JP2006216805A - Zinc system compound oxide and thermoelectric conversion module - Google Patents

Zinc system compound oxide and thermoelectric conversion module Download PDF

Info

Publication number
JP2006216805A
JP2006216805A JP2005028432A JP2005028432A JP2006216805A JP 2006216805 A JP2006216805 A JP 2006216805A JP 2005028432 A JP2005028432 A JP 2005028432A JP 2005028432 A JP2005028432 A JP 2005028432A JP 2006216805 A JP2006216805 A JP 2006216805A
Authority
JP
Japan
Prior art keywords
oxide
zinc
thermoelectric conversion
composite oxide
based composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005028432A
Other languages
Japanese (ja)
Inventor
Makoto Mizutani
眞 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005028432A priority Critical patent/JP2006216805A/en
Publication of JP2006216805A publication Critical patent/JP2006216805A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a zinc system compound oxide having a low cost material zinc oxide as a base material and a high thermoelectric performance. <P>SOLUTION: The zinc system compound oxide has the Zn oxide, Ni, and Mg. The total content of Ni and Mg included in the zinc system compound oxide is preferably not more than 0.2 mol to 1 mol of Zn. Further, the molar ratio of Ni and Mg is preferably 0.1 to 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、亜鉛系複合酸化物及び熱電変換モジュールに関する。さらに詳しくは、良電気伝導性であり、かつ高い熱起電力を持つ亜鉛系複合酸化物、及びこの酸化物からなるn型熱電変換材料を使用した熱電変換モジュールに関する。   The present invention relates to a zinc-based composite oxide and a thermoelectric conversion module. More specifically, the present invention relates to a zinc-based composite oxide having good electrical conductivity and high thermoelectromotive force, and a thermoelectric conversion module using an n-type thermoelectric conversion material made of this oxide.

熱電発電は、熱電効果を利用して熱エネルギーを直接電力に変換する技術であり、可動部がなく安定性に優れている。このため、この技術は体温で作動する腕時計、僻地用電源、宇宙用電源又は軍事用電源等として、一部で実用化されている。
熱電発電用の熱電変換素子材料としては、これまで、PbTe系、BiTe系等が使用されている。しかしながら、価格と毒性の面で発電用の材料としては問題がある。
Thermoelectric power generation is a technology that directly converts thermal energy into electric power using the thermoelectric effect, and has no moving parts and is excellent in stability. For this reason, this technology has been put into practical use in part as a wristwatch that operates at body temperature, a remote power source, a space power source, a military power source, or the like.
As a thermoelectric conversion element material for thermoelectric power generation, PbTe series, Bi 2 Te 3 series, and the like have been used so far. However, there is a problem as a material for power generation in terms of price and toxicity.

この問題に対して、近年、毒性が少なく、価格の安い元素からなる、Coを含む層状ペロブスカイト型酸化物で、高い熱電性能をもつ材料が発見されている(例えば、特許文献1、2参照。)。
しかし、このCo系の複合酸化物はp型の熱電変換材料であり、安全で化学的に安定な酸化物を用いた熱電素子の実現のためには、n型の酸化物熱電材料が必要であった。
In response to this problem, a layered perovskite oxide containing Co having a low toxicity and consisting of an inexpensive element has been recently discovered (see, for example, Patent Documents 1 and 2). ).
However, this Co-based composite oxide is a p-type thermoelectric conversion material, and an n-type oxide thermoelectric material is necessary to realize a thermoelectric element using a safe and chemically stable oxide. there were.

n型の熱電変換材料としては、安価なZnOにアルミニウム、イットリウム及びインジウムを加え、真空中で焼結することにより高性能化した材料が開示されている(例えば、特許文献3−5参照。)。
また、特許文献6には、ZnOにアルミニウム添加し大気圧下で焼成した材料が開示されている。
しかしながら、これらの材料では、いまだ熱電性能は十分ではなく、特に、ZnO系酸化物では、熱伝導度の低減が高性能化のために必要であった。
ZnOの熱伝導度の低減のためには、NiやMgを固溶させることが有効であると知られているが、Niの添加では電荷の移動度の低下が大きく、また、Mgの添加では熱伝導度の低減効果が十分ではなかった。
As an n-type thermoelectric conversion material, a material whose performance has been improved by adding aluminum, yttrium and indium to inexpensive ZnO and sintering in vacuum is disclosed (for example, see Patent Documents 3-5). .
Patent Document 6 discloses a material obtained by adding aluminum to ZnO and firing it at atmospheric pressure.
However, these materials still do not have sufficient thermoelectric performance. In particular, ZnO-based oxides require a reduction in thermal conductivity for high performance.
In order to reduce the thermal conductivity of ZnO, it is known that it is effective to dissolve Ni or Mg. However, the addition of Ni causes a significant decrease in charge mobility. The effect of reducing thermal conductivity was not sufficient.

特開平9−321346号公報JP-A-9-321346 特願平10−256612号公報Japanese Patent Application No. 10-256612 特開昭62−132380号公報Japanese Patent Laid-Open No. 62-132380 特開昭62−17981号公報Japanese Patent Laid-Open No. 62-17981 特開昭63−115388号公報JP-A-63-115388 特開平8−186293号公報JP-A-8-186293

本発明は、上記課題を克服するためになされたものであり、安価な材料である酸化亜鉛を母材とし、高い熱電性能を有する亜鉛系複合酸化物を提供することを目的とする。   The present invention has been made to overcome the above-described problems, and an object of the present invention is to provide a zinc-based composite oxide having high thermoelectric performance using zinc oxide, which is an inexpensive material, as a base material.

本発明者らは、上記課題を解決するために鋭意研究したところ、亜鉛系酸化物に、NiとMgを共存させることにより、Ni及びMgをそれぞれ単独で添加した場合よりも、さらに熱伝導度を低減させることができ、かつ電荷移動度の低下を抑制できることを見出し、本発明を完成させた。   The inventors of the present invention have intensively studied to solve the above-mentioned problems. As a result, Ni and Mg coexist in the zinc-based oxide, so that the thermal conductivity is further increased than when Ni and Mg are added individually. It was found that the decrease in charge mobility could be suppressed, and the present invention was completed.

本発明によれば、以下の亜鉛系複合酸化物、及び熱電変換モジュールが提供される。
1.Zn酸化物、Ni及びMgを含有する亜鉛系複合酸化物。
2.前記NiとMgの合計含有量が、Zn1モルに対して0.3モル以下である1に記載の亜鉛系複合酸化物。
3.前記Ni及びMgのモル比(Ni/Mg)が、0.1〜10である1又は2に記載の亜鉛系複合酸化物。
According to the present invention, the following zinc-based composite oxide and thermoelectric conversion module are provided.
1. A zinc-based composite oxide containing Zn oxide, Ni and Mg.
2. 2. The zinc-based composite oxide according to 1, wherein the total content of Ni and Mg is 0.3 mol or less with respect to 1 mol of Zn.
3. The zinc-based composite oxide according to 1 or 2, wherein the molar ratio of Ni and Mg (Ni / Mg) is 0.1 to 10.

4.さらに、前記Zn酸化物に対して電子供与性がある元素を含む1〜3のいずれかに記載の亜鉛系複合酸化物。
5.Laを除く希土類元素、Zr及びSnの群から選択される少なくとも1種の元素を、前記Zn1モルに対して0.2モル以下含む1〜4のいずれかに記載の亜鉛系複合酸化物。
6.Co系酸化物からなるp型熱電変換材料と、上記1〜5のいずれかに記載の亜鉛系複合酸化物からなるn型熱電変換材料と、を含む熱電変換モジュール。
4). Furthermore, the zinc complex oxide in any one of 1-3 containing the element which has an electron donating property with respect to the said Zn oxide.
5. The zinc-based composite oxide according to any one of 1 to 4, which contains at least one element selected from the group consisting of rare earth elements excluding La, Zr and Sn, in an amount of 0.2 mol or less based on 1 mol of Zn.
6). A thermoelectric conversion module comprising a p-type thermoelectric conversion material made of a Co-based oxide and an n-type thermoelectric conversion material made of the zinc-based composite oxide according to any one of 1 to 5 above.

本発明の亜鉛系複合酸化物は、酸化亜鉛を主成分としているため安価であり、かつ高い熱電性能を有する。   The zinc-based composite oxide of the present invention is inexpensive and has high thermoelectric performance because it mainly contains zinc oxide.

以下、本発明を具体的に説明する。
本発明の複合酸化物は、Zn酸化物を主体とし、Ni及びMgを含む複合酸化物である。Ni及びMgの両者を含むことにより、複合酸化物の熱伝導度を低減でき、かつ電荷移動度の低下を抑制できる。
本発明の亜鉛系複合酸化物では、複合酸化物に含まれるNiとMgの合計含有量(A)がZn1モルに対し、0<A≦0.3であることが好ましい。Aが0.3を超えると、複合酸化物の熱伝導度は低下することができるものの、電気伝導度が小さくなりすぎるため、熱電素子として適さない場合がある。A量としては、より好ましくは0.001<A≦0.25であり、さらに好ましくは、0.01<A≦0.2である。
The present invention will be specifically described below.
The composite oxide of the present invention is a composite oxide mainly composed of Zn oxide and containing Ni and Mg. By including both Ni and Mg, the thermal conductivity of the composite oxide can be reduced, and the decrease in charge mobility can be suppressed.
In the zinc-based composite oxide of the present invention, the total content (A) of Ni and Mg contained in the composite oxide is preferably 0 <A ≦ 0.3 with respect to 1 mol of Zn. If A exceeds 0.3, the thermal conductivity of the composite oxide can be lowered, but the electrical conductivity becomes too small, and may not be suitable as a thermoelectric element. The amount of A is more preferably 0.001 <A ≦ 0.25, and still more preferably 0.01 <A ≦ 0.2.

亜鉛系複合酸化物に含まれるNiとMgのモル比(Ni/Mg)は、0.1〜10であることが好ましい。モル比が0.1よりも小さい場合、熱伝導の低減が不十分となるおそれがある。一方、モル比が10よりも大きい場合、電荷移動度が小さくなりすぎるおそれがある。モル比(Ni/Mg)は、0.2〜2であることが特に好ましい。   The molar ratio of Ni and Mg (Ni / Mg) contained in the zinc-based composite oxide is preferably 0.1-10. When the molar ratio is smaller than 0.1, there is a possibility that the reduction of heat conduction is insufficient. On the other hand, if the molar ratio is greater than 10, the charge mobility may be too small. The molar ratio (Ni / Mg) is particularly preferably 0.2-2.

本発明の亜鉛系複合酸化物では、上述したNi及びMgの他に、Zn酸化物に対し電子供与性である元素を添加することが好ましい。電子供与性元素を添加することによって、負のキャリア数を制御することができるため、熱電変換材料として高い性能指数を有する複合酸化物が得られる。
Zn酸化物に対し電子供与性である元素としては、例えば、Al、Ga、In、Sc等が挙げられる。好ましくは、Al、Scである。
電子供与性元素の添加量は、Zn1モルに対して0.001〜0.005モルであることが好ましい。
In the zinc-based composite oxide of the present invention, it is preferable to add an element that is electron-donating to the Zn oxide in addition to the above-described Ni and Mg. Since the number of negative carriers can be controlled by adding an electron donating element, a composite oxide having a high figure of merit can be obtained as a thermoelectric conversion material.
Examples of the element that has an electron donating property to the Zn oxide include Al, Ga, In, and Sc. Al and Sc are preferable.
The addition amount of the electron donating element is preferably 0.001 to 0.005 mol with respect to 1 mol of Zn.

また、本発明の亜鉛系複合酸化物では、Laを除く希土類元素、Zr及びSnから選択される少なくとも1種の元素を添加することが好ましい。これにより、複合酸化物の電荷移動度を向上することができる。
希土類元素としては、例えば、Ce、Sm、Yb、Ndが好ましく使用できる。特に好ましくは、Ce、Ybである。
これら元素の添加量は、Zn1モルに対して0.2モル以下、特に、0.005〜0.1モルであることが好ましい。
In the zinc-based composite oxide of the present invention, it is preferable to add at least one element selected from rare earth elements excluding La, Zr and Sn. Thereby, the charge mobility of the composite oxide can be improved.
As the rare earth element, for example, Ce, Sm, Yb, and Nd can be preferably used. Particularly preferred are Ce and Yb.
The addition amount of these elements is preferably 0.2 mol or less, particularly preferably 0.005 to 0.1 mol with respect to 1 mol of Zn.

本発明の複合酸化物は、必要な元素源を含む原料の粉末等を均一に混合し、加圧プレス等により所望の形状に成型したものを焼成することにより得られる。尚、成型及び焼成は、この技術分野にて一般に実施されている方法にて行なうことができる。また、原料粉末の混合時には、必要に応じて水等の溶媒を使用してもよい。   The composite oxide of the present invention can be obtained by uniformly mixing raw material powder containing a necessary element source and firing it into a desired shape by a pressure press or the like. The molding and firing can be performed by a method generally performed in this technical field. Moreover, when mixing the raw material powder, a solvent such as water may be used as necessary.

本発明の複合酸化物の製造に用いられる原料として、各成分元素、各成分元素の酸化物又はその焼成時に酸化物となる原料が使用できる。
Zn源としては、例えば、金属(Zn)、酸化物(ZnO)、水酸化物〔Zn(OH)〕、硝酸塩〔Zn(NO〕等が用いられる。
Ni源としては、金属(Ni)、酸化物(NiO)、Niの炭酸化物、Niの硝酸塩等が用いられる。
Mg源としては、金属(Mg)、酸化物(MgO)、Mgの炭酸化物、Mgの硝酸塩等が用いられる。
As the raw material used for the production of the composite oxide of the present invention, each component element, an oxide of each component element, or a raw material that becomes an oxide upon firing thereof can be used.
As the Zn source, for example, metal (Zn), oxide (ZnO), hydroxide [Zn (OH) 2 ], nitrate [Zn (NO 3 ) 2 ] and the like are used.
As the Ni source, metal (Ni), oxide (NiO), Ni carbonate, Ni nitrate, or the like is used.
As the Mg source, metal (Mg), oxide (MgO), Mg carbonate, Mg nitrate or the like is used.

本発明の複合酸化物に、上述したZn酸化物に対し電子供与性である元素、及び/又は、Laを除く希土類元素、Zr並びにSnから選択される少なくとも1種の元素を添加する場合も、これら各元素の単体、酸化物、炭酸化物及び硝酸塩等を原料として混合物に配合すればよい。
例えば、希土類元素であるCe源としては、金属(Ce)、酸化物(CeO)、炭酸化物[Ce(CO・8HO]、硝酸塩[Ce(NO・6HO]等が使用できる。
When adding at least one element selected from the elements that are electron-donating to the above-described Zn oxide and / or rare earth elements other than La, Zr, and Sn to the composite oxide of the present invention, What is necessary is just to mix | blend the simple substance, oxide, carbonate, nitrate, etc. of these each element into a mixture as a raw material.
For example, as a Ce source which is a rare earth element, metal (Ce), oxide (CeO 2 ), carbonate [Ce 2 (CO 3 ) 3 · 8H 2 O], nitrate [Ce (NO 3 ) 3 · 6H 2 O] etc. can be used.

本発明の熱電変換モジュールは、上記の複合酸化物をn型熱電変換材料に用い、Co系酸化物からなるp型熱電変換材料と組み合わせたものである。それ以外の他の構成部分は、公知の材料で構成できる。   The thermoelectric conversion module of the present invention uses the above complex oxide as an n-type thermoelectric conversion material and is combined with a p-type thermoelectric conversion material made of a Co-based oxide. Other components can be made of a known material.

図1は、本発明の熱電変換モジュールの一実施形態を示す模式図である。
熱電変換モジュール1において、n型熱電変換材料2及びp型熱電変換材料3は、共通の高温側電極4と、2つの低温側電極5及び6に接合している。ここで、高温側電極4を加熱すると、高温側接合部7の温度が上がりThとなり、低温側接合部8の温度Tcとの間に温度差ΔT(ΔT=Th−Tc)が生じ、高温側電極4と低温側電極5及び6との間に電圧が発生する。そして、低温側電極5及び6の間に負荷抵抗(R)を接続すると電流(I)が流れ、この電流を電力(W)として取り出すことができる。
このように構成される熱電変換モジュールは、温度差から起電力を得るだけでなく、電力を逆に加えることで冷却や加熱を行なうヒートポンプとしても用いることができる。
FIG. 1 is a schematic view showing an embodiment of the thermoelectric conversion module of the present invention.
In the thermoelectric conversion module 1, the n-type thermoelectric conversion material 2 and the p-type thermoelectric conversion material 3 are joined to a common high-temperature side electrode 4 and two low-temperature side electrodes 5 and 6. Here, when the high temperature side electrode 4 is heated, the temperature of the high temperature side junction 7 is increased to Th, and a temperature difference ΔT (ΔT = Th−Tc) occurs between the temperature Tc of the low temperature side junction 8 and the high temperature side. A voltage is generated between the electrode 4 and the low temperature side electrodes 5 and 6. And if load resistance (R) is connected between the low temperature side electrodes 5 and 6, electric current (I) will flow and this electric current can be taken out as electric power (W).
The thermoelectric conversion module configured as described above can be used not only for obtaining an electromotive force from a temperature difference but also as a heat pump for cooling and heating by applying electric power in reverse.

本発明において、p型熱電変換材料には、Co酸化物からなるものを使用する。これにより、高温での使用が可能で、高い変換効率の素子が得られる。
Co酸化物系p型熱電変換材料は、例えば、特開2000−156529に開示された材料を用いることができる。
In the present invention, the p-type thermoelectric conversion material is made of Co oxide. Thereby, use at high temperature is possible and an element with high conversion efficiency is obtained.
As the Co oxide-based p-type thermoelectric conversion material, for example, a material disclosed in JP 2000-156529 can be used.

以下、実施例に基づき本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated in more detail based on an Example, this invention is not limited to these Examples.

実施例1
酸化亜鉛粉(ZnO:純度99.9%、平均粒径約2μm)90.676g、NiO(純度99.9%)2.496g、MgO(純度99.9%)0.449g及び酸化セリウム(純度99.9%)5.752gを秤量、混合し、これらに10wt%の硝酸アルミニウム9水塩の水溶液を6.27g添加し、乳鉢で混合した。
次に、この混合物を乾燥機にて80℃、5時間乾燥させた後、500℃で1時間仮焼成した。この仮焼成した粉末を、さらに乳鉢で粉砕し、ボールミルで20時間混合粉砕した。この粉末を100メッシュのふるいにかけ、粒度をそろえた。得られた粉末を金型に入れて、約幅7mm、厚さ7mm、長さ20mmの棒状及び10mmφ×2mmの円盤状に成型し、CIP(冷間等方圧プレス)成型により圧力1tにて加圧成型した。
こうして得られた成形体を室温から2時間かけて1480℃まで昇温し、7時間保持した後、2時間かけて室温まで冷却して、亜鉛系複合酸化物を作製した。
Example 1
Zinc oxide powder (ZnO: purity 99.9%, average particle size about 2 μm) 90.676 g, NiO (purity 99.9%) 2.496 g, MgO (purity 99.9%) 0.449 g and cerium oxide (purity) 99.9%) 5.752 g was weighed and mixed, and 6.27 g of an aqueous solution of 10 wt% aluminum nitrate nonahydrate was added thereto and mixed in a mortar.
Next, this mixture was dried at 80 ° C. for 5 hours in a dryer and then calcined at 500 ° C. for 1 hour. The calcined powder was further pulverized with a mortar and mixed and pulverized with a ball mill for 20 hours. This powder was passed through a 100-mesh sieve to obtain a uniform particle size. The obtained powder is put into a mold and molded into a rod shape having a width of about 7 mm, a thickness of 7 mm, and a length of 20 mm and a disk shape of 10 mmφ × 2 mm. Press molded.
The molded body thus obtained was heated from room temperature to 1480 ° C. over 2 hours, held for 7 hours, and then cooled to room temperature over 2 hours to produce a zinc-based composite oxide.

この亜鉛系複合酸化物の表面を約1mm程度研磨又は切断して、測定用の試料とした。
この試料をX線回折にて評価した結果、ZnO及びCeOの回折ピークは観測されたものの、Ni,Mg,Alの酸化物の回折ピークについては観測されず、これらは固溶していることが確認できた。
The surface of the zinc-based composite oxide was polished or cut by about 1 mm to obtain a measurement sample.
As a result of evaluating this sample by X-ray diffraction, although the diffraction peaks of ZnO and CeO 2 were observed, the diffraction peaks of the oxides of Ni, Mg and Al were not observed, and they were dissolved. Was confirmed.

また、以下に示す項目について評価した。
(1)電気伝導度及び熱起電力
熱電特性評価装置(アルバック理工(株)製、ZEM−2)を用いて測定した。
(2)熱伝導度
レーザーフラッシュ法により熱拡散率を求め、比熱をDSC法により求めて、下記式により算出した。
熱伝導率=熱拡散率×比熱×密度
(3)ホール移動度
東洋テクニカ製、ResiTest8300を用いたホール測定から求めた。
(4)性能指数(Z)
以下の計算式により求めた。
性能指数(Z)=[電気伝導度×(熱起電力)]/熱伝導度
In addition, the following items were evaluated.
(1) Electrical conductivity and thermoelectromotive force It measured using the thermoelectric characteristic evaluation apparatus (The ULVAC-RIKO Co., Ltd. make, ZEME-2).
(2) Thermal conductivity The thermal diffusivity was calculated | required with the laser flash method, the specific heat was calculated | required with DSC method, and it computed with the following formula.
Thermal conductivity = thermal diffusivity × specific heat × density (3) Hall mobility It was determined from hole measurement using ResiTest 8300 manufactured by Toyo Technica.
(4) Performance index (Z)
It calculated | required with the following formulas.
Figure of merit (Z) = [electric conductivity × (thermoelectromotive force) 2 ] / thermal conductivity

実施例1及び以下に示す実施例、比較例で作製した亜鉛系複合酸化物について、複合酸化物に含有されているZnに対するNi及びMgのモル比、及び測定結果を表1に示す。   Table 1 shows the molar ratios of Ni and Mg to Zn contained in the composite oxide and the measurement results for the zinc-based composite oxides prepared in Example 1 and the following examples and comparative examples.

Figure 2006216805
Figure 2006216805

表1の記載から、実施例1の亜鉛系複合酸化物は、後述する比較例(Ni及びMg単独添加の場合)に比べて、性能指数(Z)がはるかに高くなっており、n型の熱電変換材料として有用な材料であることがわかった。   From the description in Table 1, the zinc-based composite oxide of Example 1 has a much higher figure of merit (Z) than the comparative example described below (in the case of adding Ni and Mg alone), and is n-type. It was found that the material is useful as a thermoelectric conversion material.

実施例2
酸化亜鉛粉(純度99.9%,平均粒径約2μm)91.025g、NiO(純度99.9%)1.671g、MgO(純度99.9%)0.901g及び酸化セリウム(純度99.9%)5.774gを秤量、混合し、これに10wt%の硝酸アルミニウム9水塩の水溶液を6.29g添加し、乳鉢で混合した。
以下、この混合物を実施例1と同様に成型、焼成することにより亜鉛系複合酸化物を作製した。
Example 2
Zinc oxide powder (purity 99.9%, average particle size about 2 μm) 91.025 g, NiO (purity 99.9%) 1.671 g, MgO (purity 99.9%) 0.901 g and cerium oxide (purity 99.99 g). (9%) 5.774 g was weighed and mixed. To this was added 6.29 g of an aqueous solution of 10 wt% aluminum nitrate nonahydrate and mixed in a mortar.
Thereafter, this mixture was molded and fired in the same manner as in Example 1 to produce a zinc-based composite oxide.

得られた複合酸化物をX線回折にて評価した結果、ZnO及びCeOの回折ピークは観測されたものの、Ni,Mg,Alの酸化物の回折ピークについては観測されず、これらは固溶していることが確認できた。
表1の記載から、後述する比較例(Ni及びMg単独添加の場合)に比べて、性能指数(Z)がはるかに高くなっており、n型の熱電変換材料として有用な材料であることがわかった。
As a result of evaluating the obtained complex oxide by X-ray diffraction, although diffraction peaks of ZnO and CeO 2 were observed, diffraction peaks of oxides of Ni, Mg, and Al were not observed, and these were dissolved. I was able to confirm.
From the description of Table 1, the figure of merit (Z) is much higher than that of the comparative example described below (in the case of adding Ni and Mg alone), and is a material useful as an n-type thermoelectric conversion material. all right.

実施例3
酸化亜鉛粉(純度99.9%、平均粒径約2μm)91.376g、NiO(純度99.9%)0.839g、MgO(純度99.9%)1.357g及び酸化セリウム(純度99.9%)5.796gを秤量、混合し,これに10wt%の硝酸アルミニウム9水塩の水溶液を6.31g添加し、乳鉢で混合した。
以下、この混合物を実施例1と同様に成型、焼成することにより亜鉛系複合酸化物を作製した。
Example 3
91.376 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 0.839 g of NiO (purity 99.9%), 1.357 g of MgO (purity 99.9%) and cerium oxide (purity 99.99%). 9%) 5.796 g was weighed and mixed. To this, 6.31 g of an aqueous solution of 10 wt% aluminum nitrate nonahydrate was added and mixed in a mortar.
Thereafter, this mixture was molded and fired in the same manner as in Example 1 to produce a zinc-based composite oxide.

得られた複合酸化物をX線回折にて評価した結果、ZnO及びCeOの回折ピークは観測されたものの、Ni,Mg,Alの酸化物の回折ピークについては観測されず、これらは固溶していることが確認できた。
表1の記載から、後述する比較例(Ni及びMg単独添加の場合)に比べて、性能指数(Z)がはるかに高くなっており、n型の熱電変換材料として有用な材料であることがわかった。
As a result of evaluating the obtained composite oxide by X-ray diffraction, although diffraction peaks of ZnO and CeO 2 were observed, diffraction peaks of oxides of Ni, Mg, and Al were not observed. I was able to confirm.
From the description of Table 1, the figure of merit (Z) is much higher than that of the comparative example described below (in the case of adding Ni and Mg alone), and is a material useful as an n-type thermoelectric conversion material. all right.

比較例1
酸化亜鉛粉(純度99.9%、平均粒径約2μm)91.730g、MgO(純度99.9%)1.817g及び酸化セリウム(純度99.9%)5.819gを秤量、混合し、これに10wt%の硝酸アルミニウム9水塩の水溶液を6.34g添加し、乳鉢で混合した。
以下、この混合物を実施例1と同様に成型、焼成することにより亜鉛系複合酸化物を作製した。
Comparative Example 1
Weigh and mix 91.730 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 1.817 g of MgO (purity 99.9%) and 5.819 g of cerium oxide (purity 99.9%), To this, 6.34 g of an aqueous solution of 10 wt% aluminum nitrate nonahydrate was added and mixed in a mortar.
Thereafter, this mixture was molded and fired in the same manner as in Example 1 to produce a zinc-based composite oxide.

得られた複合酸化物をX線回折にて評価した結果、ZnO及びCeOの回折ピークは観測されたものの、Mg,Alの酸化物の回折ピークについては観測されず、これらは固溶していることが確認できた。
表1に示すように、Mg単独添加の場合は、ホール移動度は高いものの、熱伝導度の低減が十分ではなく、性能指数(Z)が低い値にとどまる事があきらかになった。
As a result of evaluating the obtained composite oxide by X-ray diffraction, although the diffraction peaks of ZnO and CeO 2 were observed, the diffraction peaks of the oxides of Mg and Al were not observed. It was confirmed that
As shown in Table 1, when Mg alone was added, the hole mobility was high, but the thermal conductivity was not sufficiently reduced, and it was apparent that the figure of merit (Z) remained at a low value.

比較例2
酸化亜鉛粉(純度99.9%、平均粒径約2μm)90.330g、NiO(純度99.9%)3.316g及び酸化セリウム(純度99.9%)を5.73gを秤量、混合し、これに10wt%の硝酸アルミニウム9水塩の水溶液を6.24g添加し、乳鉢で混合した。
以下、この混合物を実施例1と同様に成型、焼成することにより亜鉛系複合酸化物を作製した。
Comparative Example 2
Weigh and mix 90.330 g of zinc oxide powder (purity 99.9%, average particle size of about 2 μm), 3.316 g of NiO (purity 99.9%) and 5.73 g of cerium oxide (purity 99.9%). Then, 6.24 g of an aqueous solution of 10 wt% aluminum nitrate nonahydrate was added and mixed in a mortar.
Thereafter, this mixture was molded and fired in the same manner as in Example 1 to produce a zinc-based composite oxide.

得られた複合酸化物をX線回折にて評価した結果、ZnO及びCeOの回折ピークは観測されたものの、Ni,Alの酸化物の回折ピークについては観測されず、これらは固溶していることが確認できた。
表1に示したように、Ni単独添加の場合は、熱伝導度の低減効果は高いものの、ホール移動度が低く、Ni,Mg混合体に比べ性能指数(Z)が低い値にとどまる事があきらかになった。
As a result of evaluating the obtained composite oxide by X-ray diffraction, although diffraction peaks of ZnO and CeO 2 were observed, the diffraction peaks of the oxides of Ni and Al were not observed. It was confirmed that
As shown in Table 1, in the case of adding Ni alone, although the effect of reducing thermal conductivity is high, the hole mobility is low, and the figure of merit (Z) may be low compared to the Ni and Mg mixture. It became clear.

本発明の亜鉛系複合酸化物は、熱電変換モジュールで使用されるn型熱電変換材料として好適であり、これを使用した熱電変換モジュールは、腕時計等の小型機器用電源、僻地用電源、宇宙用電源及び軍事用電源等に使用できる。   The zinc-based composite oxide of the present invention is suitable as an n-type thermoelectric conversion material used in a thermoelectric conversion module, and the thermoelectric conversion module using the zinc-based composite oxide is used for power supplies for small devices such as watches, power supplies for remote areas, and for space use. It can be used for power supplies and military power supplies.

本発明の熱電変換モジュールの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the thermoelectric conversion module of this invention.

符号の説明Explanation of symbols

1 熱電変換素子
2 n型熱電変換材料(亜鉛系複合酸化物)
3 p型熱電変換材料
4 高温側電極
5、6 低温側電極
7 高温側接合部
8 低温側接合部
1 Thermoelectric conversion element 2 n-type thermoelectric conversion material (zinc-based composite oxide)
3 p-type thermoelectric conversion material 4 high temperature side electrode 5, 6 low temperature side electrode 7 high temperature side junction 8 low temperature side junction

Claims (6)

Zn酸化物、Ni及びMgを含有する亜鉛系複合酸化物。   A zinc-based composite oxide containing Zn oxide, Ni and Mg. 前記NiとMgの合計含有量が、Zn1モルに対して0.3モル以下である請求項1に記載の亜鉛系複合酸化物。   The zinc-based composite oxide according to claim 1, wherein the total content of Ni and Mg is 0.3 mol or less with respect to 1 mol of Zn. 前記Ni及びMgのモル比(Ni/Mg)が、0.1〜10である請求項1又は2に記載の亜鉛系複合酸化物。   The zinc-based composite oxide according to claim 1 or 2, wherein the molar ratio of Ni and Mg (Ni / Mg) is 0.1-10. さらに、前記Zn酸化物に対して電子供与性がある元素を含む請求項1〜3のいずれかに記載の亜鉛系複合酸化物。   Furthermore, the zinc type complex oxide in any one of Claims 1-3 containing the element which has an electron donating property with respect to the said Zn oxide. Laを除く希土類元素、Zr及びSnの群から選択される少なくとも1種の元素を、前記Zn1モルに対して0.2モル以下含む請求項1〜4のいずれかに記載の亜鉛系複合酸化物。   5. The zinc-based composite oxide according to claim 1, comprising at least one element selected from the group consisting of rare earth elements excluding La, Zr and Sn, in an amount of 0.2 mol or less based on 1 mol of Zn. . Co系酸化物からなるp型熱電変換材料と、
請求項1〜5のいずれかに記載の亜鉛系複合酸化物からなるn型熱電変換材料と、を含む熱電変換モジュール。
A p-type thermoelectric conversion material comprising a Co-based oxide;
An n-type thermoelectric conversion material comprising the zinc-based composite oxide according to claim 1.
JP2005028432A 2005-02-04 2005-02-04 Zinc system compound oxide and thermoelectric conversion module Pending JP2006216805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005028432A JP2006216805A (en) 2005-02-04 2005-02-04 Zinc system compound oxide and thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005028432A JP2006216805A (en) 2005-02-04 2005-02-04 Zinc system compound oxide and thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2006216805A true JP2006216805A (en) 2006-08-17

Family

ID=36979754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005028432A Pending JP2006216805A (en) 2005-02-04 2005-02-04 Zinc system compound oxide and thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2006216805A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242948A (en) * 1985-04-18 1986-10-29 松下電器産業株式会社 Oxide substrate material
JPH03139803A (en) * 1989-10-25 1991-06-14 Sanken Electric Co Ltd Oxide voltage nonlinear resistor
JPH06316462A (en) * 1993-04-30 1994-11-15 Murata Mfg Co Ltd Structural nonmagnetic ceramic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242948A (en) * 1985-04-18 1986-10-29 松下電器産業株式会社 Oxide substrate material
JPH03139803A (en) * 1989-10-25 1991-06-14 Sanken Electric Co Ltd Oxide voltage nonlinear resistor
JPH06316462A (en) * 1993-04-30 1994-11-15 Murata Mfg Co Ltd Structural nonmagnetic ceramic material

Similar Documents

Publication Publication Date Title
JP5189289B2 (en) Method for producing perovskite complex oxide
US7732704B2 (en) Conductive paste for connecting thermoelectric conversion material
JP2005116746A (en) Thermoelectric conversion material and thermoelectric convertor
He et al. Thermoelectric properties of La1− xAxCoO3 (A= Pb, Na)
JP2001223393A (en) Composite oxide with high seebeck factor and electric conductivity
JP5252474B2 (en) Oxide composite having n-type thermoelectric properties
JP3727945B2 (en) Thermoelectric conversion material and production method thereof
KR100938962B1 (en) Double Oxide With n Type Thermoelectric Characteristics
JP3565503B2 (en) Oxide thermoelectric conversion material
JP2006347861A (en) Manufacturing method of zinc-based oxide and zinc-based oxide manufactured by the method
JP4776916B2 (en) n-type thermoelectric conversion material
JP2000012915A (en) Thermoelectric conversion material
JP5206510B2 (en) N-type thermoelectric conversion material, n-type thermoelectric conversion element, and thermoelectric conversion module
JP2003008086A (en) Composite oxide and thermoelectric converter using the same
JP4221496B2 (en) Composite oxide having n-type thermoelectric properties
JP2006216805A (en) Zinc system compound oxide and thermoelectric conversion module
JP2004186572A (en) Thermoelectric transduction material and thermoelectric transducer
JP4380606B2 (en) N-type thermoelectric conversion material and thermoelectric conversion element
KR101427194B1 (en) Cr-DOPED Mn-Si THERMOELECTRIC MATERIAL AND MANUFACTURING METHOD FOR THE SAME
JP4338956B2 (en) Oxide sintered body, n-type thermoelectric conversion material, and thermoelectric conversion element using the same
JP2004217499A (en) Complex oxide, n-type thermoelectric conversion material, and thermoelectric conversion element using it
JP3585696B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2000012914A (en) Thermoelectric conversion material and thermoelectric conversion element
JP4485273B2 (en) n-type thermoelectric conversion material
JP4193940B2 (en) Composite oxide with excellent thermoelectric conversion performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608