JPH0362791B2 - - Google Patents

Info

Publication number
JPH0362791B2
JPH0362791B2 JP60010763A JP1076385A JPH0362791B2 JP H0362791 B2 JPH0362791 B2 JP H0362791B2 JP 60010763 A JP60010763 A JP 60010763A JP 1076385 A JP1076385 A JP 1076385A JP H0362791 B2 JPH0362791 B2 JP H0362791B2
Authority
JP
Japan
Prior art keywords
graphite film
base material
film
carbon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60010763A
Other languages
Japanese (ja)
Other versions
JPS61170570A (en
Inventor
Jun Shiotani
Yoshinobu Ueha
Hironaga Matsubara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1076385A priority Critical patent/JPS61170570A/en
Priority to US06/822,244 priority patent/US4645713A/en
Publication of JPS61170570A publication Critical patent/JPS61170570A/en
Publication of JPH0362791B2 publication Critical patent/JPH0362791B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、優れた導電性を有する導電性グラ
フアイト膜の形成方法に関する。 〔従来の技術〕 従来、易黒鉛化性炭素を得る方法は、いわゆる
熱分解法が一般的である。この方法は、原料であ
る炭化水素の雰囲気中で、反応系を高温に加熱す
ることにより、単価水素を熱分解し、炭素質を生
成するものである(例えば、大谷ら“炭素化工学
の基礎”1980年、オーム社発行)(方法1)。これ
ら炭素質は、大きく三種類に分類され、第1表の
ように示される(長沖ら、「炭素材料入門」1979
年、炭素材料学会編)。これらの常温における電
導度は、2.5〜5×103S/cmである。
[Industrial Field of Application] The present invention relates to a method for forming a conductive graphite film having excellent conductivity. [Prior Art] Conventionally, a so-called pyrolysis method has been commonly used to obtain graphitizable carbon. This method heats the reaction system to a high temperature in an atmosphere of raw material hydrocarbons to thermally decompose unit hydrogen and generate carbonaceous material (for example, Otani et al. ”1980, published by Ohmsha) (Method 1). These carbon materials are broadly classified into three types, as shown in Table 1 (Nagaoki et al., "Introduction to Carbon Materials" 1979
(edited by the Carbon Materials Society). The electrical conductivity of these materials at room temperature is 2.5 to 5×10 3 S/cm.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし乍ら、上記方法1においては、易個鉛化
性炭素を得る1つの条件として1200℃以上の熱分
解温度が必要である。このような温度では基材の
種類も限定され、またエネルギーの損失も大き
い。従つてより低温での易黒鉛化性炭素合成法が
望まれる。 方法2では、電導度が103S/cm未満であり、ま
た、炭素質生長速度が0.052μm/minと、方法1
及び2の熱分解法における炭素質生長速度(1.7
〜17μm/min)に比較して、著しく低い。 〔問題点を解決するための手段〕 この発明は、上記従来技術の問題点に鑑み方法
1の様に、炭素膜を形成する基材の種類が余り制
限されずに、又方法2から得た炭素質よりも導電
性に優れたグラフアイト膜が形成される方法を提
供する。その要旨とするところは炭化水素ガスを
原料として、700℃以上に加熱された基材上に高
周波プラズマ放電により炭素膜を形成させた後、
2000℃以上の温度で熱処理を行なうことを特徴と
する導電性グラフアイト膜の形成方法にある。 この発明において、原料となる炭化水素とし
て、ガスとなり得る物質、例えば、メタン、エタ
ン、プロパン等の脂肪族化合物CnH2o+2、アルケ
ン、アルキン等の不飽和誘導体すなわち1つ以上
の二重結合あるいは三重結合を有するもの、ベン
ゼン、ナフタレン、アントラセン、ピレン等の芳
香族化合物が用いられ、特に1mmHg程度で容易
に蒸気を生ずる炭化水素が適している。 プラズマ放電により基板上に炭素膜を形成する
方法は、反応容器中を原料である炭化水素蒸気で
所定の圧力に充満させ、高周波電界を印加するこ
とによつて基材上に炭素膜を形成する。 この発明において、基材としては、鉄、コバル
ト、ニツケル等の金属、或はステンレス等の合金
からなる板、シート、フイルム、その他の成形品
を使用することができ、フアイバ状のもの及びそ
の織布も使用することができる。また、石英、ガ
ラス、シリコン、セラミツクからなる金属以外の
ものを用いても良い。更にカーボンフアイバ、カ
ーボンシート(例えば、カーボンフアイバ織布)、
グラフアイトフアイバ、グラフアイト板(例え
ば、HOPG)を用いることができる。上記基材
のうち特に遷移金属を含む特性が、グラフアイト
化反応の触媒物質として作用するので、好まし
い。 基材は、700℃以上の温度に加熱すると、特に、
炭素膜の形成に効果的である。 この発明においては、基材上に炭素膜を形成し
た後に、更に、2000℃以上の温度で熱処理が行な
われる。熱処理は、基材から剥離した炭素膜に対
して行なつてもよく、基材と共に行なつてもよ
い。基材が融点2000℃未満の物質からなる基材を
用いた場合、基材と共に熱処理を行なうと基材が
融解、揮散等によつて除去され、熱処理と同時に
グラフアイト膜のみを分離することができる。 以上の方法により、高導電性のグラフアイト膜
を形成することができるが、上記熱処理の後に、
得られたグラフアイト膜に適当なドーパントをド
ープすることによつて、更に導電性を増すことが
できる。 適当なドーパントとしては、電子受容性試薬の
例として、ハロゲン(例えば、Cl2、Br2、I2
ICI、I、ICI3IBr)、Lewis酸、プロトン酸(例
えば、PF5、AsF5、SbF5、AgClO4、AgBF4
BF3、BCl3B、Br3、FSO2OOSO2F、(NO2
(SbF6)、(NO)SbCl6、(NO2)(BF4)、SO3
TiF4、NbF5、TaF5、NbCl5、TaCl5、MnCl2
MoCl4、MoCl5、MoOCL4、NiCl2、ZnCL2
CrO2Cl2、FeCl3、CdCl2、AuCl3、CrCl3
AlCl3、AlBr3、GaBr3、PtCl4、SbCl5、UCl5
SOCl2、XeF6、H2SO4、HClO4、HNO3
FSO3H、CF3SO3H)及び電子供与性試薬Li、
Na、K、Rb、Cs等が使用される。 〔実施例〕 実施例 1 SUS304からなるシート状の基材(厚み0.2mm)、
を合成室内に静置して、基材を950℃に加熱した
後、ベンゼン蒸気を合成室内に導入し、圧力1.0
mmHgに保持した。然る後、高周波数電界
(13.56MHz出力4.0W)を印加し、プラズマ反応
を行ない。基材上に金属光沢を有する膜厚20−
22μmの炭素膜を形成せしめた。 然る後、基材の温度を室温まで下げて、炭素膜
を基材から剥離した。次いで、この炭素膜を3200
℃で熱処理し、グラフアイト膜を得た。 得られたグラフアイト膜について、電導度を測
定した結果、1.2×104S/cmの導電性を示し、熱
処理前の炭素膜の電導度2.2×103S/cmに比べ著
しく増加した。また、X線回折の結果から、シヨ
ープな(002)、(004)、(006)回折線が観測され、
グラフアイト化が進行したものであることが判つ
た。また、グラフアイト膜は、d=3.355Åの面
間隔を持ち、天然黒煙の面間隔2=3.354Åに極
めて近いものであつた。このことは、得られたグ
ラフアイト膜が結晶性の高いものであることを示
し、従つて電導度以外のデータでも、本方法の有
効性を示している。 実施例 2 実施例1において得られたグラフアイト膜に
AsF5のドープした。ドーピング条件は、室温、
7.98×104Paである。得られたグラフアイト膜の
電導度は1.1×105S/cmであつた。 実施例 3 実施例1より得られたグラフアイト膜を、発煙
硝酸上に21.5時間静置し、ドーピングを行なつ
た。ドーピング条件は、室温、1気圧である。得
られたグラフアイト膜の電導度は7.8×104S/cm
であつた。 実施例 4 実施例1により得られたグラフアイト膜を、発
煙硫酸上に5分間芻置し、ドープした。ドーピン
グ条件は、室温、1気圧である。得られたグラフ
アイト膜の電導度は2.1×104S/cmであつた。 実施例 5 実施例1と同様の条件で炭素膜を形成し、次い
で、温度2000℃で熱処理を行ないグラフアイト膜
を得た。得られたグラフアイト膜の電導度は5.0
×103S/cmであつた。 〔発明の効果〕 この発明は、上述の様になされる導電性グラフ
アイト膜の製造方法であるから、以下の効果を有
する。 () 従来の熱分解法を用いて得られたグラフア
イト膜に比較して、導電性に優れたものであ
り、更にドーパントをドープすることにより、
一層導電性を向上することができる。 () 炭素膜合成法がプラズマ重合法であるの
で、熱分解法に較べて、厚み、形状、サイズ等
に富むグラフアイト膜を得ることができる。 () 炭素膜を形成する温度は熱分解法と比較し
て低いので、その分、融点の低い材料を基材と
して用いることができる。従つて、用いられる
材料の選択範囲が広い。
However, in the above method 1, a thermal decomposition temperature of 1200° C. or higher is required as one condition for obtaining easily plugitizable carbon. At such temperatures, the types of base materials are limited and energy loss is also large. Therefore, a method for synthesizing easily graphitizable carbon at lower temperatures is desired. Method 2 has an electrical conductivity of less than 10 3 S/cm and a carbonaceous growth rate of 0.052 μm/min.
and the carbonaceous growth rate in the pyrolysis method of 2 (1.7
~17 μm/min). [Means for Solving the Problems] In view of the above-mentioned problems of the prior art, the present invention provides that, unlike Method 1, the type of base material on which a carbon film is formed is not so limited, and that Provided is a method for forming a graphite film that has better conductivity than carbonaceous materials. The gist of this is that a carbon film is formed using high-frequency plasma discharge on a substrate heated to over 700°C using hydrocarbon gas as a raw material.
The present invention provides a method for forming a conductive graphite film characterized by performing heat treatment at a temperature of 2000°C or higher. In this invention, the hydrocarbons used as raw materials include substances that can become gases, such as aliphatic compounds such as methane, ethane, and propane, CnH 2o+2 , unsaturated derivatives such as alkenes and alkynes, ie, one or more double bonds, Those having a triple bond, aromatic compounds such as benzene, naphthalene, anthracene, and pyrene are used, and hydrocarbons that easily generate steam at about 1 mmHg are particularly suitable. The method of forming a carbon film on a substrate by plasma discharge involves filling a reaction vessel with raw material hydrocarbon vapor to a predetermined pressure, and forming a carbon film on the substrate by applying a high-frequency electric field. . In this invention, plates, sheets, films, and other molded products made of metals such as iron, cobalt, and nickel, or alloys such as stainless steel can be used as the base material, and fiber-like materials and woven materials thereof can be used. Cloth can also be used. Moreover, materials other than metals such as quartz, glass, silicon, and ceramic may be used. Furthermore, carbon fiber, carbon sheet (e.g. carbon fiber woven fabric),
Graphite fibers and graphite plates (eg, HOPG) can be used. Among the above-mentioned base materials, those containing transition metals are particularly preferable because they act as catalysts for the graphitization reaction. In particular, when the substrate is heated to a temperature of 700°C or higher,
Effective in forming a carbon film. In this invention, after the carbon film is formed on the base material, heat treatment is further performed at a temperature of 2000°C or higher. The heat treatment may be performed on the carbon film peeled from the base material, or may be performed together with the base material. When a base material made of a substance with a melting point of less than 2000°C is used, if heat treatment is performed together with the base material, the base material will be removed by melting, volatilization, etc., and it may be difficult to separate only the graphite film at the same time as the heat treatment. can. A highly conductive graphite film can be formed by the above method, but after the above heat treatment,
The electrical conductivity can be further increased by doping the obtained graphite film with a suitable dopant. Suitable dopants include halogens (e.g. Cl 2 , Br 2 , I 2 ,
ICI, I, ICI 3 IBr), Lewis acids, protic acids (e.g. PF 5 , AsF 5 , SbF 5 , AgClO 4 , AgBF 4 ,
BF3 , BCl3B , Br3 , FSO2OOSO2F , ( NO2 )
(SbF 6 ), (NO)SbCl 6 , (NO 2 )(BF 4 ), SO 3 ,
TiF4 , NbF5 , TaF5 , NbCl5 , TaCl5 , MnCl2 ,
MoCl4 , MoCl5 , MoOCL4 , NiCl2 , ZnCL2 ,
CrO2Cl2 , FeCl3 , CdCl2 , AuCl3 , CrCl3 ,
AlCl3 , AlBr3 , GaBr3 , PtCl4 , SbCl5 , UCl5 ,
SOCl 2 , XeF 6 , H 2 SO 4 , HClO 4 , HNO 3 ,
FSO 3 H, CF 3 SO 3 H) and electron donating reagent Li,
Na, K, Rb, Cs, etc. are used. [Example] Example 1 Sheet-like base material made of SUS304 (thickness 0.2 mm),
was placed in the synthesis chamber and the base material was heated to 950℃, then benzene vapor was introduced into the synthesis chamber and the pressure was increased to 1.0.
Maintained at mmHg. After that, a high frequency electric field (13.56MHz output 4.0W) was applied to perform a plasma reaction. Film thickness 20− with metallic luster on the base material
A 22 μm carbon film was formed. Thereafter, the temperature of the substrate was lowered to room temperature, and the carbon film was peeled off from the substrate. Next, this carbon film was heated to 3200
A graphite film was obtained by heat treatment at ℃. As a result of measuring the electrical conductivity of the obtained graphite film, it was found that the electrical conductivity was 1.2×10 4 S/cm, which was significantly increased compared to the 2.2×10 3 S/cm of the carbon film before heat treatment. In addition, from the results of X-ray diffraction, short (002), (004), and (006) diffraction lines were observed.
It was found that graphite formation had progressed. Furthermore, the graphite film had a lattice spacing of d = 3.355 Å, which was extremely close to the lattice spacing of natural black smoke, 2 = 3.354 Å. This shows that the obtained graphite film has high crystallinity, and data other than electrical conductivity also show the effectiveness of this method. Example 2 The graphite film obtained in Example 1
Doped with AsF5 . Doping conditions were room temperature,
It is 7.98×10 4 Pa. The electrical conductivity of the obtained graphite film was 1.1×10 5 S/cm. Example 3 The graphite film obtained in Example 1 was left standing on fuming nitric acid for 21.5 hours to perform doping. The doping conditions were room temperature and 1 atm. The electrical conductivity of the obtained graphite film is 7.8×10 4 S/cm
It was hot. Example 4 The graphite membrane obtained in Example 1 was doped by placing it on fuming sulfuric acid for 5 minutes. The doping conditions were room temperature and 1 atm. The electrical conductivity of the obtained graphite film was 2.1×10 4 S/cm. Example 5 A carbon film was formed under the same conditions as in Example 1, and then heat treated at a temperature of 2000°C to obtain a graphite film. The electrical conductivity of the obtained graphite film is 5.0
×10 3 S/cm. [Effects of the Invention] Since the present invention is a method for manufacturing a conductive graphite film as described above, it has the following effects. () It has superior conductivity compared to graphite films obtained using conventional pyrolysis methods, and by doping with a dopant,
Conductivity can be further improved. () Since the carbon film synthesis method is a plasma polymerization method, it is possible to obtain a graphite film with a richer thickness, shape, size, etc., compared to a thermal decomposition method. () Since the temperature at which the carbon film is formed is lower than that in the thermal decomposition method, a material with a lower melting point can be used as the base material. Therefore, there is a wide range of materials to choose from.

Claims (1)

【特許請求の範囲】 1 炭化水素ガスを原料として、700℃以上に加
熱された基材上に高周波プラズマ放電により炭素
膜を形成させた後、2000℃以上の温度で熱処理を
行うことを特徴とする導電性グラフアイト膜の形
成方法。 2 基材が、遷移金属を含むことを特徴とする特
許請求の範囲第1項記載の導電性グラフアイト膜
の形成方法。 3 炭化水素ガスを原料として、700℃以上に加
熱された基材上に高周波プラズマ放電により炭素
膜を形成させた後、2000℃以上の温度で熱処理を
行い、次いで、ドーパントをドープすることを特
徴とする導電性グラフアイト膜の形成方法。 4 基材が、遷移金属を含むことを特徴とする特
許請求の範囲第3項記載の導電性グラフアイト膜
の形成方法。
[Claims] 1. A carbon film is formed by high-frequency plasma discharge on a base material heated to 700°C or higher using hydrocarbon gas as a raw material, and then heat-treated at a temperature of 2000°C or higher. A method for forming a conductive graphite film. 2. The method for forming a conductive graphite film according to claim 1, wherein the base material contains a transition metal. 3 Using hydrocarbon gas as a raw material, a carbon film is formed by high-frequency plasma discharge on a substrate heated to 700°C or higher, then heat treated at a temperature of 2000°C or higher, and then doped with a dopant. A method for forming a conductive graphite film. 4. The method for forming a conductive graphite film according to claim 3, wherein the base material contains a transition metal.
JP1076385A 1985-01-25 1985-01-25 Formation of conductive graphite film Granted JPS61170570A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1076385A JPS61170570A (en) 1985-01-25 1985-01-25 Formation of conductive graphite film
US06/822,244 US4645713A (en) 1985-01-25 1986-01-27 Method for forming conductive graphite film and film formed thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1076385A JPS61170570A (en) 1985-01-25 1985-01-25 Formation of conductive graphite film

Publications (2)

Publication Number Publication Date
JPS61170570A JPS61170570A (en) 1986-08-01
JPH0362791B2 true JPH0362791B2 (en) 1991-09-27

Family

ID=11759369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1076385A Granted JPS61170570A (en) 1985-01-25 1985-01-25 Formation of conductive graphite film

Country Status (1)

Country Link
JP (1) JPS61170570A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62124273A (en) * 1985-11-22 1987-06-05 Agency Of Ind Science & Technol Formation of electrically conductive graphite film
US4795656A (en) * 1986-08-26 1989-01-03 Kozo Iizuka, Director-General, Agency Of Industrial Science And Technology Cluster ion plating method for producing electrically conductive carbon film
JPS63293163A (en) * 1987-05-27 1988-11-30 Agency Of Ind Science & Technol Manufacture of carbon material
JPS63293164A (en) * 1987-05-27 1988-11-30 Agency Of Ind Science & Technol Manufacture of carbon material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127893A (en) * 1973-04-12 1974-12-06

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49127893A (en) * 1973-04-12 1974-12-06

Also Published As

Publication number Publication date
JPS61170570A (en) 1986-08-01

Similar Documents

Publication Publication Date Title
EP0223047B1 (en) Graphite intercalation compound film and method of preparing the same
Endo et al. Structural improvement of carbon fibers prepared from benzene
JPH0157044B2 (en)
JPH049757B2 (en)
JPS6221867B2 (en)
JPH0149642B2 (en)
JPH0362791B2 (en)
JPS63256508A (en) Production of graphite film
JP2611250B2 (en) Vanadium fluoride-graphite intercalation compound
JP4238024B2 (en) Method for producing composite carbonaceous substrate
JPH0639683B2 (en) Method for forming conductive carbon film
JPH0445977B2 (en)
JPH0118002B2 (en)
Okuyama et al. Tungsten needles produced by decomposition of hexacarbonyltungsten
JPS62124273A (en) Formation of electrically conductive graphite film
Matsumura et al. Structure and electrical conductivity of graphite fibers prepared by pyrolysis of cyanoacetylene
JPS6248754B2 (en)
US4492652A (en) Reactions of aromatic compounds having two or more fused rings
JPS61275115A (en) Production of graphite
JPH04280809A (en) Production of highly conductive hollow carbon
JPH0147405B2 (en)
US3556834A (en) Low temperature method for producing amorphous boron-carbon deposits
Sano et al. The Electrical Conductivity of Graphite Filaments and Their Alkali-metal Intercalation Compounds
JPH0699144B2 (en) Agglomerate composed of boron, carbon and nitrogen and method for producing the same
EP0308907B1 (en) Transition-metal-carbon composites and methods for making

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term