JPS634681B2 - - Google Patents

Info

Publication number
JPS634681B2
JPS634681B2 JP56044359A JP4435981A JPS634681B2 JP S634681 B2 JPS634681 B2 JP S634681B2 JP 56044359 A JP56044359 A JP 56044359A JP 4435981 A JP4435981 A JP 4435981A JP S634681 B2 JPS634681 B2 JP S634681B2
Authority
JP
Japan
Prior art keywords
mol
zno
voltage
current
nonlinear resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56044359A
Other languages
Japanese (ja)
Other versions
JPS57159001A (en
Inventor
Misuzu Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP56044359A priority Critical patent/JPS57159001A/en
Publication of JPS57159001A publication Critical patent/JPS57159001A/en
Publication of JPS634681B2 publication Critical patent/JPS634681B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、酸化亜鉛を主成分とする電圧非直線
抵抗体に関する。 従来から、電力系統接続機器を、例えば落雷ま
たは系統の切換えなどにより起り得る異状高電圧
から保護するためにサージ・アブソーバ、避雷器
等が使用されてきた。これには一般に次の式で示
される非直線電圧電流特性をもつ非直線抵抗体が
使われている。 I=(V/C)〓 ここでVは印加電圧、Iはこの電圧Vの印加に
より流れる電流、Cは通常の抵抗体の抵抗値に相
当する量(非直線抵抗)、αは電圧非直線指数で
ある。一般に従来の避雷器は電圧非直線指数αが
3〜7の炭化硅素(SiC)を主原料とする電圧非
直線抵抗体(以下、SiC系非直線抵抗体と称す
る)を用いていたが、常時課電電圧における漏洩
電流を制限するには不十分なため直列に放電ギヤ
ツプを接続するようにしていた。 SiC系非直線抵抗体よりもすぐれた特性をもつ
酸化亜鉛(ZnO)を主成分とする酸化物焼結体の
電圧非直線抵抗体が開発され実用化されて来た。
このZnO系電圧非直線抵抗体は、小電流領域にお
ける非直線特性が急峻で、かつ、大電流領域に到
るまで鋭い立上りをもつため、従来のSiC系非直
線抵抗体を用いた避雷器よりもすぐれた避雷器を
作ることができるようになつた。 しかし、従来のZnO系非直線抵抗体は、常時課
電電流に対する漏洩電流の増加が大きく、かつ衝
撃電流による電圧降下が大きい。更に制限電圧比
特性(一般には1mAが流れた場合の非直線抵抗
体の端子間電圧V1mAと他の値の電流が流れた
場合の同一非直線抵抗体の端子間電圧の比で大電
流領域における電圧の非直性を示したもの)が満
足すべきものではなかつた。そこで衝撃電流耐量
と制限電圧比特性を改善するために、ZnO主原料
に対する添加成分の配合を変える方法、例えば特
定の成分を微量添加したり配合量を増減したりす
る方法をとつてきた。しかしながら、常時課電電
圧に対する漏洩電流増加率を小さく押えるような
配合組成に変えたZnO系非直線抵抗体では寿命を
伸ばすことはできるが、逆に衝撃電流耐量や制限
電圧比特性が低下する傾向がある。そのため、こ
のZnO系非直線抵抗体は特性の点である程度制限
を受けた避雷器にしか適用できなかつた。 本発明の目的は、従来のZnO系非直線抵抗体の
欠点を除去した、高性能高信頼性のギヤツプなし
避雷器用のZnO系非直線抵抗体を提供するにあ
る。ZnO系非直線抵抗体は、酸化亜鉛に酸化ビス
マス、酸化コバルト、酸化マンガン、酸化アンチ
モン、酸化クロム、2酸化けい素、酸化ニツケ
ル、アルミ硼珪酸亜鉛ビスマスガラス等を加え
1000℃以上で焼結して得られる焼結体であり、そ
の内部は酸化亜鉛を主成分とする結晶粒子、その
他の添加成分を含む粒界層及び各種成分を含むス
ピネル層からなつている。この非直線抵抗体の電
圧非直線性は、主にZnO結晶粒子と粒界層の界面
における電気特性に基づくものであると考えら
れ、これらの層に不純物としてどのような原子
(イオン)を含むかによつて非直線性は左右され
る。また焼結時結晶粒子から拡散する多量のZn
イオンはスピネル層と粒界層に存在し、この間で
のZnイオンの挙動が非直線抵抗値および非直線
性に影響すると考えられる。これらの構造をもつ
焼結体に常時電圧が印加されると漏洩電流が次第
に増加するが、この増加があまり著しくない程度
で電圧の印加をやめ、その非直線抵抗体の電圧電
流特性を測定すると直線抵抗体内に分極現象が見
られる。このことから、電気特性に寄与している
層に分極されにくい構造をもつ相を生成させるこ
とにより漏洩電流増加率の小さい非直線抵抗体が
得られることが判明した。 寿命特性をよくする1つの方法にZnOをはじめ
とする配合成分に、さらに種々のガラスを種々の
方法で微量添加含有させる方法があつたが、同時
に制限電圧比特性及び衝撃電流耐量特性の低下現
象を伴うため、従来はギヤツプなし避雷器用素子
としては不適であると考えられていた。 本発明者は、ガラスを含有させることによる特
長を生かし、さらに衝撃電流耐量および制限電圧
比特性の改良されたZnO系非直線抵抗体の配合組
成を見い出すため種々研究した。その結果、重量
比でZnOを40〜65%Bi2O3を5〜10%および
Al2O3含有のアルミ硼珪酸亜鉛ビスマスガラスを
微量、ZnO系非直線抵抗体に含有されると、常時
課電電圧に対する漏洩電流増加率が非常に小さ
く、かつ、小電流領域から大電流領域にわたつて
すぐれた電圧非直線特性をもつZnO系非直線抵抗
体が得られることがわかつた。 本発明は、この事実に基づくものである。以
下、本発明の実施例を図面と共に詳述する。 第1の実施例 純度99%以上のZnOを95.0モル%、Bi2O3を0.5
モル%、Co2O3を0.5モル%、MnO2を0.5モル%、
Sb2O3を1.0モル%、Cr2O3を0.5モル%、SiO2
1.0モル%、NiOを1.0モル%秤量し、更に、アル
ミ硼珪酸亜鉛ビスマスガラスの粉末を所定量(重
量比で0.01〜1.0%)だけ秤量し、(第1表は使用
した硼珪酸亜鉛ガラスの組成比を示す。)ボール
ミルで混合した。
The present invention relates to a voltage nonlinear resistor containing zinc oxide as a main component. Conventionally, surge absorbers, lightning arresters, and the like have been used to protect power system connected equipment from abnormal high voltages that may occur due to lightning strikes or system switching, for example. Generally, a nonlinear resistor is used for this purpose, which has a nonlinear voltage-current characteristic expressed by the following equation. I=(V/C)〓 Here, V is the applied voltage, I is the current that flows due to the application of this voltage V, C is the amount equivalent to the resistance value of a normal resistor (nonlinear resistance), and α is the voltage nonlinearity. It is an index. Conventional lightning arresters generally use a voltage nonlinear resistor (hereinafter referred to as SiC-based nonlinear resistor) whose main material is silicon carbide (SiC) with a voltage nonlinearity index α of 3 to 7. Since it was insufficient to limit the leakage current at the voltage, a discharge gap was connected in series. Voltage nonlinear resistors made of sintered oxides containing zinc oxide (ZnO) as the main component have been developed and put into practical use, and have superior properties to SiC nonlinear resistors.
This ZnO-based voltage non-linear resistor has steep non-linear characteristics in the small current region and has a sharp rise up to the large current region, so it is better than lightning arresters using conventional SiC-based non-linear resistors. It became possible to make excellent lightning arresters. However, in the conventional ZnO-based nonlinear resistor, the leakage current increases significantly with respect to the constantly applied current, and the voltage drop due to the impact current increases. Furthermore, the limiting voltage ratio characteristic (generally the ratio of the voltage between the terminals of a non-linear resistor when 1 mA flows, V1 mA, and the voltage between the terminals of the same non-linear resistor when a current of another value flows), in a large current region. (indicating voltage non-linearity) was not satisfactory. Therefore, in order to improve the shock current withstand capacity and limiting voltage ratio characteristics, methods have been used to change the blend of additive components to the ZnO main raw material, such as adding a small amount of a specific component or increasing or decreasing the blended amount. However, although it is possible to extend the life of a ZnO-based nonlinear resistor with a composition that suppresses the rate of increase in leakage current with respect to the constantly applied voltage, it tends to decrease the shock current withstand capacity and limiting voltage ratio characteristics. There is. Therefore, this ZnO-based nonlinear resistor could only be applied to lightning arresters, which had some limitations in terms of characteristics. An object of the present invention is to provide a high-performance, highly reliable ZnO-based non-linear resistor for a gapless lightning arrester that eliminates the drawbacks of conventional ZnO-based non-linear resistors. ZnO-based nonlinear resistors are made by adding bismuth oxide, cobalt oxide, manganese oxide, antimony oxide, chromium oxide, silicon dioxide, nickel oxide, zinc aluminum borosilicate, bismuth glass, etc. to zinc oxide.
It is a sintered body obtained by sintering at 1000°C or higher, and its interior consists of crystal grains containing zinc oxide as a main component, a grain boundary layer containing other additive components, and a spinel layer containing various components. The voltage nonlinearity of this nonlinear resistor is thought to be mainly based on the electrical properties at the interface between the ZnO crystal grains and the grain boundary layer, and it depends on what kind of atoms (ions) these layers contain as impurities. The nonlinearity depends on the Also, a large amount of Zn diffuses from crystal grains during sintering.
Ions exist in the spinel layer and grain boundary layer, and the behavior of Zn ions between these layers is thought to affect the nonlinear resistance value and nonlinearity. When a voltage is constantly applied to a sintered body with these structures, the leakage current gradually increases, but when this increase is not significant, the voltage application is stopped and the voltage-current characteristics of the nonlinear resistor are measured. A polarization phenomenon is observed within the linear resistor. From this, it has been found that a nonlinear resistor with a small rate of increase in leakage current can be obtained by generating a phase with a structure that is difficult to polarize in the layer that contributes to the electrical characteristics. One method to improve life characteristics was to add small amounts of various glasses to ZnO and other compounding ingredients using various methods, but at the same time, the limiting voltage ratio characteristics and impact current withstand characteristics deteriorated. Because of this, it was previously thought to be unsuitable as an element for a lightning arrester without a gap. The present inventor conducted various studies in order to find a composition of a ZnO-based nonlinear resistor that takes advantage of the characteristics of containing glass and further improves the impact current withstand capacity and limiting voltage ratio characteristics. As a result, the weight ratio of ZnO was 40~65% , Bi2O3 was 5~10%, and
When a trace amount of zinc-bismuth aluminum borosilicate glass containing Al 2 O 3 is contained in a ZnO-based nonlinear resistor, the rate of increase in leakage current with respect to the constantly applied voltage is extremely small, and it can be used in a range from small current to large current. It was found that a ZnO-based nonlinear resistor with excellent voltage nonlinear characteristics over a long period of time can be obtained. The present invention is based on this fact. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First example: 95.0 mol% of ZnO with a purity of 99% or more, 0.5 of Bi 2 O 3
Mol%, Co2O3 0.5mol %, MnO2 0.5mol%,
1.0 mol% Sb 2 O 3 , 0.5 mol % Cr 2 O 3 , SiO 2
Weighed 1.0 mol% of NiO and 1.0 mol% of NiO, and further weighed a predetermined amount (0.01 to 1.0% by weight) of aluminum borosilicate zinc bismuth glass powder. (The composition ratio is shown.) Mixed in a ball mill.

【表】 こうして得られた混合スリラーを乾燥し700〜
950℃で仮焼し、(なお仮焼を省略してもよい)バ
インダ(PVA5%水溶液)を加え、円板に加圧成
形した。その後、1100〜1300℃で焼成し、さらに
側面にガラス層を形成するため500〜700℃の熱処
理を行い得られた焼結体(直径30mm)を厚さ5mm
に研摩した後直径27mmの銀電極を焼きつけた。 こうして得られた焼結体の電気特性は第2表に
示す。
[Table] Dry the mixed chiller thus obtained and
It was calcined at 950°C (the calcination may be omitted), a binder (PVA 5% aqueous solution) was added, and it was pressure-molded into a disk. After that, it is fired at 1100-1300℃, and then heat-treated at 500-700℃ to form a glass layer on the side surface.
After polishing, a silver electrode with a diameter of 27 mm was baked. The electrical properties of the sintered body thus obtained are shown in Table 2.

【表】【table】

【表】 同表は1μA〜20kAまでの電圧電流特性を測定
した結果より算出したもので、電流が0.1mAと
1mA間の非直線指数0.1α1mA、V1mA/mm電流
値2500AにおけるV2500AとV1mAの比
V2500A/V1mA(制限電圧比)および衝撃電流
耐量特性は10kA印加前後のV0.1mAの変化率△
0.1mA/V0.1mA(%)で表わされる。 常時課電電圧に対する漏洩電流の増加は90℃に
保たれた恒温槽中でV1mAの90%の電圧を印加
して測定した。この結果は第1図A,Bに示さ
れ、各曲線に付された数字は第2表のNo.の数字と
同じである。第2図は0.1α1mAとV2500A/
V1mAの値をZnO60ωt%、Al2O32ωt%、
Bi2O35ωt%を含むアルミ硼珪酸亜鉛ビスマスガ
ラスの添加量との関係において示したグラフであ
る。 第2表および第1図〜第2図よりZnOを重量比
で40〜65ωt%およびBi2O3を5〜10ωt%含むアル
ミ硼珪酸亜鉛ビスマスガラスを添加することによ
り、常時課電電圧に対する漏洩電流増加率を著し
く小さくでき、換言すると、寿命特性が非常によ
くなり、さらに、制限電圧比特性、衝撃電流耐量
特性も改善されることがわかる。この結果得られ
た素子はギヤツプなし避雷器用の電圧非直線抵抗
体に要望される特性を満足させるものである。 このような優れた特性が得られたのは、ZnOと
各添加成分によつて構成される焼結体において
ZnO結晶粒子とBi2O3が主成分である粒界層の界
面に、更に添加されたアルミ硼珪酸亜鉛ビスマス
ガラスが焼成の過程でそのどちらにも固容されな
いガラス層として折出するからであると考えられ
る(第3図参照)。ガラス層がZnO結晶粒子およ
びBi2O3粒界層と固容しない点については、微細
構造観察により部分的に確認されている。すなわ
ち、ZnOの多い硼珪酸系ガラスを微量添加するこ
とにより電気絶縁性の高い硼珪酸系ガラス層が、
焼結体内に多量に存在するZnOに阻害されること
なく生成されると考えられる。 また、ガラス内に多量のZnOが存在することが
結晶粒子内格子間Znイオンの粒界層への拡散を
防止することにもなり、その結果、焼結体の結晶
粒子内格子間Znイオン濃度が比較的高い、すな
わち、固有抵抗の低いZnO結晶が生成され、大電
流領域の非直線性が改善されると考えられる。な
お硼珪酸系ガラスを多量に添加すると界面に折出
する高絶縁層が厚くなり過ぎ制限電圧特性が悪く
なる。 また、第4図は第2表に基いて作図をされたも
ので、アルミ硼珪酸亜鉛ビスマスガラス中のZnO
量と0.1α1.0mA、V2.5kA/V1.0mA、V1.0mA/
mmおよび△V1.0mA/V1.0mAの関係を示したも
ので、ZnOを重要比で40〜65%とすることによつ
て、制限電圧比特性、衝撃電流耐量特性も改善さ
れていることがわかる。 本実施例は前述の配合を用いたが、添加成分の
有効な添加量範囲は、ビスマス、コバルト、マン
ガン、アルチモン、クロム、けい素、およびニツ
ケルをそれぞれの酸化物、Bi2O3、Co2O3
MnO2、Sb2O3、Cr2O3、SiO2、およびNiOの形
に換算して、それぞれ、0.1〜3.0モル%、0.05〜
3.0モル%、0.05〜3.0モル%、0.1〜5モル%、
0.02〜3モル%、0.05〜5モル%、および0.1〜5
モル%である。 またアルミ硼珪酸亜鉛ビスマスガラスの有効な
添加量範囲はZnOを重量比で40〜65%Bi2O3を5
〜10%およびAl2O3を含むガラスについて0.01〜
1.0重量%である。 これらの添加量の範囲外になると、0.1α1mA
が45未満、V2500A/V1mAが1.8以上、10kA印
加後の電圧変化率△V0.1mA/V0.1mAが10%以
上、漏洩電流増加率が大きくなる、のいずれかに
なり、ギヤツプなし避雷器用の電圧非直線抵抗体
としては不適当になる。 第1図A,Bおよび第2表に示されたごとく、
本発明によれば、いずれの場合にも小電流領域か
ら大電流領域にわたつてすぐれた電圧非直線特性
を示し、かつ衝撃電流耐量特性、寿命特性とも非
常にすぐれたZnO系非直線抵抗体が提供される。
[Table] The table is calculated from the results of measuring voltage-current characteristics from 1μA to 20kA, and the current is 0.1mA.
Non-linearity index between 1mA 0.1α1mA, V1mA/mm ratio of V2500A to V1mA at current value 2500A
V2500A/V1mA (limiting voltage ratio) and shock current withstand characteristics are the change rate of V0.1mA before and after applying 10kA△
Expressed as 0.1mA/V0.1mA (%). The increase in leakage current with respect to the constantly applied voltage was measured by applying a voltage of 90% of V1mA in a constant temperature oven maintained at 90°C. The results are shown in FIGS. 1A and B, and the numbers attached to each curve are the same as the numbers in Table 2. Figure 2 shows 0.1α1mA and V2500A/
The value of V1mA is ZnO60ωt%, Al 2 O 3 2ωt%,
It is a graph shown in relation to the amount of addition of aluminum borosilicate zinc bismuth glass containing 5ωt% of Bi 2 O 3 . From Table 2 and Figures 1 and 2, by adding zinc bismuth aluminum borosilicate glass containing 40 to 65 ωt% of ZnO and 5 to 10 ωt% of Bi 2 O 3 by weight, leakage against the constantly applied voltage can be reduced. It can be seen that the current increase rate can be significantly reduced, in other words, the life characteristics are extremely improved, and the limiting voltage ratio characteristics and impact current withstand characteristics are also improved. The resulting device satisfies the characteristics required of a voltage nonlinear resistor for a gapless lightning arrester. Such excellent properties were obtained in the sintered body composed of ZnO and each additive component.
This is because the aluminum borosilicate zinc bismuth glass added to the interface between the ZnO crystal particles and the grain boundary layer whose main components are Bi 2 O 3 is precipitated as a glass layer that is not solidified in either of them during the firing process. It is thought that there is (see Figure 3). The fact that the glass layer does not solidify with the ZnO crystal grains and the Bi 2 O 3 grain boundary layer has been partially confirmed by microstructural observation. In other words, by adding a small amount of borosilicate glass containing a large amount of ZnO, a borosilicate glass layer with high electrical insulation properties is created.
It is thought that it is generated without being inhibited by the large amount of ZnO present in the sintered body. In addition, the presence of a large amount of ZnO in the glass prevents interstitial Zn ions within crystal grains from diffusing into the grain boundary layer, and as a result, the concentration of interstitial Zn ions within crystal grains in the sintered body increases. It is thought that a ZnO crystal with a relatively high resistivity, that is, a low resistivity, is produced, and nonlinearity in a large current region is improved. Note that if a large amount of borosilicate glass is added, the high insulating layer deposited at the interface becomes too thick, resulting in poor voltage limiting characteristics. In addition, Figure 4 was drawn based on Table 2, and shows ZnO in zinc-bismuth aluminum borosilicate glass.
amount and 0.1α1.0mA, V2.5kA/V1.0mA, V1.0mA/
This shows the relationship between mm and △V1.0mA/V1.0mA. By setting ZnO to an important ratio of 40 to 65%, the limiting voltage ratio characteristics and shock current withstand characteristics are also improved. Recognize. Although the above-mentioned formulation was used in this example, the effective addition amount range of the additive components is as follows: bismuth, cobalt, manganese, altimony, chromium, silicon, and nickel, respectively, in their respective oxides, Bi 2 O 3 , Co 2 O3 ,
0.1-3.0 mol%, 0.05-3.0% in terms of MnO2 , Sb2O3 , Cr2O3 , SiO2 , and NiO, respectively .
3.0 mol%, 0.05 to 3.0 mol%, 0.1 to 5 mol%,
0.02-3 mol%, 0.05-5 mol%, and 0.1-5
It is mole%. In addition, the effective addition amount range for aluminum borosilicate zinc bismuth glass is 40 to 65% by weight of ZnO and 5 to 5% Bi2O3 .
~10% and ~ 0.01 for glass containing Al2O3
It is 1.0% by weight. Outside these addition amounts, 0.1α1mA
is less than 45, V2500A/V1mA is 1.8 or more, the voltage change rate after applying 10kA △V0.1mA/V0.1mA is 10% or more, or the leakage current increase rate becomes large. It becomes unsuitable as a voltage nonlinear resistor. As shown in Figures 1A and B and Table 2,
According to the present invention, in any case, a ZnO-based nonlinear resistor exhibits excellent voltage nonlinear characteristics from a small current region to a large current region, and has excellent shock current withstand characteristics and life characteristics. provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は90℃雰囲気中において、V1mAの90
%を本発明の第1の実施例のZnO系電圧非直線抵
抗体に印加した時の漏洩電流の増加状態を示すグ
ラフ、第2図はアルミ硼珪酸亜鉛ビスマスガラス
添加量に対するZnO電圧非直線抵抗体の特性変化
のグラフ、第3図はZnO系非直線抵抗体内部構造
モデルの図である。第4図はアルミ硼珪酸亜鉛ビ
スマスガラス中のZnO量と電圧非直線抵抗体の特
性変化図。
Figure 1 shows V1mA at 90°C in a 90°C atmosphere.
% is applied to the ZnO-based voltage nonlinear resistor of the first embodiment of the present invention. Figure 2 shows the ZnO voltage nonlinear resistance with respect to the amount of aluminum borosilicate zinc bismuth glass added. Figure 3 is a diagram of the internal structure model of a ZnO-based nonlinear resistor. Figure 4 shows the change in the amount of ZnO in zinc-bismuth aluminum borosilicate glass and the characteristics of a voltage nonlinear resistor.

Claims (1)

【特許請求の範囲】 1 酸化亜鉛を主成分とし、添加成分としてビス
マス、コバルト、マンガン、アンチモン、クロ
ム、けい素およびニツケルを、それぞれ、
Bi2O3、Co2O3、MnO2、Sb2O3、Cr2O3、SiO2
よびNiOの形に換算して、それぞれ0.1〜3.0モル
%、0.05〜3.0モル%、0.05〜3モル%、0.1〜5
モル%、0.02〜3.0モル%、0.05〜5モル%および
0.1〜5モル%配合した原料に対し亜鉛をZnOの
形で40〜65wt%BiをBi2O3の形で5〜10wt%お
よびAl2O3を含むアルミ硼珪酸亜鉛ビスマスガラ
スを重量比で0.01〜1.0%添加混合し、焼結して
なる電圧非直線抵抗体。 2 前記焼結が1050〜1300Cで行なわれた特許請
求の範囲第1項記載の電圧非直線抵抗体。
[Claims] 1. Zinc oxide as the main component, with bismuth, cobalt, manganese, antimony, chromium, silicon and nickel as additive components, respectively.
0.1-3.0 mol%, 0.05-3.0 mol%, 0.05-3 in terms of Bi2O3 , Co2O3 , MnO2 , Sb2O3 , Cr2O3 , SiO2 and NiO , respectively. Mol%, 0.1-5
mol%, 0.02-3.0 mol%, 0.05-5 mol% and
For the raw materials containing 0.1 to 5 mol% zinc in the form of ZnO, 40 to 65 wt %, Bi in the form of Bi2O3 , 5 to 10 wt %, and aluminum borosilicate zinc bismuth glass containing Al2O3 in weight ratio. Voltage nonlinear resistor made by adding 0.01~1.0% and sintering. 2. The voltage nonlinear resistor according to claim 1, wherein the sintering is performed at 1050 to 1300C.
JP56044359A 1981-03-26 1981-03-26 Voltage nonlinear resistor Granted JPS57159001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56044359A JPS57159001A (en) 1981-03-26 1981-03-26 Voltage nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56044359A JPS57159001A (en) 1981-03-26 1981-03-26 Voltage nonlinear resistor

Publications (2)

Publication Number Publication Date
JPS57159001A JPS57159001A (en) 1982-10-01
JPS634681B2 true JPS634681B2 (en) 1988-01-30

Family

ID=12689307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56044359A Granted JPS57159001A (en) 1981-03-26 1981-03-26 Voltage nonlinear resistor

Country Status (1)

Country Link
JP (1) JPS57159001A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121382U (en) * 1988-02-10 1989-08-17

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6355360B2 (en) * 2014-02-26 2018-07-11 Koa株式会社 Manufacturing method of zinc oxide varistor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490597A (en) * 1977-12-28 1979-07-18 Meidensha Electric Mfg Co Ltd Voltage non-linear resistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490597A (en) * 1977-12-28 1979-07-18 Meidensha Electric Mfg Co Ltd Voltage non-linear resistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121382U (en) * 1988-02-10 1989-08-17

Also Published As

Publication number Publication date
JPS57159001A (en) 1982-10-01

Similar Documents

Publication Publication Date Title
JPS5811084B2 (en) Voltage nonlinear resistor
JPS634681B2 (en)
JPS6329802B2 (en)
JPS6221242B2 (en)
JPH0136684B2 (en)
JPH0425681B2 (en)
JPS6236615B2 (en)
JPS6329804B2 (en)
JPS583363B2 (en) Voltage nonlinear resistor
JPS583364B2 (en) Voltage nonlinear resistor
JPS6329805B2 (en)
JPS6330765B2 (en)
JPS6329801B2 (en)
JPH0216003B2 (en)
JPH0732085B2 (en) Electrode material for voltage nonlinear resistors
JPS6329803B2 (en)
JPH0578924B2 (en)
JPS5941286B2 (en) Voltage nonlinear resistance element and its manufacturing method
JPH0574606A (en) Zinc oxide varistor for low voltage
JPH03195003A (en) Voltage-dependent nonlinear resistor
JPS5939004A (en) Nonlinear resistor
JPS643325B2 (en)
JPS5853487B2 (en) Voltage nonlinear resistor
JPH0354441B2 (en)
JPH0439761B2 (en)