JPS6257927A - Continuous production of carbon fiber with vapor-phase method - Google Patents

Continuous production of carbon fiber with vapor-phase method

Info

Publication number
JPS6257927A
JPS6257927A JP19729685A JP19729685A JPS6257927A JP S6257927 A JPS6257927 A JP S6257927A JP 19729685 A JP19729685 A JP 19729685A JP 19729685 A JP19729685 A JP 19729685A JP S6257927 A JPS6257927 A JP S6257927A
Authority
JP
Japan
Prior art keywords
reactor
carrier gas
carbon fiber
gas
heating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19729685A
Other languages
Japanese (ja)
Inventor
Katsuyuki Nakamura
克之 中村
Masayuki Nakatani
雅行 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP19729685A priority Critical patent/JPS6257927A/en
Publication of JPS6257927A publication Critical patent/JPS6257927A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To take off a carbon fiber continuously from a reactor without causing the clogging of the reactor with the produced carbon fiber, by introducing carrier gas into the reactor in a manner to cover the heating surface of the inner wall of the reactor with the gas. CONSTITUTION:A carrier gas is introduced into the casing 6 through the gas inlet 7 and the pressure of the atmosphere 3 outside of the reactor (the space in the electrical furnace) is made higher than the pressure in the reactor. The carrier gas is introduced into the reactor through the porous heating surface 2 of the reactor. Since the heating surface 2 is protected with the carrier gas, the carbon fiber produced in the heating zone of the reactor 1 is transferred downstream without depositing to the reactor wall and collected in the hopper 13.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気相法炭素繊維の連続製造法に関し、さらに
詳しくは遷移金属化合物等を触媒または触媒源として炭
化水素類を反応させ、空間内で繊維を生成させる気相法
炭素繊維の連続製造法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for continuously producing vapor-grown carbon fiber, and more specifically, the present invention relates to a method for continuously producing vapor-grown carbon fiber, and more specifically, it involves reacting hydrocarbons using a transition metal compound or the like as a catalyst or a catalyst source, and This invention relates to a continuous production method for vapor-grown carbon fiber in which fibers are produced within a process.

(従来の技術) 気相法による炭素繊維の一般的製造法は、例えば「工業
材料、昭和57年7月号、109頁(遠藤、小山)」に
示されているように、遷移全屈からなる微粒子を散布し
た繊維生成用基材を電気炉の反応管内に設置し、炉温を
所定温度にした後、反応管内に炭化水素と水素の混合ガ
スを通して炭化させ、基材上に炭素繊維を生成せしめる
ものである。
(Prior art) The general method for producing carbon fiber by the vapor phase method is, for example, as shown in "Industrial Materials, July 1980 Issue, p. 109 (Endo, Koyama)", from transitional full flexure to A base material for fiber production that has been sprinkled with fine particles is placed in a reaction tube of an electric furnace, and after the furnace temperature is brought to a predetermined temperature, a mixed gas of hydrocarbon and hydrogen is passed through the reaction tube to carbonize it, and carbon fibers are deposited on the base material. It is what causes it to be generated.

しかしながら、このような基材を用いる方法では、反応
域が二次元であることや、プロセスが複雑であることな
どから生産性が低いものであった。
However, the method using such a base material has low productivity because the reaction zone is two-dimensional and the process is complicated.

これに対して特開昭58−180615号公報、特開昭
60−54998号公報、特開昭60−54999号公
報には、基材を用いずに空間内で炭素繊維を発生させる
方法が開示されている。これらの方法は反応域が三次元
であるため、生産性および収率に優れているが、本発明
者らの検討によれば、反応時間とともに反応器に炭素繊
維が詰まり、連続生産できないという問題を生じた。す
なわち、反応器内には一般にキャリヤガス(H’ 2、
N 2 、A r等)と炭化水素等の他に、炭化水素の
分解物や炭素繊維等が存在し、加熱下で炭化反応が進行
しているが、加熱方法としては外部加熱方式を用いてい
るため、反応は反応器内壁付近がより活発であり、内壁
に熱分解炭素が付着しゃすく、そしてこの内壁への熱分
解炭素の付着に起因して炭素繊維が反応器内に詰まり、
連続生産が困難になっていた。
On the other hand, JP-A-58-180615, JP-A-60-54998, and JP-A-60-54999 disclose methods for generating carbon fibers in space without using a base material. has been done. These methods have excellent productivity and yield because the reaction zone is three-dimensional, but according to studies by the present inventors, there is a problem that the reactor becomes clogged with carbon fibers as the reaction time increases, making continuous production impossible. occurred. That is, there is generally a carrier gas (H'2,
In addition to hydrocarbons (N2, Ar, etc.) and hydrocarbons, there are decomposed products of hydrocarbons, carbon fibers, etc., and carbonization reactions proceed under heating. Therefore, the reaction is more active near the inner wall of the reactor, and pyrolytic carbon adheres to the inner wall, and due to the adhesion of pyrolytic carbon to the inner wall, carbon fibers clog the reactor.
Continuous production was becoming difficult.

(発明が解決しようとする問題点) 本発明の目的は、上述の問題点を解決し、反応器内に生
成した炭素繊維が詰まることなく、反応器から連続して
炭素繊維を取り出すことができる気相法炭素繊維の連続
製造法を提供することにある。
(Problems to be Solved by the Invention) An object of the present invention is to solve the above-mentioned problems, and to make it possible to continuously take out carbon fibers from the reactor without clogging the reactor with carbon fibers produced in the reactor. An object of the present invention is to provide a continuous manufacturing method for vapor-grown carbon fiber.

(問題点を解決するための手段) すなわち本発明は、反応器内の加熱帯域に炭素源と触媒
または触媒源を供給し、空間内で繊維を発生させる気相
法炭素繊維の製造方法において、反応器内壁の加熱面を
覆うようにキャリヤガスを導入することを特徴とする気
相法炭素繊維の連続製造法である。
(Means for Solving the Problems) That is, the present invention provides a method for producing vapor-grown carbon fiber in which a carbon source and a catalyst or a catalyst source are supplied to a heating zone in a reactor to generate fibers within the space. This is a continuous production method of vapor-grown carbon fiber characterized by introducing a carrier gas so as to cover the heated surface of the inner wall of the reactor.

本発明において、空間内で繊維を発生させる気相法炭素
繊維の製造方法とは、繊維生成用基材を用いずに、空間
中で繊維を発生、成長させる方法である。ここで空間と
は800〜1800 ”Cに加熱された空間であり、該
空間中に炭化水素等の炭素源と触媒または触媒a<遷移
金属化合物等)を存在させることにより、繊維を発生さ
せるものである。これらの方法は、例えば特開昭58−
180615号、特開60−54998号、特開60−
54999号、特訓59−83495号、特例59−2
31967号、特訓60−58819号等に記載された
方法を含む。
In the present invention, the method for producing vapor-grown carbon fiber in which fibers are generated in space is a method in which fibers are generated and grown in space without using a base material for fiber production. Here, the space is a space heated to 800 to 1800"C, and fibers are generated by having a carbon source such as a hydrocarbon and a catalyst or a catalyst (a<transition metal compound, etc.) in the space. These methods are described, for example, in JP-A-58-
No. 180615, JP 60-54998, JP 60-
No. 54999, special training No. 59-83495, special provision 59-2
31967, special training No. 60-58819, etc.

本発明においては、炭素源、触媒または触媒源の種類は
特に限定されない。加熱方法については、電気炉加熱、
プラズマ加熱、レーザー加熱、燃焼熱利用、反応熱利用
等いずれを用いてもよいが、電気炉加熱が便利である。
In the present invention, the type of carbon source, catalyst, or catalyst source is not particularly limited. Regarding heating methods, electric furnace heating,
Any method such as plasma heating, laser heating, combustion heat utilization, reaction heat utilization, etc. may be used, but electric furnace heating is convenient.

本発明において、キャリヤガスとしては、800〜18
00℃で該ガスの熱分解によって固体物質を生成しない
ガスであればよく、一般的には水素ガス、窒素ガス、ア
ルゴンガス等が用いられる。
In the present invention, the carrier gas is 800 to 18
Any gas may be used as long as it does not generate a solid substance by thermal decomposition of the gas at 00°C, and hydrogen gas, nitrogen gas, argon gas, etc. are generally used.

反応器内の加熱面に導入するキャリヤガスの量は、反応
器加熱面の内壁面積に対して0.1 m ll−16/
cnl−分が好ましく、特に1ml〜100me 、/
 cut・分が好ましい。導入量が少なすぎると炭素繊
維が反応器内壁に付着し、導入量が多すぎると得られる
炭素繊維の収率が低下する。
The amount of carrier gas introduced into the heating surface in the reactor is 0.1 ml ll-16/with respect to the inner wall area of the heating surface in the reactor.
cnl-min is preferred, especially 1 ml to 100 me,/
cut・min is preferable. If the amount introduced is too small, the carbon fibers will adhere to the inner wall of the reactor, and if the amount introduced is too large, the yield of carbon fibers obtained will decrease.

本発明においては、上記キャリヤガスを反応器内の加熱
面、すなわち生成した炭素繊維が付着し易い壁面を覆う
ように導入するが、導入方法としては、例えば加熱面を
多孔面とし、咳多孔面を通してキャリヤガスを導入する
方法、加熱面に沿ってキャリヤガスを導入する方法が挙
げられる。反応器の加熱面を多孔面とし、これよりガス
を導入する場合は、該多孔面の孔径は20Å以上、5m
l以下が好ましく、0.2μ以上、100μ以下がより
好ましい。見掛気孔率は0.01%以上、90%以下が
好ましく、特に0.1%以上、50%以下が好ましい。
In the present invention, the carrier gas is introduced so as to cover the heating surface in the reactor, that is, the wall surface to which generated carbon fibers tend to adhere. Examples include a method in which the carrier gas is introduced through the heating surface, and a method in which the carrier gas is introduced along the heating surface. If the heating surface of the reactor is a porous surface and gas is introduced from this, the pore diameter of the porous surface should be 20 Å or more and 5 m.
It is preferably 1 or less, more preferably 0.2μ or more and 100μ or less. The apparent porosity is preferably 0.01% or more and 90% or less, particularly preferably 0.1% or more and 50% or less.

以下、図面により本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to the drawings.

第1図は、本発明を実施するだめの装置の一例を示した
ものである。この装置は、炭素原料およびキャリヤガス
を導入するためのパイプ10および11が挿入された反
応管1と、該反応管の後部に設けられたホッパー、13
と、該反応管1内に加熱帯域を形成するために設けられ
た電気炉12とから主として構成される。該反応管1の
加熱帯域を形成する加熱面内壁2は多孔質セラミックか
らなり、その外周にはガス導入ロアを有するケーシング
6と、該ケーシング内に設けられた保温壁5と、加熱面
内壁2の外側に空間3を隔てて列設されたヒーター4と
が設けられている。なお、ホッパー13には排ガス出口
14が設けられている。
FIG. 1 shows an example of an apparatus for carrying out the present invention. This device includes a reaction tube 1 into which pipes 10 and 11 are inserted for introducing a carbon raw material and a carrier gas, and a hopper 13 provided at the rear of the reaction tube.
and an electric furnace 12 provided to form a heating zone within the reaction tube 1. The heating surface inner wall 2 forming the heating zone of the reaction tube 1 is made of porous ceramic, and the outer periphery thereof includes a casing 6 having a gas introduction lower, a heat retaining wall 5 provided in the casing, and the heating surface inner wall 2. Heaters 4 arranged in a row with a space 3 in between are provided on the outside of the heater. Note that the hopper 13 is provided with an exhaust gas outlet 14.

上記ヒーター4としては、使用温度でキャリヤガスによ
り腐食されない材質、例えば水素ガスの場合、モリブデ
ン、タングステン等が用いられる。
The heater 4 is made of a material that is not corroded by the carrier gas at the operating temperature, such as molybdenum, tungsten, etc. in the case of hydrogen gas.

上記構成の装置において、ガス導入ロアからケーシング
6内にキャリヤガスを導入し、反応器の外部(電気炉内
空間)3が反応器内よりも高圧になるようにしてキャリ
ヤガスを反応器の多孔質加熱面2を通して内部に導入す
る。このようにして反応器1内と反応器外部空間3をキ
ャリヤガスで置換した後、電気炉12を昇温して反応器
1内を所定の温度に設定する。その後、ガス導入ロアか
らキャリヤガスを導入して反応管外部空間(電気炉内空
間)3を加圧する。反応管内へのキャリヤガスの導入量
はセラミックチューブ2の孔径、気孔率および加圧する
圧力によって調整する。反応器の加熱面2からキャリヤ
ガスを一定量導入しながら、パイプ10および11から
炭化水素、触媒およびキャリヤガスを導入する。反応器
1内の加熱帯で生成した炭素繊維は、加熱面2がキャリ
ヤガスによって保護されているので、反応器壁に付着す
ることなく、後部に流動してホッパー13内に捕集され
る。このようにして炭素繊維の反応器壁への付着、詰ま
り等を防止し、連続的な製造が可能になる。
In the apparatus configured as described above, a carrier gas is introduced into the casing 6 from the gas introduction lower, and the pressure outside the reactor (the space inside the electric furnace) 3 is higher than that inside the reactor. The material is introduced into the interior through the heating surface 2. After replacing the inside of the reactor 1 and the space 3 outside the reactor with the carrier gas in this way, the temperature of the electric furnace 12 is raised to set the inside of the reactor 1 to a predetermined temperature. Thereafter, a carrier gas is introduced from the gas introduction lower to pressurize the reaction tube external space (electric furnace internal space) 3. The amount of carrier gas introduced into the reaction tube is adjusted by the pore diameter and porosity of the ceramic tube 2 and the pressure to be applied. Hydrocarbons, catalyst and carrier gas are introduced through pipes 10 and 11 while a constant amount of carrier gas is introduced through the heated surface 2 of the reactor. Since the heating surface 2 is protected by the carrier gas, the carbon fibers produced in the heating zone in the reactor 1 flow to the rear and are collected in the hopper 13 without adhering to the reactor wall. In this way, adhesion of carbon fibers to the walls of the reactor, clogging, etc. are prevented, and continuous production becomes possible.

上記実施例において、キャリヤガスは反応器1の多孔質
加熱面から導入する例を示したが、加熱面以外に炭素繊
維が付着し易い反応器側壁にも同様に側面からキャリヤ
ガスを導入してもよい。その場合のキャリヤガスは、該
キャリヤガスが反応系内に導入される場合は反応系に用
いるキャリヤガスに限定されるが、反応器の加熱帯域に
導入されない場合は、キャリヤガスの種類は特に限定さ
れず、例えば空気を用いてもよい。
In the above example, the carrier gas was introduced from the porous heating surface of the reactor 1, but the carrier gas could also be introduced from the side of the reactor side wall, where carbon fibers tend to adhere, in addition to the heating surface. Good too. In that case, the carrier gas is limited to the carrier gas used in the reaction system if it is introduced into the reaction system, but if it is not introduced into the heating zone of the reactor, the type of carrier gas is particularly limited. For example, air may be used.

また上記実施例においては、加熱面を多孔質セラミック
で構成し、これを通してキャリヤガスを導入するように
したが、反応器壁を多孔質とせずにキャリヤガスをパイ
プ等の手段により反応器内壁に沿って流しても同様な効
果が得られる。
Furthermore, in the above embodiment, the heating surface was made of porous ceramic, through which the carrier gas was introduced. A similar effect can be obtained by flowing along the same direction.

(実施例) 実施例1 内径60mm、長さ180cmの多孔質アルミナチュー
ブ(孔径60μ、見掛気孔率22%)をタングステンヒ
ーターを内蔵する電気炉に挿入し、第1図のようにステ
ンレスケーシング6でカバーし、キャリヤガスが外にも
れないようにした。また電気炉の外に出ているアルミナ
チューブの側面はステンレス管で覆うことによりアルミ
ナチューブ内のガスが漏れないようにし、ステンレスケ
ーシング6と接続した。アルミナチューブの1端には導
入パイプ10.11を第1図のように設置した。
(Example) Example 1 A porous alumina tube (pore diameter 60μ, apparent porosity 22%) with an inner diameter of 60 mm and a length of 180 cm was inserted into an electric furnace containing a tungsten heater, and a stainless steel casing 6 was inserted as shown in Figure 1. to prevent the carrier gas from leaking outside. Further, the side surface of the alumina tube protruding outside the electric furnace was covered with a stainless steel tube to prevent gas from leaking inside the alumina tube, and was connected to the stainless steel casing 6. An introduction pipe 10.11 was installed at one end of the alumina tube as shown in FIG.

また他の1端には繊維を貯蔵するためのホッパー13を
取付けた。
A hopper 13 for storing fibers was attached to the other end.

アルミナチューブ内および電気炉内を水素ガスで置換し
た後、アルミナチューブ内を1200℃に加熱した。ガ
ス導入ロアから水素ガスを入れ、反応管の加熱面2から
反応管内に3000m11分導入した。次にフェロセン
1重量%のベンゼン溶液をガス発生器で1.5g/分ガ
ス化し、水素ガス1500mff/分と共に導入パイプ
10から反応器内に1時間供給したところ、0.1〜0
.2μの炭素繊維がホッパー13内に34g得られた。
After replacing the inside of the alumina tube and the electric furnace with hydrogen gas, the inside of the alumina tube was heated to 1200°C. Hydrogen gas was introduced from the gas introduction lower and introduced into the reaction tube from the heating surface 2 of the reaction tube for 3000 m11 minutes. Next, a benzene solution containing 1% by weight of ferrocene was gasified at 1.5 g/min using a gas generator, and was fed into the reactor from the introduction pipe 10 for 1 hour together with hydrogen gas at 1500 mff/min.
.. 34g of 2μ carbon fibers were obtained in the hopper 13.

この時の反応管の800℃以上の温度帯域の長さは40
crnであり、反応管内には炭素繊維は付着していなか
った。
At this time, the length of the temperature range of 800°C or higher in the reaction tube is 40°C.
crn, and no carbon fibers were attached inside the reaction tube.

比較例1 内径60龍、長さ180cmの緻密質のアルミナチュー
ブを電気炉内に設置し、導入パイプ11から水素ガスを
3000m17分で導入した以外は実施例1と同様に行
なった。その結果、ホッパー13に0.1〜0.3μの
炭素繊維5gが捕集されたが、反応器内の加熱帯に0.
1〜1.4μの炭素繊維、炭素質のフィルムおよび煤が
32g詰まっていた。
Comparative Example 1 A dense alumina tube with an inner diameter of 60 mm and a length of 180 cm was placed in an electric furnace, and the same procedure as in Example 1 was conducted except that hydrogen gas was introduced from the introduction pipe 11 for 3000 m and 17 minutes. As a result, 5 g of carbon fibers with a diameter of 0.1 to 0.3 μm were collected in the hopper 13, but 0.1 g of carbon fibers with a diameter of 0.1 to 0.3 μm were collected in the heating zone inside the reactor.
It was packed with 32g of 1-1.4μ carbon fibers, carbonaceous film and soot.

実施例2 反応管の加熱面から反応管内に6000m11分で水素
ガスを導入した以外は実施例1と同様に行なった。その
結果、ホッパーに0.1〜0.15μの炭素繊維が30
g得られ、反応器内には炭素繊維は付着していなかった
Example 2 The same procedure as in Example 1 was carried out except that hydrogen gas was introduced from the heating surface of the reaction tube into the reaction tube for 6000 ml and 11 minutes. As a result, 30 carbon fibers of 0.1 to 0.15μ were placed in the hopper.
g was obtained, and no carbon fibers were adhered inside the reactor.

実施例3 反応管の加熱面から反応管内に20(1/分で水素ガス
を導入した以外は実施例1と詞様に行なった。その結果
、ホッパーに0.1μの炭素繊維が11g得られ、反応
器内には炭素繊維は付着していなかった。
Example 3 The same procedure as in Example 1 was carried out except that hydrogen gas was introduced into the reaction tube from the heating surface of the reaction tube at a rate of 20 (1/min). As a result, 11 g of 0.1μ carbon fiber was obtained in the hopper. , no carbon fibers were found inside the reactor.

(発明の効果) 本発明によれば、反応器内壁(加熱面)をキャリヤガス
により覆い、炭素繊維の付着を防止するようにしたので
、炭素繊維を反応器内に詰まらせることなく、連続的に
製造することができ、従来に比べて生産性を大幅に向上
させることができる。
(Effects of the Invention) According to the present invention, the inner wall (heating surface) of the reactor is covered with carrier gas to prevent carbon fibers from adhering to the reactor. It can be manufactured in a number of ways, greatly improving productivity compared to conventional methods.

反応器内の汚れがほとんどないため、反応器ノ保守が容
易である。
Maintenance of the reactor is easy because there is almost no dirt inside the reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の炭素繊維の製造に用いる好ましい装
置の一例を示す説明図である。 1・・・反応器、2・・・反応器加熱面内壁(多孔質セ
ラミック壁)、3・・・電気炉内空間、4・・・ヒータ
ー、5・・・保温壁、6・・・ステンレスケーシング、
7・・・ガス導入口、10.11・・・導入パイプ、1
2・・・電気炉、13・・・ホッパー、14・・・排ガ
ス出口。
FIG. 1 is an explanatory diagram showing an example of a preferable apparatus used for producing carbon fibers of the present invention. 1... Reactor, 2... Reactor heating surface inner wall (porous ceramic wall), 3... Space inside electric furnace, 4... Heater, 5... Heat retention wall, 6... Stainless steel casing,
7...Gas inlet, 10.11...Introduction pipe, 1
2...Electric furnace, 13...Hopper, 14...Exhaust gas outlet.

Claims (1)

【特許請求の範囲】[Claims] (1)反応器の加熱帯域に炭素源と触媒または触媒源を
供給し、空間内で繊維を発生させる気相法炭素繊維の製
造方法において、反応器内壁の加熱面を覆うようにキャ
リヤガスを導入することを特徴とする気相法炭素繊維の
連続製造法。
(1) In a method for manufacturing vapor-grown carbon fiber in which a carbon source and a catalyst or a catalyst source are supplied to a heating zone of a reactor and fibers are generated within the space, a carrier gas is supplied so as to cover the heated surface of the inner wall of the reactor. A continuous manufacturing method for vapor-grown carbon fiber characterized by introducing.
JP19729685A 1985-09-06 1985-09-06 Continuous production of carbon fiber with vapor-phase method Pending JPS6257927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19729685A JPS6257927A (en) 1985-09-06 1985-09-06 Continuous production of carbon fiber with vapor-phase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19729685A JPS6257927A (en) 1985-09-06 1985-09-06 Continuous production of carbon fiber with vapor-phase method

Publications (1)

Publication Number Publication Date
JPS6257927A true JPS6257927A (en) 1987-03-13

Family

ID=16372099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19729685A Pending JPS6257927A (en) 1985-09-06 1985-09-06 Continuous production of carbon fiber with vapor-phase method

Country Status (1)

Country Link
JP (1) JPS6257927A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923637A (en) * 1987-06-24 1990-05-08 Yazaki Corporation High conductivity carbon fiber
JPH02503334A (en) * 1988-01-28 1990-10-11 ハイピリオン・カタリシス・インターナシヨナル carbon fibrils

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923637A (en) * 1987-06-24 1990-05-08 Yazaki Corporation High conductivity carbon fiber
JPH02503334A (en) * 1988-01-28 1990-10-11 ハイピリオン・カタリシス・インターナシヨナル carbon fibrils

Similar Documents

Publication Publication Date Title
JPH0424320B2 (en)
JPH0346437B2 (en)
JPS62242B2 (en)
KR100376202B1 (en) Apparatus of vapor phase-synthesis for carbon nanotubes or carbon nanofibers and synthesizing method of using the same
KR100360686B1 (en) Apparatus of vapor phase synthesis for synthesizing carbon nanotubes or carbon nanofibers and synthesizing method of using the same
JP5364904B2 (en) Method for producing carbon nanofiber aggregate
US5039504A (en) Process for producing graphite whiskers
JP3798300B2 (en) Method for producing hydrogen
JPS6257927A (en) Continuous production of carbon fiber with vapor-phase method
JPS5939708A (en) Manufacture of fine silicon carbide powder
JPS61225328A (en) Production of carbonaceous fiber
JPS58110493A (en) Production of graphite whisker
JPH0435215B2 (en)
JPS6278217A (en) Vapor-phase production of carbon fiber
JPS60252720A (en) Production of carbon fiber by vapor phase method
JPS6262914A (en) Production of carbonaceous fiber
JPS63256720A (en) Production of vapor-phase carbon fiber
JPS61194223A (en) Production of carbon fiber by gaseous phase method
JPS6257926A (en) Continuous production of carbon fiber with vapor-phase method
JP3278883B2 (en) Fluidized vapor phase growth fine fiber production equipment
JP2999042B2 (en) Method for producing vapor grown carbon fiber and apparatus for producing vapor grown carbon fiber used in the method
JPS6228120B2 (en)
JP3676416B2 (en) Vapor grown carbon fiber production equipment
JP2531739B2 (en) Method for producing vapor grown carbon fiber
JPS5834860A (en) Concurrent production of pyrolytic carbon and carbon black