オクタン、シクロブテン、シクロペンテン、シクロヘキ
センとその誘導体、あるいは、01〜C8の脂肪族炭化
水素、例えば、メタン、エタン、プロパン、ブタン、ペ
ンタン、ヘキサン、ヘプタン、オクタンとその誘導体、
ざらにアセチレン、シアノアセチレン等のアセチレン化
合物を挙げることができる。
The hydrocarbons used as the raw material gas are 06 to C1.
4 aromatic hydrocarbons, such as benzene, naphthalene,
anthracene and its derivatives, and C3-C8 alicyclic hydrocarbons, such as cyclopropane, cyclobutane, cyclopentane, cyclohexane, cyclohebutane, cyclooctane, cyclobutene, cyclopentene, cyclohexene and its derivatives; aliphatic hydrocarbons, such as methane, ethane, propane, butane, pentane, hexane, heptane, octane and their derivatives;
Broad examples include acetylene compounds such as acetylene and cyanoacetylene.

なかでもベンゼン、シアノアセチレンが好ましく、さら
に好ましくはシアノアセチレンが選ばれる。
Among them, benzene and cyanoacetylene are preferred, and cyanoacetylene is more preferred.

炭化水素の熱分解は、基材を加圧雰囲気下で直接的また
は間接的に加熱することによって行う。
Thermal decomposition of hydrocarbons is carried out by directly or indirectly heating the substrate under a pressurized atmosphere.

加熱する際に加圧雰囲気内に、基材とは別に、熱源や高
温部があると、この部分にも熱分解炭素が析出して汚れ
るので、長期間連続してCVDが不可能であること、ざ
らに原料上ツマの有効利用の面からも、基材のみを間接
的に高温加熱できる集光された光エネルギーによる加熱
が最も望ましい。
If there is a heat source or high-temperature part in the pressurized atmosphere during heating, apart from the base material, pyrolytic carbon will precipitate and become dirty in this part, making continuous CVD impossible for a long period of time. From the viewpoint of effective utilization of raw materials, it is most desirable to use concentrated light energy that can indirectly heat only the base material to a high temperature.

光エネルギー源としては、例えば炭酸ガスレーザーのよ
うに、大容量でかつ赤外ないし近赤外領域に非連続的な
スペクトルをもつものや、赤外線ランプのように、赤外
から近赤外領域にかけて連続したスペクトルをもつもの
、あるいはハロゲンランプやキセノンアークランプなど
を用いることができる。また、これらの光エネルギー源
から輻射される光エネルギーを基材に集光する手段とし
ては、回転楕円面鏡や光学レンズなどを使用することが
できる。好ましくは、基材を囲むように回転楕円面鏡を
配置し、゛例えば、炭素繊維にその繊維軸方向と直交す
る平面内において全方向から光エネルギーが集光される
ようにするのが良い。熱分解温度は、使用する炭化水素
の種類等にもよるが、700〜1800℃程度が好まし
く、ざらに好ましくは、1100〜1500℃である。
Examples of light energy sources include carbon dioxide lasers, which have a large capacity and a discontinuous spectrum in the infrared to near-infrared region, and infrared lamps, which have a discontinuous spectrum in the infrared to near-infrared region. A device with a continuous spectrum, a halogen lamp, a xenon arc lamp, etc. can be used. Further, as a means for condensing the light energy radiated from these light energy sources onto the base material, a spheroidal mirror, an optical lens, or the like can be used. Preferably, a spheroidal mirror is arranged to surround the base material so that, for example, light energy is focused on the carbon fiber from all directions within a plane orthogonal to the fiber axis direction. The thermal decomposition temperature is preferably about 700 to 1800°C, more preferably 1100 to 1500°C, although it depends on the type of hydrocarbon used.

すなわち、700℃未満では易黒鉛化炭素の被覆層の形
成速度が遅くなる。また、1800℃を越えると、難黒
鉛化炭素の生成量が多くなり目的とする高黒鉛化繊維の
生成量が不充分となる。
That is, when the temperature is lower than 700°C, the formation rate of the graphitizable carbon coating layer becomes slow. On the other hand, if the temperature exceeds 1800° C., the amount of non-graphitizable carbon produced increases, and the amount of highly graphitized fibers produced becomes insufficient.

CVD原料である炭化水素の濃度は、不活性ガス共存下
である場合、0.05〜10体積%の範囲で行うのが好
ましい。ざらに好ましくは0.1〜5体積%である。す
なわち、0.05体積%未満では易黒鉛化炭素の被覆層
の形成速度が遅くなる。また、10体積%を越えると、
難黒鉛化炭素(ススなと)の生成量が多くなること、さ
らには炭素繊維以外のチャンバーなどにも多量の堆積物
(ススなと)が生成し、このためチャンバー内壁(特に
透明石英反応管)が汚れ、目的とする高黒鉛化繊維を連
続的に製造することが難しくなる。
The concentration of the hydrocarbon that is the CVD raw material is preferably in the range of 0.05 to 10% by volume in the presence of an inert gas. It is preferably 0.1 to 5% by volume. That is, if the amount is less than 0.05% by volume, the formation rate of the graphitizable carbon coating layer becomes slow. In addition, if it exceeds 10% by volume,
A large amount of non-graphitizable carbon (soot) is generated, and a large amount of deposits (soot) are also generated on chambers other than carbon fibers, which causes the inner walls of the chamber (especially transparent quartz reaction tubes) ) becomes dirty, making it difficult to continuously produce the desired highly graphitized fiber.

また、必要に応じて数%〜数十%の水素の共存下で行う
こともできる。この場合、炭化水素濃度゛は0.1〜2
0体積%であることが好ましい。
Moreover, it can also be carried out in the coexistence of several percent to several tens of percent of hydrogen, if necessary. In this case, the hydrocarbon concentration is 0.1-2
Preferably it is 0% by volume.

CVD時間は、使用する炭化水素の種類、炭化水素の濃
度、熱分解温度などによって異なるが、通常、数分から
数時間程度である。より均質な易黒鉛化炭素の被覆層を
形成するためには、熱分解温度や炭化水素濃度を低くし
て、CVD時間を長くするのが好ましい。
The CVD time varies depending on the type of hydrocarbon used, the concentration of the hydrocarbon, the thermal decomposition temperature, etc., but is usually about several minutes to several hours. In order to form a more homogeneous graphitizable carbon coating layer, it is preferable to lower the thermal decomposition temperature and hydrocarbon concentration and to lengthen the CVD time.

易黒鉛化炭素の被覆層の厚みは、炭化水素の濃度、熱分
解温度、CVD時間などによって調節できる。例えば、
被覆炭素繊維の場合では、黒鉛化後の可撓性が著しく損
なわれないように、10〜200μm程度であるのが好
ましい。なお、基材としての炭素繊維をマルチフィラメ
ントの形態で供する場合には、堆積した易黒鉛化炭素に
よって単繊維同士が結着され、被覆炭素繊維、ひいては
最終的に得られる被覆黒鉛繊維の可撓性が失われがちに
なるので、被覆の形成速度を極力遅くし、被覆層の厚み
をあまり厚くしない方が好ましい。
The thickness of the graphitizable carbon coating layer can be adjusted by adjusting the hydrocarbon concentration, thermal decomposition temperature, CVD time, etc. for example,
In the case of coated carbon fibers, the thickness is preferably about 10 to 200 μm so that the flexibility after graphitization is not significantly impaired. In addition, when providing carbon fiber as a base material in the form of a multifilament, the single fibers are bonded together by the deposited easily graphitizable carbon, which increases the flexibility of the coated carbon fiber and ultimately of the coated graphite fiber that is finally obtained. Since this tends to result in a loss of properties, it is preferable to slow down the coating formation rate as much as possible and to not increase the thickness of the coating layer too much.

本発明においては、次いで、上述した、易黒鉛化炭素被
覆基材を加圧雰囲気下で加熱処理してその易黒鉛化炭素
を黒鉛化し、炭素を基質とし、黒鉛を外皮層としてもつ
被覆黒鉛を得る。
In the present invention, the above-mentioned easily graphitizable carbon-coated substrate is then heat-treated in a pressurized atmosphere to graphitize the easily graphitizable carbon, thereby producing coated graphite having carbon as a substrate and graphite as an outer layer. obtain.

本発明において黒鉛とは、SP2結合によって結合した
6員環炭素で構成される面がπ結合により結合してなる
構造が発達してできた炭素を主成分とする化合物である
。そのような化合物は、Cu−にα線を使用したX線回
折によって002面から求めた面間隔が3.363Å以
下であるということによって特徴づけられる。
In the present invention, graphite is a compound whose main component is carbon, which has developed a structure in which surfaces composed of six-membered ring carbons bonded by SP2 bonds are bonded by π bonds. Such a compound is characterized by the interplanar spacing determined from the 002 plane by X-ray diffraction using α rays for Cu- to be 3.363 Å or less.

前記黒鉛化における加熱の方法は、加圧雰囲気下で加熱
できる方法であれば特に限定されない。
The heating method for graphitization is not particularly limited as long as it can be heated under a pressurized atmosphere.

例えば、抵抗加熱、誘導加熱や光エネルギー等によって
可能である。その場合、加圧処理が特に有効な黒鉛化温
度は、2800℃以上、好ましくは3400℃以上で、
上限は特に限定されないが3700℃程度である。雰囲
気圧力は3にa/al−G以上であることが好ましく、
ざらに好ましくは5Kg/−・G以上高い程良い。
For example, resistance heating, induction heating, light energy, etc. can be used. In that case, the graphitization temperature at which pressure treatment is particularly effective is 2800°C or higher, preferably 3400°C or higher,
The upper limit is not particularly limited, but is approximately 3700°C. It is preferable that the atmospheric pressure is 3 to a/al-G or higher,
The higher the value, preferably 5 Kg/-.G or more, the better.

また、本発明における雰囲気ガスは、不活性ガス即ち、
Ar、He、N2等を使用することができる。
Further, the atmospheric gas in the present invention is an inert gas, that is,
Ar, He, N2, etc. can be used.

本発明は、CVD法による易黒鉛化層の被覆形成と黒鉛
(ヒ処理を、連続的に行なうことが可能であり、生産工
程上の顕著な効果である。もちろん、夫々バッチ的に行
っても良い。
The present invention enables the coating formation of an easily graphitizable layer and the graphite treatment by the CVD method, which is a remarkable effect on the production process.Of course, each can also be performed in batches. good.

また、このようにして得られた高黒鉛化長繊維の電気伝
導度(以下、電導度と記す)は1.5X×104〜2.
1X104S/Cmと非常に高く、黒鉛単結晶の電導度
に近い。
Further, the electrical conductivity (hereinafter referred to as electrical conductivity) of the highly graphitized long fiber obtained in this way is 1.5×10 4 to 2.
The conductivity is extremely high at 1X104S/Cm, close to that of single crystal graphite.

次に、本発明を、炭素繊維基材上に連続的に加圧雰囲気
下で、被覆形成処理する好ましい一例を図面に基づいて
、以下詳細に説明する。
Next, a preferred example of the present invention in which a coating is continuously formed on a carbon fiber base material under a pressurized atmosphere will be described in detail with reference to the drawings.

図において、炭素繊維Aは、パッケージ7から繰り出さ
れ、CVDを行うための赤外線加熱手段2を経て、被覆
層形成繊維Bと成し、次いでこれを別の加熱手段3へ通
して黒鉛化処理し、黒鉛被覆繊維Cを得て、モータ13
によって駆動されるボビン11に巻き取り、パッケージ
18を形成するようにした。本例において、反応管1,
1゜炭素繊維供給手段8を収納するチャンバー21、黒
鉛被覆繊維巻取手段9を速度コントローラ14を除いて
収納するチャンバー22および中間チャンバー34が耐
圧性を有する加圧雰囲気系を構成する。反応管1.1゛
は耐熱性がある材料から成り、全体として円筒形状を呈
している。
In the figure, carbon fibers A are unwound from a package 7, passed through infrared heating means 2 for CVD, formed into coating layer forming fibers B, and then passed through another heating means 3 for graphitization treatment. , graphite-coated fiber C is obtained, and the motor 13 is
The package 18 is formed by winding the package 18 onto a bobbin 11 driven by a bobbin 11 . In this example, reaction tube 1,
A chamber 21 housing the 1° carbon fiber supply means 8, a chamber 22 housing the graphite-coated fiber winding means 9 except for the speed controller 14, and an intermediate chamber 34 constitute a pressurized atmosphere system having pressure resistance. The reaction tube 1.1' is made of a heat-resistant material and has a cylindrical shape as a whole.

加熱手段3が、誘導加熱であれば、反応管1や1°は非
金属体、光エネルギーであれば透光性を有する物質が好
ましく、石英ガラスやセラミック等が良い。
If the heating means 3 is induction heating, the reaction tube 1 or 1° is preferably a nonmetallic material, and if it is a light energy, it is preferably a translucent material, such as quartz glass or ceramic.

雰囲気ガスは弁31を経て、導入孔4から供給され、導
出孔5から弁32を介して排気されて、全体としてガス
が黒鉛化域からCVD域の方向へ流れるように構成した
Atmospheric gas was supplied from the introduction hole 4 through the valve 31 and exhausted from the outlet hole 5 through the valve 32, so that the gas as a whole flowed from the graphitization region to the CVD region.

原料ガスは、中間チャンバー34に設けられた原料ガス
導入孔30から弁33を介して単独に、あるいはキャリ
ヤガスAr、)le、N2等とともに供給する。
The source gas is supplied from a source gas introduction hole 30 provided in the intermediate chamber 34 via a valve 33 either alone or together with a carrier gas Ar, )le, N2, or the like.

[実施例] 実施例1 炭素繊維として、米国ユニオンカーバイド社′製ピッチ
系炭素繊維“Thornel ” P 75 (モノフ
ィラメント、直径10μm)を用い、加熱手段2として
ハロゲンランプを用いた光エネルギー集光加熱を、加熱
手段3としてキセノンアークランプを用いた光エネルギ
ー集光加熱によって、それぞれの温度が1300℃、3
500℃となるように設定した状態で、弁31を介して
雰囲気ガス導入孔4からArを900 ”/分の流量で
、弁33を介して原料ガス導入孔30から原料ガスとし
てベンゼンをガス換算で560/分の流量で供給し、雰
囲気ガス導出孔5から弁32を調整して排気し、処理雰
囲気圧力を5に0/cJ−Gに調節しながら被覆黒鉛長
繊維の製造を試みた。
[Example] Example 1 Pitch-based carbon fiber “Thornel” P 75 (monofilament, diameter 10 μm) manufactured by Union Carbide Company, USA was used as the carbon fiber, and light energy condensing heating was performed using a halogen lamp as the heating means 2. , by concentrating optical energy using a xenon arc lamp as the heating means 3, the respective temperatures were raised to 1300°C and 3.
With the temperature set to 500°C, Ar is supplied from the atmospheric gas introduction hole 4 through the valve 31 at a flow rate of 900''/min, and benzene is converted into gas as a raw material gas from the raw material gas introduction hole 30 through the valve 33. Attempts were made to manufacture coated graphite long fibers by supplying at a flow rate of 560/min and exhausting the atmosphere through the atmospheric gas outlet hole 5 by adjusting the valve 32, and adjusting the processing atmosphere pressure to 5.0/cJ-G.

かくして得られた被覆黒鉛長繊維は長さ5mで直径85
μmであり、全く繊維の切断がなく連続的に黒鉛長繊維
を製造することができた。また、この被覆黒鉛長繊維を
理学電気製RU200.X線発生装置マイクロデフラク
トメータMDG2193Dを用いたX線回折によって0
02面の面間隔を求めてみた。結果を第1表に示す。黒
鉛単結晶の002面の面間隔が3.354人であるから
、これに非常に近く、高黒鉛化性の炭素が生成している
ことが判る。また、得られた繊維の電導度を四端子法、
室温で測定したところ、1.7×1043/cmと高く
、黒鉛単結晶の電導度に近い。
The coated graphite long fiber thus obtained has a length of 5 m and a diameter of 85 mm.
μm, and it was possible to continuously produce graphite long fibers without cutting the fibers at all. In addition, this coated graphite long fiber was used as RU200 manufactured by Rigaku Denki Co., Ltd. 0 by X-ray diffraction using an X-ray generator micro-defractometer MDG2193D.
I tried to find the spacing between planes 02 and 02. The results are shown in Table 1. Since the interplanar spacing of the 002 plane of graphite single crystal is 3.354, it is very close to this, and it can be seen that highly graphitizable carbon is produced. In addition, the electrical conductivity of the obtained fibers was measured using the four-terminal method.
When measured at room temperature, the conductivity was as high as 1.7×1043/cm, which is close to that of single crystal graphite.

実施例2 実施例1の処理雰囲気圧力を5に(II/cJ−Gから
3にO/cnf−Gに代え、他は実施例1と全く同じ方
法で、被覆黒鉛長繊維の製造を試みた。処理雰囲気圧力
3にg/d−Gにおいても、繊維の切断がなく、実施例
1とほぼ同様な黒鉛長IIi維が得られた。
Example 2 The production of coated graphite long fibers was attempted in the same manner as in Example 1 except that the treatment atmosphere pressure in Example 1 was changed to 5 (II/cJ-G to 3 and O/cnf-G). Even when the treatment atmosphere pressure was 3 and g/d-G, there was no fiber breakage, and long graphite IIi fibers almost the same as those of Example 1 were obtained.

X線回折による002面の面間隔及び電導度も合せて第
1表に示す。
Table 1 also shows the spacing and conductivity of the 002 plane as determined by X-ray diffraction.

比較例1.比較例2 比較のために実施例1の処理雰囲気圧力を常圧(比較例
1)及び1にa/cJ−G(比較例2)に代え、他は実
施例1と全く同様にして処理を試みた。
Comparative example 1. Comparative Example 2 For comparison, the processing atmosphere pressure in Example 1 was changed to normal pressure (Comparative Example 1) and 1 to a/cJ-G (Comparative Example 2), and the other treatment was carried out in the same manner as in Example 1. I tried.

結果を第1表に示す。処理雰囲気圧力が常圧及び1にG
/ cJ −Gでは繊維の糸切れが起り長繊維が得られ
なかった。
The results are shown in Table 1. Processing atmosphere pressure is normal pressure and 1G
/cJ-G, fiber breakage occurred and long fibers could not be obtained.

第1表 実施例3 実施例1のCVD原料ガスをベンゼンからシアノアセチ
レンに代え、他は実施例1と全く同じ方法にて処理を試
みた。結果を第2表に示す。原料をシアノアセチレンに
代えた場合でも、糸切れがなく長さ5m、直径100μ
mの被覆黒鉛長繊維を連続的に製造することができる。
Table 1 Example 3 A treatment was attempted in exactly the same manner as in Example 1 except that the CVD raw material gas in Example 1 was changed from benzene to cyanoacetylene. The results are shown in Table 2. Even when the raw material is replaced with cyanoacetylene, the thread does not break and has a length of 5m and a diameter of 100μ.
m coated graphite long fibers can be produced continuously.

X線回折による002面の面間隔もグラフフィトの理論
値に近く、高黒鉛性炭素が生成していることが判る。
The interplanar spacing of the 002 plane determined by X-ray diffraction is also close to the theoretical value of graphite, indicating that highly graphitic carbon is produced.

実施例4 実施例3の処理雰囲気圧力を5 Ko/−・Gから3K
g10#・Gに代え、他は実施例3と全く同じ方法で処
理を試みた。002面の面間隔及び電導度の結果も合せ
て第2表に示す。
Example 4 The processing atmosphere pressure in Example 3 was changed from 5 Ko/-・G to 3K.
A treatment was attempted in exactly the same manner as in Example 3, except that g10#.G was used. Table 2 also shows the results of the spacing and conductivity of the 002 plane.

比較例3.比較例4 比較のために実施例3の処理雰囲気圧力を常圧(比較例
3)及びIKgloIf−G(比較例4)に代え、他は
実施例3と全く同様にして処理を試みた。
Comparative example 3. Comparative Example 4 For comparison, a treatment was attempted in the same manner as in Example 3 except that the treatment atmosphere pressure in Example 3 was changed to normal pressure (Comparative Example 3) and IKgloIf-G (Comparative Example 4).

結果を第2表に示す。処理圧力が常圧及び1にg/ml
・Gでは繊維の糸切れが起り長繊維が得られなかった。
The results are shown in Table 2. Processing pressure is normal pressure and 1 g/ml
- In G, fiber breakage occurred and long fibers could not be obtained.

第 表 [発明の効果] 本発明は、加圧雰囲気下において、赤外線加熱によるC
VD法で易黒鉛化層の被覆形成を行ない、さらに280
0’C以上で加熱し、黒鉛化処理を行うことにより、ピ
ンホールのない高密度の易黒鉛化層の被覆形成が行える
とともに、高温における黒鉛化時の被覆層の昇華(蒸発
)に起因する繊維の切断や表面欠陥のない基材の被覆形
成処理が可能となった。
Table 1 [Effects of the Invention] The present invention provides C
A graphitizable layer was formed using the VD method, and further 280
By heating at 0'C or more and performing graphitization treatment, it is possible to form a coating with a high-density easily graphitized layer without pinholes, and it is possible to form a coating with a high-density easily graphitized layer, which is caused by sublimation (evaporation) of the coating layer during graphitization at high temperatures. It is now possible to form coatings on substrates without fiber cutting or surface defects.

また、加熱手段として集光した光エネルギーを用いた場
合には、基材のみを選択的に加熱するため加熱炉の壁の
汚れを防止し、長期間、安定して炭化水素上ツマ−を熱
分解しつつ、基材炭素繊維に被覆及び黒鉛化できるとい
う効率性に優れた製造方法である。
In addition, when condensed light energy is used as a heating means, it selectively heats only the base material, which prevents the walls of the heating furnace from becoming dirty and allows stable heating of the hydrocarbon material over a long period of time. This is an highly efficient manufacturing method that allows the base carbon fiber to be coated and graphitized while being decomposed.

また、この発明の方法によれば、電導度が高く、しかも
軽量な高導電性繊維を得ることができる。
Further, according to the method of the present invention, it is possible to obtain highly conductive fibers that have high conductivity and are lightweight.

そのため、これを、例えば送電線として使用すれば、支
柱の荷重が軽減され、架設費が低減できる。
Therefore, if this is used, for example, as a power transmission line, the load on the support can be reduced and the construction cost can be reduced.

そればかりか、特に外皮層の電導度が高いことがら、表
皮効果が現われる交流用送電線として使用してもエネル
ギー損失が少ない。また、軽量であることは、重量軽減
効果の大きい航空機用電線としても好適である。
Moreover, since the outer skin layer has particularly high electrical conductivity, there is little energy loss even when used as an AC power transmission line where the skin effect appears. Moreover, the light weight makes it suitable for use as an aircraft electric wire, which has a large weight reduction effect.

さらに、この発明の方法によって得られる高導電性繊維
は、本質的に炭素からなるものであるから、高温に耐え
、しかも耐食性が高い。従って、例えば蓄電池や燃料電
池の極板材料としても適している。
Furthermore, since the highly conductive fiber obtained by the method of the present invention is essentially composed of carbon, it can withstand high temperatures and has high corrosion resistance. Therefore, it is suitable as an electrode plate material for storage batteries and fuel cells, for example.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明の処理方法を適用したー装置の概略断面
図である。 1.1° :反応管 2 : CVD用加熱手段 3:黒鉛化用加熱手段 4:雰囲気ガス導入孔 5:雰囲気ガス導出孔 6.10:回転ガイド 7:炭素繊維のパッケージ 8:炭素l!維供給手段 9:黒鉛被覆繊維巻取手段 11:巻取ボビン 12:減速機 13:モータ 14:速度コントローラ 18:黒鉛被覆繊維のパッケージ 21.22:チャンバー 30:原料ガス導入孔 31.32.33:弁 34:中間チャンバー
The drawing is a schematic cross-sectional view of an apparatus to which the processing method of the present invention is applied. 1.1°: Reaction tube 2: CVD heating means 3: Graphitization heating means 4: Atmospheric gas introduction hole 5: Atmospheric gas outlet hole 6.10: Rotating guide 7: Carbon fiber package 8: Carbon l! Fiber supply means 9: Graphite-coated fiber winding means 11: Winding bobbin 12: Reducer 13: Motor 14: Speed controller 18: Graphite-coated fiber package 21.22: Chamber 30: Raw material gas introduction hole 31.32.33 : Valve 34: Intermediate chamber

Claims (6)

【特許請求の範囲】[Claims] (1)炭素繊維基材上に、赤外線加熱による化学気相蒸
着法により易黒鉛化層を被覆形成した後、2800℃以
上の温度で加熱処理して高黒鉛化繊維を製造する方法で
あって、該易黒鉛化層の形成と加熱処理とを加圧雰囲気
下で行うことを特徴とする長繊維状高黒鉛化繊維の製造
方法。
(1) A method of producing a highly graphitizable fiber by coating a carbon fiber base material with an easily graphitizable layer by chemical vapor deposition using infrared heating, and then heat-treating the layer at a temperature of 2,800°C or higher. A method for producing a long-fiber highly graphitizable fiber, characterized in that the formation of the easily graphitizable layer and the heat treatment are performed in a pressurized atmosphere.
(2)易黒鉛化層の形成と加熱処理とが、連続して行わ
れることを特徴とする請求項(1)記載の高黒鉛化繊維
の製造方法。
(2) The method for producing a highly graphitizable fiber according to claim (1), wherein the formation of the easily graphitizable layer and the heat treatment are performed continuously.
(3)雰囲気の圧力が、3Kg/cm^2・G以上であ
ることを特徴とする請求項(1)記載の高黒鉛化繊維の
製造方法。
(3) The method for producing a highly graphitized fiber according to claim (1), wherein the pressure of the atmosphere is 3 kg/cm^2.G or more.
(4)易黒鉛化層の原料の濃度が、0.1〜5体積%で
あることを特徴とする請求項(1)記載の高黒鉛化繊維
の製造方法。
(4) The method for producing a highly graphitizable fiber according to claim (1), wherein the concentration of the raw material of the easily graphitizable layer is 0.1 to 5% by volume.
(5)易黒鉛化層の形成温度が、1100〜1500℃
であることを特徴とする請求項(1)記載の高黒鉛化繊
維の製造方法。
(5) Formation temperature of easily graphitizable layer is 1100 to 1500°C
The method for producing a highly graphitized fiber according to claim (1).
(6)易黒鉛化層の原料が、ベンゼンまたはシアノアセ
チレンであることを特徴とする請求項(1)記載の高黒
鉛化繊維の製造方法。
(6) The method for producing a highly graphitizable fiber according to claim (1), wherein the raw material for the easily graphitizable layer is benzene or cyanoacetylene.
JP7477488A 1988-03-30 1988-03-30 Production of highly graphitized yarn Granted JPH02210060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7477488A JPH02210060A (en) 1988-03-30 1988-03-30 Production of highly graphitized yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7477488A JPH02210060A (en) 1988-03-30 1988-03-30 Production of highly graphitized yarn

Publications (2)

Publication Number Publication Date
JPH02210060A true JPH02210060A (en) 1990-08-21
JPH0341592B2 JPH0341592B2 (en) 1991-06-24

Family

ID=13556971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7477488A Granted JPH02210060A (en) 1988-03-30 1988-03-30 Production of highly graphitized yarn

Country Status (1)

Country Link
JP (1) JPH02210060A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125660A (en) * 1991-10-29 1993-05-21 Shin Etsu Chem Co Ltd Thermally decomposed carbon composite material and heat insulating material for high-temperature furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS626973A (en) * 1985-06-27 1987-01-13 工業技術院長 Production of highly conductive fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59187622A (en) * 1983-04-05 1984-10-24 Agency Of Ind Science & Technol Graphite filament having high electrical conductivity and its preparation
JPS626973A (en) * 1985-06-27 1987-01-13 工業技術院長 Production of highly conductive fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125660A (en) * 1991-10-29 1993-05-21 Shin Etsu Chem Co Ltd Thermally decomposed carbon composite material and heat insulating material for high-temperature furnace

Also Published As

Publication number Publication date
JPH0341592B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
US6998176B2 (en) Fine carbon fiber, method for producing the same and electrically conducting material comprising the fine carbon fiber
JPS59187622A (en) Graphite filament having high electrical conductivity and its preparation
US4435375A (en) Method for producing a carbon filament and derivatives thereof
US3699210A (en) Method of graphitizing fibers
JP3841684B2 (en) Fine carbon fiber, method for producing the same, and conductive material containing the fine carbon fiber
US3449077A (en) Direct production of graphite fibers
JPH0536533B2 (en)
US3531249A (en) Pyrolytic graphite filaments
KR100793973B1 (en) Method for production of spiral-shaped carbon coated with nano-crystalline structred carbon layer and infrared emitter comprising spiral-shaped carbon
JPH02210060A (en) Production of highly graphitized yarn
CN1331743C (en) Process for preparing test tube brush type silicon carbide
WO2006009331A1 (en) Method for production of spiral-shaped carbon coated with nano-crystalline structured carbon layer and infrared emitter comprising spiral-shaped carbon
US3479205A (en) Process for producing boron filament
JP2005015339A (en) Fine carbon fiber, method of manufacturing the same and conductive material containing fine carbon fiber
JPH04280809A (en) Production of highly conductive hollow carbon
JP5085901B2 (en) Carbon nanotube production equipment
JP6667848B2 (en) Structure, CNT forest manufacturing method, and structure manufacturing method
JPH08151207A (en) Carbon tube and its production
US5560897A (en) Plasma-assisted conversion of solid hydrocarbon to diamond
WO2018031455A1 (en) Apparatus and method for production of graphene products
JPS63293164A (en) Manufacture of carbon material
JPS6257925A (en) Method and apparatus for producing carbonized fiber
JPS63293163A (en) Manufacture of carbon material
JPH07118092A (en) Method for synthesizing diamond in vapor phase and device therefor
JPH0235404A (en) Optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term