JPH03139803A - Oxide voltage nonlinear resistor - Google Patents

Oxide voltage nonlinear resistor

Info

Publication number
JPH03139803A
JPH03139803A JP1277646A JP27764689A JPH03139803A JP H03139803 A JPH03139803 A JP H03139803A JP 1277646 A JP1277646 A JP 1277646A JP 27764689 A JP27764689 A JP 27764689A JP H03139803 A JPH03139803 A JP H03139803A
Authority
JP
Japan
Prior art keywords
oxide
mol
mole
voltage nonlinear
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1277646A
Other languages
Japanese (ja)
Inventor
Kenji Shino
篠 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP1277646A priority Critical patent/JPH03139803A/en
Publication of JPH03139803A publication Critical patent/JPH03139803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To obtain oxide voltage nonlinear resistors having a large voltage nonlinear coefficient, an excellent surge-withstanding ability, and besides a good loaded life characteristic, by adding Zn, Bi, Sb, Co, Mg, Mn, Ni, B, and Al so as to have specific composition ratios. CONSTITUTION:Oxide voltage nonlinear resistors can be made of a sintered body containing a base component 100 pts.wt. containing Zn, Bi, Sb, Co, Mg, Mn, and Ni in ratios of ZnO 80.0-97.5 mole%, Bi2O3 0.3-3.0 mole% Sb2O3 0.3-3.0 mole% CoO 0.3-3.0 mole%, MgO 1.0-5.0 mole% MnO 0.3-3.0 mole % and NiO 0.3-3.0 mole% calculated in their respective typical oxides, ZnO, Bi2O3, Sb2O3, CoO, MgO, MnO, and NiO, B 0.01-0.1 pts.wt. calculated in its typical oxide B2O3 and Al 0.002-0.008 pts.wt. calculated in its typical oxide Al2O3. This composition makes it possible to obtain oxide varistors having more excellent surge- withstanding ability, a larger voltage nonlinear coefficient, and a better loaded life characteristic, compared to former oxide varistors.

Description

【発明の詳細な説明】 [従来の技術及び発明が解決しようとする課題]ZnO
を主成分とした酸化物バリスタとして、ZnOにBi 
 O、CoO、Sb2O3、Mn0、Al2O3等を加
えて成る酸化物バリスタが周知である。この種の酸化物
バリスタはその非直線性が焼結体自体に起因しているた
め対称形の電圧電流特性を示し、その電圧非直線係数が
大きいという長所を持っている。
[Detailed description of the invention] [Prior art and problems to be solved by the invention] ZnO
As an oxide varistor whose main component is Bi
Oxide varistors made by adding O, CoO, Sb2O3, Mn0, Al2O3, etc. are well known. This type of oxide varistor exhibits symmetrical voltage-current characteristics because its nonlinearity is caused by the sintered body itself, and has the advantage of having a large voltage nonlinearity coefficient.

ところで、最近の電子機器には、多くの半導体素子が使
用されており、これら半導体素子や機器を異常なサージ
やノイズから保護すること及び回路電圧を安定化するこ
とが重要な課題となっている。この目的のためには、電
圧非直線係数が十分に大きく、課電寿命が十分に長く、
かつサージ耐量に優れたバリスタが要求される。従来も
これらの諸特性が良好なバリスタは製品化されてはいる
が、バリスタに要求される性能は増々高まっており、更
に諸特性を向上させる必要がある。特に、サージ耐量の
一層大きいバリスタが要望されている。
By the way, many semiconductor elements are used in recent electronic devices, and protecting these semiconductor elements and devices from abnormal surges and noise and stabilizing circuit voltage have become important issues. . For this purpose, the voltage nonlinearity coefficient is sufficiently large, the energized lifetime is sufficiently long, and
In addition, a varistor with excellent surge resistance is required. Although varistors with good properties have been commercialized in the past, the performance required of varistors is increasing, and there is a need to further improve the properties. In particular, there is a demand for varistors with even greater surge resistance.

そこで、本発明はこのような要求に満足できるバリスタ
を提供することを目的とする。
Therefore, an object of the present invention is to provide a varistor that can satisfy such requirements.

[課題を解決するための手段] 上記目的を達成するための本発明は、Zn(亜鉛)、B
i (ビスマス)、sb(アンチモン)、Co(コバル
ト)、Mg(マグネシウム)、Mn(マンガン)、Ni
にッケル)をそれぞれ代表的酸化物であるZnO(H化
亜鉛)、B1゜03(酸化ビスマス)、Sb2O3  
(酸化アンチモン)、CoO (酸化コバルト) 、M
gO(酸化マグネシウム) 、MnO(酸化マンガン)
、N1p(酸化ニッケル)に換算して ZnO80,0〜97.5モル% Bi2O30,3〜 3.0Tニル% Sb2O3  0.3〜3.O:eル%CoO    
 O,3〜 3.0モル%MgO1,o〜 5.0モル
% MnO0,3〜 3.0モル% NIO0,3〜 3.OモtI、% の割合で含む基礎成分100重量部と、B(ホウ素)を
その代表的酸化物であるB2O3(酸化ホウ素ンに換算
して0.01〜0.1重量部と、Al(アルミニウム)
をその代表的酸化物であるA1□03 (酸化アルミニ
ウム)に換算してo、。
[Means for Solving the Problems] The present invention for achieving the above object uses Zn (zinc), B
i (bismuth), sb (antimony), Co (cobalt), Mg (magnesium), Mn (manganese), Ni
ZnO (zinc hydride), B1゜03 (bismuth oxide), and Sb2O3, which are typical oxides
(antimony oxide), CoO (cobalt oxide), M
gO (magnesium oxide), MnO (manganese oxide)
, converted to N1p (nickel oxide), ZnO80.0 to 97.5 mol% Bi2O30.3 to 3.0 Tnyl% Sb2O3 0.3 to 3. O:e%CoO
O, 3-3.0 mol% MgO 1, o- 5.0 mol% MnO 0,3-3.0 mol% NIO 0,3-3. 100 parts by weight of the basic component containing B (boron) in the proportion of aluminum)
is converted into its representative oxide A1□03 (aluminum oxide).

02〜o、oos重量部とを含む焼結体から成る酸化物
電圧非直線抵抗体に係わるものである。
The present invention relates to an oxide voltage nonlinear resistor made of a sintered body containing 02 to 02 parts by weight.

[作 用] 上記本発明の酸化物電圧非直線抵抗体は、Zn、B1.
5bSCo、Mg、Mn、Ni、B及びAlを上記のよ
うな組成比で含有している。これにより、電圧非直線係
数が大きくがっサージ耐量が優れており、更に課電寿命
特性も良好な酸化物電圧非直線抵抗体が実現できる。
[Function] The oxide voltage nonlinear resistor of the present invention has Zn, B1.
5bSCo, Mg, Mn, Ni, B, and Al are contained in the above composition ratio. As a result, it is possible to realize an oxide voltage nonlinear resistor that has a large voltage nonlinear coefficient, has excellent surge resistance, and also has good charging life characteristics.

[実施例コ 次に、本発明の実施例及び比較例を説明する。[Example code] Next, examples and comparative examples of the present invention will be described.

表に示すように、ZnO,Bi  O,Sb2O3、C
oOlMgOlMnO,NiOから成る基礎成分と、B
 O及びAl2O3から成る添加成分の組成を種々変え
た試料N0.1〜45のバリスタを作製した0表におい
て、基礎成分は総和が100モル%となるように計量さ
れたZnO,Bi2O3,Sb2O3、COOlMgO
,Mn01NiOの割合がモル%で示されている。但し
、Znoは残分として示されている。残分の値は100
モル%から7口0以外の成分のモル%の和を引いた値に
等しい。添加成分のB2O3、Al2O3の添加量は1
00重量部の基礎成分に対する重量部(重量%)で示さ
れている。
As shown in the table, ZnO, BiO, Sb2O3, C
A basic component consisting of oOlMgOlMnO, NiO, and B
In Table 0, varistors of samples No. 1 to 45 were prepared with various compositions of additive components consisting of O and Al2O3. In Table 0, the basic components were ZnO, Bi2O3, Sb2O3, COOlMgO, which were weighed so that the total was 100 mol%.
, Mn01NiO is shown in mol%. However, Zno is shown as the remainder. The value of the remainder is 100
It is equal to the value obtained by subtracting the sum of the mole percent of components other than 7-0 from the mole percent. The amount of added components B2O3 and Al2O3 is 1
It is expressed in parts by weight (% by weight) based on 00 parts by weight of the base component.

次に、試料Nα1のバリスタの製造方法及び特性測定方
法を説明する。ます、基礎成分としてZnOを93.2
モル%、 Bi2O3を0.3モル%、 S b 203を1.5モル%、 CoOを1.0モル%、 MgOを2.5モル%、 MnOを0,5モル%、 NiOを1.0モル% の割合となるように計量し、この基礎成分100重量部
に対して添加成分としてB2O3をo、05重量部、A
l2O3を0.003重量部添加し、これ等の原料粉末
をボールミル等で十分に混合し、これをスプレードライ
ヤで造粒した0次に、造粒して得られた原料を直径12
.0mm、厚さ1゜5mmに圧縮成形してディスクに仕
上げ、更にこの成形体を大気中において1250℃で1
時間焼成した。これにより、出発原料と実質的に等しい
組成の焼結体が得られた。最後に、この焼結体の両面に
Agペイントの焼付により電極を形成して酸化物バリス
タを完成させた。この酸化物バリスタのバリスタ作用は
導電性微結晶とこれを包囲する高抵抗層に起因すると考
えられる。したがって、材料組成や焼成条件を変えるこ
とによりバリスタのサージ耐量や立上り電圧を制御する
ことができる8以上のようにバリスタ作用は焼結体内部
で生じているので、電極の材料や形成法に特に限定なく
、In、Al、Snなどの蒸着による電極あるいはNi
メツキによる電極なども同様の結果が得られている。
Next, a method for manufacturing a varistor of sample Nα1 and a method for measuring characteristics will be explained. 93.2% ZnO as the basic component
Mol%, Bi2O3 0.3 mol%, S b 203 1.5 mol%, CoO 1.0 mol%, MgO 2.5 mol%, MnO 0.5 mol%, NiO 1.0 B2O3 was added as an additive component to 100 parts by weight of this basic component, and 0.05 parts by weight of B2O3 and 0.05 parts by weight of A were added.
0.003 parts by weight of l2O3 was added, these raw material powders were thoroughly mixed in a ball mill, etc., and this was granulated in a spray dryer.Next, the raw material obtained by granulation was
.. 0 mm and a thickness of 1° to 5 mm to form a disc, and further heat the molded product in the atmosphere at 1250°C for 15 minutes.
Baked for an hour. As a result, a sintered body having a composition substantially the same as that of the starting material was obtained. Finally, electrodes were formed on both sides of this sintered body by baking Ag paint to complete the oxide varistor. The varistor action of this oxide varistor is thought to be due to the conductive microcrystals and the high resistance layer surrounding them. Therefore, by changing the material composition and firing conditions, the surge resistance and rising voltage of the varistor can be controlled.8 As the varistor action occurs inside the sintered body, the varistor action occurs inside the sintered body, so there is Without limitation, electrodes formed by vapor deposition of In, Al, Sn, etc. or Ni
Similar results have been obtained with plated electrodes.

試料No、 1のバリスタの特性を調べるために、立上
り電圧V1、電圧非直線係数α、課電寿命特性、サージ
電流耐量を測定したところ、■1は139■、αは50
、課電寿命特性は−2、サージ電流耐量は25〜30で
あった。なお、立上り電圧V1は、バリスタ電流1mA
におけるバリスタの端子電圧である。電圧非直線係数α
は、バリスタ電流0.1mAにおけるバリスタの端子電
圧■0.1とバリスタ電流1mAにおけるバリスタの端
子電圧■1との比V1 /V0.1である。このαが大
きいバリスタはど非直線性の大きいバリスタといえる。
In order to investigate the characteristics of the varistor of sample No. 1, we measured the rising voltage V1, voltage nonlinear coefficient α, energized life characteristics, and surge current withstand capacity.■1 was 139■, and α was 50.
The charging life characteristic was -2, and the surge current withstand capacity was 25 to 30. Note that the rising voltage V1 is a varistor current of 1 mA.
is the terminal voltage of the varistor at . Voltage nonlinear coefficient α
is the ratio V1/V0.1 of the varistor terminal voltage (2)0.1 at a varistor current of 0.1 mA and the varistor terminal voltage (2)1 at a varistor current of 1 mA. A varistor with a large α can be said to have a large nonlinearity.

課電寿命特性は、85゛Cに保たれた恒温槽中で課電率
100%の直流電圧を24時間印加した後、室温に戻し
てバリスタ電流0.1mAにおけるバリスタの端子電圧
VO11を測定する試験を行い、試験前のバリスタ電流
0.1mAにおけるバリスタの端子電圧に対する変化率
(%)を算出して特性評価を行った。変化率が小さいは
ど課電寿命特性が良いといえる。サージ耐量特性は、J
RC(電気学会)規格第212番に基づ<8X20μs
、250OAのサージ電流を30秒の間隔で5回印加し
、各回終了ごとにバリスタ電流1mAにおける端子電圧
■1を測定してその変化率を算出し、Vlが試験前の値
から10%低下するまでのサージ電流の印加回数nで特
性評価した。印加回数nが多いほどサージ耐量特性が優
れているといえる。なお、同−試料量のバリスタを複数
回作製したので、Vl、α、課電寿命特性は平均値で示
され、サージ電流耐量は最低回数と最高回数とで示され
ている。
The energization life characteristics are determined by applying a DC voltage with a 100% energization rate for 24 hours in a constant temperature oven maintained at 85°C, then returning to room temperature and measuring the varistor terminal voltage VO11 at a varistor current of 0.1 mA. A test was conducted, and the characteristics were evaluated by calculating the rate of change (%) with respect to the terminal voltage of the varistor at a varistor current of 0.1 mA before the test. If the rate of change is small, it can be said that the charging life characteristics are good. The surge resistance characteristics are J
Based on RC (Institute of Electrical Engineers of Japan) standard No. 212 <8X20μs
, apply a surge current of 250 OA 5 times at 30 second intervals, measure the terminal voltage 1 at a varistor current of 1 mA after each application, calculate the rate of change, and find that Vl decreases by 10% from the value before the test. Characteristics were evaluated based on the number of times n of surge current was applied. It can be said that the larger the number of applications n is, the better the surge resistance characteristics are. In addition, since the varistor with the same sample amount was produced multiple times, Vl, α, and energized life characteristics are shown as average values, and the surge current withstand capacity is shown as the minimum number of times and the maximum number of times.

試料No、 2〜45のバリスタは、組成を変えた以外
は試料No、 1と同一の方法で作製し、同一の方法で
特性を測定した。
Varistors of Samples No. 2 to 45 were manufactured in the same manner as Sample No. 1 except that the composition was changed, and their characteristics were measured in the same manner.

表の試料No、 1〜6から明らかなように、ZnO及
びBi2O3を除く基礎成分と添加成分とを固定し、B
i2O3のモル%を0.1〜5.0モル%の範囲で変化
させ、かつ基礎成分の総和が100モル%となるように
ZnOを変化させると、サージ電流耐量が表及び第1図
に示すように変化する。Bi2O3が3モル%を越える
とサージ電流耐量が低下し、また、B 1203が0.
3モル%より少ない範囲においてもサージ電流耐量が低
下する。したがって、優れたサージ電流耐量を得るため
のBi2O3の好ましい範囲は0.3〜3゜0モル%で
あり、より好ましい範囲は0.5〜2゜0モル%である
。なお、この範囲では、表に示すように、電圧非直線係
数αが大きく得られるし、課電寿命特性も良好である。
As is clear from Sample Nos. 1 to 6 in the table, the basic components and additive components except ZnO and Bi2O3 were fixed, and B
When the mol% of i2O3 is varied in the range of 0.1 to 5.0 mol% and the ZnO is varied so that the sum of the basic components is 100 mol%, the surge current withstand capacity is shown in the table and Figure 1. It changes like this. If Bi2O3 exceeds 3 mol%, the surge current withstand capacity decreases, and if B1203 exceeds 3 mol%.
Even in a range of less than 3 mol %, the surge current resistance decreases. Therefore, in order to obtain excellent surge current resistance, the preferred range of Bi2O3 is 0.3 to 3.0 mol%, and the more preferred range is 0.5 to 2.0 mol%. In addition, in this range, as shown in the table, a large voltage nonlinear coefficient α can be obtained, and the charging life characteristics are also good.

試料NG7〜12から明らかなように、ZnO及びSb
2O3を除く基礎成分と添加成分とを固定し、Sb2O
3のモル%を0.1〜5.0モル%の範囲で変化させ、
かつ基礎成分の総和が100モル%となるようにZnO
を変化させると、サージ電流耐量が表及び第2図に示す
ように変化する。
As is clear from samples NG7 to NG12, ZnO and Sb
The basic components and additive components except 2O3 are fixed, and Sb2O
Varying the mol% of 3 in the range of 0.1 to 5.0 mol%,
and ZnO so that the total of the basic components is 100 mol%.
When , the surge current withstand capacity changes as shown in the table and FIG. 2.

Sb2O3が3.0モル%を越えるとサージ電流耐量が
低下し、また、Sb2O3が0.3モル%より少ない範
囲においてもサージ電流耐量が低下する。したがって、
優れたサージ電流耐量を得るためのSb2O3の好まし
い範囲は0.3〜3゜0モル%であり、より好ましい範
囲は0.5〜20モル%である。なお、この範囲では、
表に示すように、電圧非直線係数αが大きく得られるし
、課電寿命特性も良好である。
When Sb2O3 exceeds 3.0 mol%, the surge current withstand capacity decreases, and even in a range where Sb2O3 is less than 0.3 mol%, the surge current withstand capacity decreases. therefore,
The preferable range of Sb2O3 for obtaining excellent surge current resistance is 0.3 to 30 mol%, and the more preferable range is 0.5 to 20 mol%. In addition, in this range,
As shown in the table, a large voltage non-linearity coefficient α can be obtained, and the charging life characteristics are also good.

試料No13〜18から明らかなように、ZnO及びC
oOを除く基礎成分と添加成分とを固定し、CoOのモ
ル%を0.1〜5.0モル%の範囲で変化させ、かつ基
礎成分の総和が100モル%となるようにZnOを変化
させると、サージ電流耐量が表及び第3図に示すように
変化する。CoOが3.0モル%を越えるとサージ電流
耐量が低下し、また、CoOが0,3モル%より少ない
範囲においてもサージ電流耐量が低下する。したがって
、優れたサージ電流耐量を得るためのCoOの好ましい
範囲は0.3〜3.0モル%であり、より好ましい範囲
は0.5〜2.0モル%である。
As is clear from samples Nos. 13 to 18, ZnO and C
The basic components and additive components except oO are fixed, the mol% of CoO is varied in the range of 0.1 to 5.0 mol%, and the ZnO is varied so that the sum of the basic components is 100 mol%. Then, the surge current withstand capacity changes as shown in the table and FIG. 3. If the CoO content exceeds 3.0 mol%, the surge current withstand capacity decreases, and even if the CoO content is less than 0.3 mol%, the surge current withstand capacity decreases. Therefore, the preferable range of CoO for obtaining excellent surge current resistance is 0.3 to 3.0 mol%, and the more preferable range is 0.5 to 2.0 mol%.

なお、この範囲では、表に示すように、電圧非直線係数
αが大きく得られるし、課電寿命特性も良好である。
In addition, in this range, as shown in the table, a large voltage nonlinear coefficient α can be obtained, and the charging life characteristics are also good.

試料No、 19〜23から明らかなように、ZnO及
びMgOを除く基礎成分と添加成分とを固定し、MgO
のモル%を0.5〜10.0モル%の範囲で変化させ、
かつ基礎成分の総和が100モル%となるようにZnO
を変化させると、サージ電流耐量が表及び第4図に示す
ように変化する。MgOが5.0モル%を越えるとサー
ジ電流耐量が低下し、また、MgOが1.0モル%より
少ない範囲では電圧非直線係数αが小さくなる。したが
って、優れたサージ電流耐量が得られかつ電圧非直線係
数αが大きく得られるためのCoOの好ましい範囲は1
.0〜5.0モル%であり、より好ましい範囲は2.0
〜4.0モル%である。なお、この範囲では、表のよう
に課電寿命特性も良好に得られる。
As is clear from Sample Nos. 19 to 23, the basic components and additive components excluding ZnO and MgO were fixed, and MgO
changing the mol% in the range of 0.5 to 10.0 mol%,
and ZnO so that the total of the basic components is 100 mol%.
When , the surge current withstand capacity changes as shown in the table and FIG. 4. When MgO exceeds 5.0 mol%, the surge current withstand capacity decreases, and when MgO is less than 1.0 mol%, the voltage nonlinear coefficient α becomes small. Therefore, in order to obtain an excellent surge current withstand capacity and a large voltage nonlinear coefficient α, the preferable range of CoO is 1
.. 0 to 5.0 mol%, and the more preferable range is 2.0
~4.0 mol%. In addition, within this range, good charging life characteristics can be obtained as shown in the table.

試料No24〜29に示すように、ZnO及びMnOを
除く基礎成分と添加成分とを固定し、MnOのモル%を
0.1〜5.0モル%の範囲で変化させ、かつ基礎成分
の総和が100モル%となるようにZnOを変化させる
と、サージ電流耐量が表及び第5図に示すように変化す
る。第5図から明らかなように、MnOが3.0モル%
を越えるとサージ電流耐量が低下し、また、MnOが0
゜3モル%より少ない範囲においてもサージ電流耐1が
低下する。したがって、優れたサージ電流耐量を得るた
めのMnOの好ましい範囲は0.3〜3.0モル%であ
り、より好ましい範囲は0゜4〜1゜0モル%である。
As shown in samples Nos. 24 to 29, the base components and additive components except ZnO and MnO were fixed, the mol% of MnO was varied in the range of 0.1 to 5.0 mol%, and the total of the base components was When ZnO is changed to 100 mol %, the surge current withstand capacity changes as shown in the table and FIG. 5. As is clear from Figure 5, MnO is 3.0 mol%
If the MnO exceeds 0, the surge current withstand capacity will decrease
The surge current resistance 1 decreases even in a range of less than 3 mol %. Therefore, in order to obtain excellent surge current resistance, the preferred range of MnO is 0.3 to 3.0 mol%, and the more preferred range is 0.4 to 1.0 mol%.

なお、この範囲では、表のように、電圧非直線係数αが
大きく得られるし、課電寿命特性も良好である。
In addition, in this range, as shown in the table, a large voltage nonlinear coefficient α can be obtained, and the charging life characteristics are also good.

試料No30〜35に示すように、ZnO及びNIOを
除く基礎成分と添加成分とを固定し、NiOのモル%を
0.1〜5.0モル%の範囲で変化させ、かつ基礎成分
の総和が100モル%となるようにZnOを変化させる
と、サージ電流耐量が表及び第6図に示すように変化す
る。NiOが3.0モル%を越えると、サージ電流耐量
が低下し、また、NiOが0.3モル%より少ない範囲
においてもサージ電流耐量が低下する。したがって、優
れたサージ耐量特性を得るためのNiOの好ましい範囲
は0.3〜3.0モル%であり、より好ましい範囲は0
.5〜2.0モル%である。なお、この範囲では、表に
示すように、電圧非直線係数αが大きく得られるし、課
電寿命特性も良好である。
As shown in samples Nos. 30 to 35, the basic components and additive components except ZnO and NIO were fixed, the mol% of NiO was varied in the range of 0.1 to 5.0 mol%, and the total of the basic components was When ZnO is changed to 100 mol %, the surge current withstand capacity changes as shown in the table and FIG. 6. If the NiO content exceeds 3.0 mol%, the surge current withstand capacity decreases, and even in a range where the NiO content is less than 0.3 mol%, the surge current withstand capacity decreases. Therefore, the preferable range of NiO to obtain excellent surge resistance characteristics is 0.3 to 3.0 mol%, and the more preferable range is 0.
.. It is 5 to 2.0 mol%. In addition, in this range, as shown in the table, a large voltage nonlinear coefficient α can be obtained, and the charging life characteristics are also good.

試料111Q36〜40に示すように、基礎成分と、添
加成分のうちAl2O3を固定し、B2O3を100重
量%の基礎成分に対する重量%を0,005重量%〜0
.15%重量%の範囲で変化させると、サージ電流耐量
が表及び第7図に示すように変化する。B2O3が0.
1重量%より多くなると、サージ電流耐量が低下し、ま
た、B2O3が0.01重量%より少ない範囲において
もサージ電流耐量は低下する。したがって、優れたサー
ジ耐量特性を得るためのB2O3の好ましい範囲は0.
01重量%〜0.1重量%であり、より好ましい範囲は
0.02〜0.05重量%である。
As shown in Samples 111Q36-40, among the base components and additive components, Al2O3 is fixed, and the weight% of B2O3 is 0,005% by weight to 0% relative to the 100% by weight base component.
.. When the amount is changed within the range of 15% by weight, the surge current resistance changes as shown in the table and FIG. 7. B2O3 is 0.
When the content is more than 1% by weight, the surge current withstand capacity decreases, and even in the range where B2O3 is less than 0.01% by weight, the surge current withstand capacity decreases. Therefore, the preferred range of B2O3 to obtain excellent surge resistance characteristics is 0.
The range is from 0.01% to 0.1% by weight, and the more preferred range is from 0.02 to 0.05% by weight.

なお、この範囲では、表に示すように、電圧非直線係数
αが大きく得られるし、課電寿命特性も良好である。
In addition, in this range, as shown in the table, a large voltage nonlinear coefficient α can be obtained, and the charging life characteristics are also good.

試料No41〜45に示すように、基礎成分と、添加成
分のうちB Oを固定し、A1□03を100重量%の
上記基礎成分に対する重量%を0゜001重量%〜0.
01重量%の範囲で変化させると、サージ電流耐量が表
及び第8図に示すように変化する。A l 203が0
.008重量%より多くなるとサージ電流耐量が低下し
、また、Al2O3が0.002重量%より少ない範囲
においては電圧非直線係数が小さくなる。したがって、
優れたサージ電流耐量が得られかつ電圧非直線係数が大
きく得られるためのAl2O3の好ましい範囲は0.0
02重量%〜0.008重量%であり、より好ましい範
囲は0.003重量%〜0゜006重量%である。なお
、この範囲では、表のように課電寿命特性も良好に得ら
れる。
As shown in samples Nos. 41 to 45, among the basic components and additive components, BO is fixed, and the weight percentage of A1□03 is 0°001% by weight to 0.00% by weight relative to 100% by weight of the above basic components.
When the amount is changed within a range of 0.01% by weight, the surge current resistance changes as shown in the table and FIG. A l 203 is 0
.. When Al2O3 exceeds 0.008% by weight, the surge current withstand capacity decreases, and when Al2O3 is less than 0.002% by weight, the voltage nonlinear coefficient becomes small. therefore,
The preferred range of Al2O3 is 0.0 in order to obtain an excellent surge current withstand capacity and a large voltage nonlinear coefficient.
The range is 0.02% by weight to 0.008% by weight, and a more preferable range is 0.003% by weight to 0.006% by weight. In addition, within this range, good charging life characteristics can be obtained as shown in the table.

[変形例コ 本発明は上述の実施例に限定されるものでなく、例えば
次の変形が可能なものである。
[Modifications] The present invention is not limited to the above-described embodiments, and for example, the following modifications are possible.

(1) 各成分の出発原料は酸化物に限られない。例え
ば、C01Mg、MnはそれぞれCoCO3、MgCO
3、MnCO3等であってもよい。
(1) The starting materials for each component are not limited to oxides. For example, C01Mg and Mn are CoCO3 and MgCO, respectively.
3, MnCO3, etc. may be used.

また、BはH2B O3を原料としてもよい。つまり、
酸化物以外に水酸化物や炭酸塩、フッ化物等でもよい。
Further, B may be made from H2B O3. In other words,
In addition to oxides, hydroxides, carbonates, fluorides, etc. may be used.

(2) 各成分の出発原料は複数の成分の化合物であっ
てもよい0例えば、Mgの一部とAlとをその化合物で
あるスピネル型のA1□M g O4として含有させて
もよい、また、Coの一部とAlをその化合物である。
(2) The starting material for each component may be a compound of multiple components. For example, a part of Mg and Al may be contained as a spinel-type compound, A1□M g O4, or , a part of Co and Al are its compounds.

スピネル型のA I 2 C。Spinel type AI2C.

04として含有させてもよい、上記2つの場合、サージ
電流耐量が更に向上することが確められている。
It has been confirmed that in the above two cases, the surge current resistance can be further improved.

(3) 本発明に係わるバリスタの特性を損わない範囲
において別の特性改良のための添加物を混入させてもよ
い。
(3) Other additives for improving the characteristics may be mixed in as long as the characteristics of the varistor according to the present invention are not impaired.

[発明の効果] 以上述べたように、本発明によれば、従来の酸化物バリ
スタに比べてサージ耐量が優れており、かつ電圧非直線
係数が大きく、また課電寿命特性も良好である酸化物バ
リスタを提供することができる。このバリスタによれば
、電子機器内で発生する異常電圧や外部からのサージ電
圧を吸収し、半導体素子などの電子部品を保護すること
が可能となり、更にはその大きな電圧非直線係数により
回F!@電圧の安定化をはかることができる。
[Effects of the Invention] As described above, according to the present invention, an oxide varistor that has superior surge resistance, a larger voltage nonlinear coefficient, and better energized life characteristics than conventional oxide varistors. things barista can provide. According to this varistor, it is possible to protect electronic components such as semiconductor elements by absorbing abnormal voltages generated within electronic devices and surge voltages from the outside, and furthermore, due to its large voltage nonlinear coefficient, it is possible to reduce the number of times F! @Voltage can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図、第5図、第6図、第
7図及び第8図は、各成分の量を対数目盛で横軸に示し
、サージ耐量を縦軸に示す図である。
Figures 1, 2, 3, 4, 5, 6, 7, and 8 show the amount of each component on a logarithmic scale on the horizontal axis, and the surge resistance on the vertical axis. FIG.

Claims (1)

【特許請求の範囲】 [1]Zn(亜鉛)、Bi(ビスマス)、Sb(アンチ
モン)、Co(コバルト)、Mg(マグネシウム)、M
n(マンガン)、Ni(ニッケル)をそれぞれ代表的酸
化物であるZnO(酸化亜鉛)、Bi_2O_3(酸化
ビスマス)、Sb_2O_3(酸化アンチモン)、Co
O(酸化コバルト)、MgO(酸化マグネシウム)、M
nO(酸化マンガン)、NiO(酸化ニッケル)に換算
してZnO 80.0〜97.5モル% Bi_2O_3 0.3〜3.0モル% Sb_2O_3 0.3〜3.0モル% CoO 0.3〜3.0モル% MgO 1.0〜5.0モル% MnO 0.3〜3.0モル% NiO 0.3〜3.0モル% の割合で含む基礎成分100重量部と、 B(ホウ素)をその代表的酸化物であるB_2O_3(
酸化ホウ素)に換算して0.01〜0.1重量部と、 Al(アルミニウム)をその代表的酸化物であるAl_
2O_3(酸化アルミニウム)に換算して0.002〜
0.008重量部と を含む焼結体から成る酸化物電圧非直線抵抗体。
[Claims] [1] Zn (zinc), Bi (bismuth), Sb (antimony), Co (cobalt), Mg (magnesium), M
n (manganese) and Ni (nickel), respectively, are representative oxides of ZnO (zinc oxide), Bi_2O_3 (bismuth oxide), Sb_2O_3 (antimony oxide), and Co.
O (cobalt oxide), MgO (magnesium oxide), M
In terms of nO (manganese oxide) and NiO (nickel oxide), ZnO 80.0 to 97.5 mol% Bi_2O_3 0.3 to 3.0 mol% Sb_2O_3 0.3 to 3.0 mol% CoO 0.3 to 100 parts by weight of a basic component containing 3.0 mol% MgO 1.0-5.0 mol% MnO 0.3-3.0 mol% NiO 0.3-3.0 mol%, and B (boron) and its representative oxide B_2O_3(
0.01 to 0.1 part by weight (calculated as boron oxide), and Al (aluminum) as its representative oxide, Al_
0.002~ in terms of 2O_3 (aluminum oxide)
An oxide voltage nonlinear resistor comprising a sintered body containing 0.008 parts by weight.
JP1277646A 1989-10-25 1989-10-25 Oxide voltage nonlinear resistor Pending JPH03139803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1277646A JPH03139803A (en) 1989-10-25 1989-10-25 Oxide voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1277646A JPH03139803A (en) 1989-10-25 1989-10-25 Oxide voltage nonlinear resistor

Publications (1)

Publication Number Publication Date
JPH03139803A true JPH03139803A (en) 1991-06-14

Family

ID=17586329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1277646A Pending JPH03139803A (en) 1989-10-25 1989-10-25 Oxide voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH03139803A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216805A (en) * 2005-02-04 2006-08-17 Idemitsu Kosan Co Ltd Zinc system compound oxide and thermoelectric conversion module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216805A (en) * 2005-02-04 2006-08-17 Idemitsu Kosan Co Ltd Zinc system compound oxide and thermoelectric conversion module

Similar Documents

Publication Publication Date Title
JPH0249525B2 (en)
JPS606522B2 (en) semiconductor composition
JPH03139803A (en) Oxide voltage nonlinear resistor
JPH0425681B2 (en)
JPH0249523B2 (en)
JP2985559B2 (en) Varistor
JP3202078B2 (en) Resistive element and fixed resistor
JPH0574606A (en) Zinc oxide varistor for low voltage
JPH05234716A (en) Zinc oxide varistor
JPS621202A (en) Voltage non-linear resistor
JPS63315554A (en) Thermistor porcelain composition
JPS626323B2 (en)
JP3089370B2 (en) Voltage non-linear resistance composition
JP3089371B2 (en) Voltage non-linear resistance composition
JPS6257242B2 (en)
JPS5939884B2 (en) Voltage nonlinear resistor ceramic composition and its manufacturing method
JPH03218603A (en) Voltage dependent nonlinear oxide resistor and manufacture thereof
JPS6330765B2 (en)
JPH04369803A (en) Non-linear voltage resistor
JPH0249522B2 (en)
JPS6236615B2 (en)
JPS6257243B2 (en)
JPS634681B2 (en)
JP2001093705A (en) Nonlinear resistor and method for manufacture thereof
JPS583364B2 (en) Voltage nonlinear resistor