JPH02188228A - Optical shaping method - Google Patents

Optical shaping method

Info

Publication number
JPH02188228A
JPH02188228A JP1009176A JP917689A JPH02188228A JP H02188228 A JPH02188228 A JP H02188228A JP 1009176 A JP1009176 A JP 1009176A JP 917689 A JP917689 A JP 917689A JP H02188228 A JPH02188228 A JP H02188228A
Authority
JP
Japan
Prior art keywords
light
layer
transmitting window
window
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1009176A
Other languages
Japanese (ja)
Other versions
JPH0523942B2 (en
Inventor
Shigeru Nagamori
茂 永森
Katsumi Sato
勝美 佐藤
Yoshinao Hirano
平野 義直
Katsuhide Murata
勝英 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP1009176A priority Critical patent/JPH02188228A/en
Priority to EP19900100525 priority patent/EP0379068A3/en
Publication of JPH02188228A publication Critical patent/JPH02188228A/en
Publication of JPH0523942B2 publication Critical patent/JPH0523942B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Abstract

PURPOSE:To prevent the resin coating layer of a light transmitting window from deteriorating, to enhance durability of an apparatus and to smoothly perform the optical shaping method by providing the resin coating layer on the surface of the inner surface of the vessel of the light transmitting window, and moving the light transmitting window toward a window face when a cured layer is isolated from the light transmitting window. CONSTITUTION:A base 21 is isolated at a predetermined interval from a light transmitting window 13, a light is then emitted to form a cured layer 24 of a first layer. Then, the base 21 is further isolated at a predetermined distance from the light transmitting window 13 by an elevator 22, a motor 36 is then driven to rotate a vessel 11 at a predetermined angle around an axial center A. Thereafter, a light is again emitted to form a cured layer 24 of a second layer. Subsequently, after the base 21 is raised at a predetermined distance, the vessel 11 is rotated, a cured layer 24 of a third layer is formed, and the steps are sequentially repeated. After all the layers of object shapes are formed, a laminate of the cured materials 24 is removed from the base 21, finished as required to obtain an object shaped material. A resin coating layer of fluorine resin is formed on the surface of the light transmitting window 13.

Description

【発明の詳細な説明】 [a業上の利用分野] 本発明は光硬化性樹脂に光を照射して目的形状の硬化体
を製造する光学的造形法に関する。詳しくは、容器に設
けた透光窓から容器内の光硬化性′a1脂に向って光を
照射する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical modeling method for producing a cured product having a desired shape by irradiating a photocurable resin with light. Specifically, the present invention relates to an optical modeling method in which light is irradiated from a light-transmitting window provided in the container toward the photocurable 'a1 fat in the container.

[従来の技術] 光硬化性樹脂に光束を照射して、該照射部分を硬化させ
、この硬化部分を水平方向に連続させると共に、さらに
その上側に光硬化性樹脂を供給して同様にして硬化させ
ることにより上下方向にも硬化体を連続させ、これを繰
り返すことにより目的形状の硬化体を製造する光学的造
形法は特開昭60−247515号、62−35966
号、62−1014013号などにより公知である。光
束を走査する代りにマスクを用いる方法も公知である。
[Prior art] A photocurable resin is irradiated with a light beam to cure the irradiated portion, and this cured portion is continued in the horizontal direction, and a photocurable resin is further supplied above it and cured in the same manner. An optical modeling method in which the cured body is made to continue in the vertical direction by repeating this process to produce a cured body in the desired shape is disclosed in Japanese Patent Application Laid-open Nos. 60-247515 and 62-35966.
No. 62-1014013. It is also known to use a mask instead of scanning the beam.

かかる光学的造形法として、底面又は側面に透光窓を有
する容器と、この透光窓を通して容器内に光を照射する
装置と、該容器内において透光窓から離反する方向へ移
動可能に設けられたベースを有するものがある。この光
学的造形法について第2図を参照して説明する。
Such an optical modeling method includes a container having a light-transmitting window on the bottom or side surface, a device for irradiating light into the container through the light-transmitting window, and a device movable within the container in a direction away from the light-transmitting window. Some have a base that is This optical modeling method will be explained with reference to FIG. 2.

第2図において、容器11内には光硬化性樹脂12が収
容されている。容器11の底面には、石英ガラス等の透
光板よりなる透光窓13が設けられており、該透光窓1
3に向けて光束14を照射するように、レンズを内蔵し
た光出射部15、光ファイバー16、光出射部15を水
平面内のX−Y方向(x、yは直交する2方向)に移動
させるx−yg動装置17、光源20等よりなる光学系
(照射装置)が設けられている。
In FIG. 2, a photocurable resin 12 is housed in a container 11. As shown in FIG. A transparent window 13 made of a transparent plate such as quartz glass is provided on the bottom of the container 11.
The light emitting unit 15 containing a built-in lens, the optical fiber 16, and the light emitting unit 15 are moved in the X-Y direction (x and y are two orthogonal directions) in a horizontal plane so as to irradiate the light beam 14 toward 3. - An optical system (irradiation device) consisting of a yg motion device 17, a light source 20, etc. is provided.

容器11内にはベース21が設置され、該ベース21は
エレベータ22により昇降可能とされている。これら移
動装置1フ、エレベータ22はコンピュータ23により
制御される。
A base 21 is installed inside the container 11, and the base 21 can be raised and lowered by an elevator 22. These moving devices 1 and the elevator 22 are controlled by a computer 23.

上記装置により硬化体を製造する場合、まずベース21
を透光窓13よりもわずか上方に位置させ、光束14を
目的形状物の水平断面に倣って走査させる。この走査は
コンピュータ制御されたx−Y移動装置17により行な
われる。
When producing a cured body using the above device, first the base 21
is positioned slightly above the transparent window 13, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by a computer controlled x-y movement device 17.

目的形状物の一つの水平断面(この場合は底面又は上面
に相当する部分)のすべてに光を照射した後、ベース2
1をわずかに上昇させ、硬化物(硬化層)24と透光窓
21との間に未硬化の光硬化性樹脂を流入させた後、上
記と同様の光照射を行なう、この手順を繰り返すことに
より、目的形状の硬化体が多層積層体・とじて得られる
After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom or top surface), the base 2
1 is slightly raised to flow uncured photocurable resin between the cured material (cured layer) 24 and the light-transmitting window 21, and then the same light irradiation as above is performed, and this procedure is repeated. As a result, a cured product having the desired shape is obtained by binding a multilayer laminate.

[発明が解決しようとする課題] 上記光学的造形装置においてはベース21を引き上げた
際に硬化物24が透光窓13から離反することが必要で
ある。即ち、硬化物24がベース2・1から引き剥され
てしまったのでは造形工程を継続することがで台ない。
[Problems to be Solved by the Invention] In the optical modeling apparatus described above, it is necessary that the cured product 24 separates from the transparent window 13 when the base 21 is pulled up. That is, if the cured product 24 is peeled off from the base 2.1, it will be impossible to continue the modeling process.

このため、従来、透光窓13の容器内面側の表面にフッ
素樹脂などの樹脂被覆層を形成することが行なわれてい
る。この樹脂被覆層は、光硬化性樹脂が硬化した硬化物
24との付着性(なじみ)が低く、ベース21を引き上
げると硬化物24は透光窓13から簡単に引き剥され、
硬化物24はベース21に常時、付着保持されるように
なる。
For this reason, conventionally, a resin coating layer such as a fluororesin is formed on the surface of the light-transmitting window 13 on the inner surface of the container. This resin coating layer has low adhesion (compatibility) with the cured product 24 made of the photocurable resin, and when the base 21 is pulled up, the cured product 24 is easily peeled off from the transparent window 13.
The cured product 24 is always adhered to and held on the base 21.

ところが、この樹脂被覆層が光束14に長時間暴露され
ると、樹脂が劣化したり、樹脂の表面に微細な凹凸が形
成されるようになり、硬化物24と樹脂被覆層との付着
力が増大する。そして、この結果、ベース21の上昇移
動時に硬化物24がベース21から引き剥されるおそれ
があった。このような樹脂被覆層の劣化は、例えば円盤
状硬化物を積層することにより、長い円柱部材を円柱長
手方向に成長させる場合など、局部的に光束照射が継続
して長時間性なわれる場合に発生し易い。
However, when this resin coating layer is exposed to the light beam 14 for a long time, the resin deteriorates or minute irregularities are formed on the surface of the resin, and the adhesion between the cured product 24 and the resin coating layer decreases. increase As a result, the cured material 24 may be peeled off from the base 21 when the base 21 moves upward. Such deterioration of the resin coating layer occurs when localized light beam irradiation is continued for a long time, such as when a long cylindrical member is grown in the longitudinal direction of the cylinder by laminating disk-shaped cured products. Easy to occur.

[課題を解決するための手段] 本発明は、容器の樹脂被覆層付の透光窓から光を照射す
ると共にベースを徐々に透光窓から離反させ、目的形状
体の断面に相当する光硬化性樹脂の硬化層を多数積層す
ることにより目的形状体を造形するようにした光学的造
形法において、硬化層(硬化物)が透光窓から離反した
状態のときに透光窓を窓面方向に移動させるようにした
ものである。
[Means for Solving the Problems] The present invention irradiates light from a light-transmitting window with a resin coating layer of a container and gradually moves the base away from the light-transmitting window, thereby producing a photocurable material corresponding to the cross section of the object shaped body. In an optical modeling method in which a desired shape is formed by laminating many cured layers of a transparent resin, when the cured layer (cured material) is separated from the light-transmitting window, the light-transmitting window is moved toward the window surface. It was moved to .

[作用] かかる本発明方法にあっては、透光窓の同一箇所に集中
的に継続して光束が照射されることが回避される。
[Function] According to the method of the present invention, it is possible to avoid irradiating the same portion of the light-transmitting window with the light beam in a concentrated and continuous manner.

この結果、樹脂被覆層の劣化が防止されるようになる。As a result, deterioration of the resin coating layer can be prevented.

[実施例] 以下、図面を用いて実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明方法を実施するのに好適な光学的造形装
置の縦断面図である。
FIG. 1 is a longitudinal sectional view of an optical shaping apparatus suitable for carrying out the method of the present invention.

本実施例では容器11は平面視形状が円形である。In this embodiment, the container 11 has a circular shape in plan view.

容器11の底面には透光窓13がリング状の枠30によ
り取り付けられている。この枠30は容器11のフラン
ジ部11aにボルト31により固着されており、枠11
の内周縁部とフランジ部11aとの間で透光窓13の外
周縁を挟持している。枠30の底面にはリング状のラッ
ク′32が固着されている。枠30は上下1対のスラス
トベアリング33を介してマシンベース34上の支持ブ
ロック35に枢支されており、容器11はその軸心Aを
中心として水平面内で回動自在とされている。
A transparent window 13 is attached to the bottom surface of the container 11 by a ring-shaped frame 30. This frame 30 is fixed to the flange portion 11a of the container 11 with bolts 31.
The outer peripheral edge of the transparent window 13 is sandwiched between the inner peripheral edge and the flange portion 11a. A ring-shaped rack '32 is fixed to the bottom surface of the frame 30. The frame 30 is pivotally supported by a support block 35 on a machine base 34 via a pair of upper and lower thrust bearings 33, and the container 11 is rotatable in a horizontal plane about its axis A.

マシンベース34上にはモータ36が設置され、該モー
タの回転シャフトにはビニオン37が固着されている。
A motor 36 is installed on the machine base 34, and a pinion 37 is fixed to the rotating shaft of the motor.

該ビニオン37は前記ラック32に噛合している。The pinion 37 meshes with the rack 32.

透光窓13の底面に対面してX−Y移動装置17が設け
られ、該X−Y#動装置17により光出射部15が水平
面内方向に移動自在とされている。光出射部15には光
ファイバー16を介して光源20(第1図では図示路)
からレーザ光等の光が供給される。前記容器11内には
ベース21が配置され、エレベータ22により上下動可
能とされている。光源20、エレベータ22、モータ3
6及びX−Y移動装置17はコンピュータ23により制
御される。
An X-Y moving device 17 is provided facing the bottom surface of the light-transmitting window 13, and the light emitting section 15 can be moved freely in the horizontal direction by the X-Y # moving device 17. A light source 20 (the illustrated path in FIG. 1) is connected to the light emitting unit 15 via an optical fiber 16.
Light such as laser light is supplied from. A base 21 is disposed within the container 11 and can be moved up and down by an elevator 22. Light source 20, elevator 22, motor 3
6 and the XY moving device 17 are controlled by a computer 23.

なお、透光窓13の表面(上面)にはフッ素樹脂による
樹脂被覆層が形成されている。
Note that a resin coating layer made of fluororesin is formed on the surface (upper surface) of the light-transmitting window 13.

上記装置を開いて光学的方法を実施するには、まずベー
ス21を所定距離だけ(例えば0.1〜1mm程度)だ
け透光窓13から離反させ、次いで光を照射することに
よりまず第1層目の硬化層24を形成する。次いで、エ
レベータ22によりベース21を所定距離だけざらに透
光窓13から離反させた後、モータ36を駆動して容器
11を軸心A回りに所定角度回転させる。その後、再び
光を照射し、第2層目の硬化層24を形成する。
In order to open the above device and perform the optical method, first the base 21 is separated from the transparent window 13 by a predetermined distance (for example, about 0.1 to 1 mm), and then light is irradiated to first remove the first layer. A hardened layer 24 is formed. Next, after the base 21 is roughly moved away from the transparent window 13 by a predetermined distance by the elevator 22, the motor 36 is driven to rotate the container 11 around the axis A by a predetermined angle. Thereafter, light is irradiated again to form a second hardened layer 24.

次に、ベース21を所定距離だけ上昇させた後、容器1
1を回転させ、第3層目の硬化層24を形成し、順次こ
の工程を繰り返す。
Next, after raising the base 21 by a predetermined distance, the container 1
1 is rotated to form a third hardened layer 24, and this step is repeated one after another.

目的形状体のすべての層を形成した後、硬化物24の積
層体をベース21から取り外し、必要に応じ仕上げ処理
を施して目的形状体を得ることができる。
After forming all the layers of the object with the desired shape, the laminate of the cured product 24 is removed from the base 21, and if necessary, finishing treatment can be performed to obtain the object with the desired shape.

この光学的造形法によると、透光窓13の樹脂被覆層に
局部的に集中して光が照射されることがない。即ち、第
n層(nは自然数)の硬化層24を形成した後、容器1
1を回転させてから第n+1層の硬化N24を形成する
ので、仮に第n層と第n+1層とが同一形状であり、か
つベース21に対して同一位置に形成される場合であっ
ても、光出射部15からの光は、第n層目を形成すると
きと第n+1層目を形成するときとでは、互いに異なる
透光窓13の部位を通過することになる。(ただし、第
n層と第n+1層とが軸心Aに対して同心状の同一形状
の円形層である場合を除く。この場合はXY移動装置の
センターと容器回転軸のセンターとを異なるように配置
すると良い。) 従って、透光窓13の樹脂被覆層に局部的に集中して光
が照射されることが防止されるのである。
According to this optical modeling method, the resin coating layer of the transparent window 13 is not locally concentrated and irradiated with light. That is, after forming the nth layer (n is a natural number) of the hardened layer 24, the container 1
Since the cured N24 of the n+1 layer is formed after rotating the base 21, even if the n+1 layer and the n+1 layer have the same shape and are formed at the same position with respect to the base 21, The light from the light emitting section 15 passes through different parts of the transparent window 13 when forming the nth layer and when forming the (n+1)th layer. (However, this excludes the case where the n-th layer and the n+1-th layer are circular layers of the same shape concentric with the axis A. In this case, the center of the XY moving device and the center of the container rotation axis are set to be different. ) Therefore, the resin coating layer of the transparent window 13 is prevented from being locally concentrated and irradiated with light.

上記実施例では容器11を円形櫓状のものとしているが
、三角形、四角形、五角形、六角形など角形としても良
い。また、上記実施例では第n層目と第n+1層目との
間に容器11を回転させているが、複数層の硬化層を形
成した後、容器11を回転させ、この複数層の硬化層を
形成する間は容器11を回転させないようにしても良い
In the above embodiment, the container 11 is shaped like a circular turret, but it may also be shaped like a triangle, quadrangle, pentagon, hexagon, or other square shape. Further, in the above embodiment, the container 11 is rotated between the n-th layer and the n+1-th layer, but after forming a plurality of hardened layers, the container 11 is rotated, and the plurality of hardened layers are The container 11 may not be rotated while it is being formed.

本発明では容器11の本体部分と透光窓13とを相対的
に8勤可能としておき、容器11の本体部分は停止させ
ておき、透光窓13のみを移動させるようにしても良い
In the present invention, the main body portion of the container 11 and the light-transmitting window 13 can be moved eight times relative to each other, and the main body portion of the container 11 may be kept stationary and only the light-transmitting window 13 may be moved.

本発明では、透光窓13を窓面内で回転させる代りに、
窓面内で2次元方向に移動させるようにしても良い。
In the present invention, instead of rotating the transparent window 13 within the window plane,
It may be moved in a two-dimensional direction within the window plane.

本発明では、透光窓13をモータ等で駆動させる代りに
、手動など作業員の人力により動かすようにしても良い
In the present invention, instead of driving the transparent window 13 with a motor or the like, it may be moved manually or by the human power of an operator.

上記実施例は、透光窓13を容器の底面に設は光を容器
の下方から照射するようにしているが、本発明において
は容器11の側面に透光窓を設け、該容器11の側面か
ら光を照射するようにしても良い、この場合、ベースを
成形過程において徐々に側方に移動させれば良い。
In the above embodiment, the light-transmitting window 13 is provided on the bottom surface of the container so that light is irradiated from below the container, but in the present invention, the light-transmitting window 13 is provided on the side surface of the container 11. In this case, the base may be gradually moved laterally during the molding process.

上記実施例では、X −Y 13動装置17により光束
14を走査しているが、光源からの光をミラー(図示路
)で反射させた後、レンズで収束させて光硬化性樹脂に
照射する光学系を採用しても良い、この場合はミラーを
回転させることにより光束を走査できる。
In the above embodiment, the beam 14 is scanned by the X-Y 13 motion device 17, but the light from the light source is reflected by a mirror (the path shown), then converged by a lens, and irradiated onto the photocurable resin. An optical system may be employed; in this case, the light beam can be scanned by rotating a mirror.

上記実施例では光束14を走査することにより硬化物2
4を創成しているが、本発明はこれを公知のマスク法に
適用し、例えば第3図の如く目的形状物の断面に相当す
るスリット25を有したマスク26を用いても良い、符
号2フは平行光束を示す。第3図のその他の符号は第1
.2図と同一部材を示している。この第3図の場合にお
いても、透光窓13が必要に応じ窓面方向に移動すれば
良い。
In the above embodiment, by scanning the light beam 14, the cured product 2 is
4, but the present invention applies this to a known mask method, and for example, as shown in FIG. F indicates parallel light flux. Other symbols in Figure 3 are number 1.
.. The same members as in Figure 2 are shown. Even in the case of FIG. 3, the light-transmitting window 13 may be moved in the direction of the window surface as necessary.

本発明において、前記光硬化性樹脂としては、光照射に
より硬化する種々の樹脂を用いることができ、例えば変
性ポリウレタンメタクリレート、オリゴエステルアクリ
レート、ウレタンアクリレート、エポキシアクリレート
、感光性ポリイミド、アミノアルキドを挙げることがで
きる。
In the present invention, various resins that are cured by light irradiation can be used as the photocurable resin, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. Can be done.

前記光としては、使用する光硬化性樹脂、に応じ、可視
光、紫外光等種々の光を用いることができる。該光は通
常の光としても良いが、レーザ光とすることにより、エ
ネルギーレベルを高めて造形時間を短縮し、良好な集光
性を利用して造形精度を向上させ得るという利点を得る
ことができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable resin used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.

[効果〕 以上の通り、本発明の光学的造形法によれば、透光窓の
樹脂被覆層の劣化が防止され、光学的造形装置の耐久性
が高くなる。また、硬化物と樹脂被覆層、との剥離性が
良好になるので、光学的造形法を円滑に行なえる。
[Effects] As described above, according to the optical modeling method of the present invention, deterioration of the resin coating layer of the light-transmitting window is prevented, and the durability of the optical modeling device is increased. Moreover, since the peelability between the cured product and the resin coating layer is improved, optical modeling can be carried out smoothly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は光学的造形方法を実施する
ための装置構成図である。 12−・・光硬化性樹脂、13・・・透光窓、16−・
・光ファイバー 20・・・光源、21・・・ベース、
   22−・・エレベータ。
FIG. 1, FIG. 2, and FIG. 3 are configuration diagrams of an apparatus for carrying out the optical modeling method. 12--Photocurable resin, 13--Transparent window, 16--
・Optical fiber 20... light source, 21... base,
22-...Elevator.

Claims (1)

【特許請求の範囲】 側面又は底面に透光窓を有する容器、該透光窓の容器内
側面に対して接離方向に移動可能なベース及び該透光窓
を通して容器内へ光を照射する光照射装置を備えた光学
的造形装置を用い、該透光窓を通して光を照射すると共
に前記ベースを徐々に窓から離反方向へ移動させ、目的
形状体の一断面に相当する硬化層を前記ベース上に積み
重ねることにより目的形状体を造形する光学的造形法に
おいて、 前記透光窓の容器内面側の表面には樹脂被覆層が設けら
れており、前記硬化層が透光窓から離反した状態のとき
に透光窓を窓面方向に移動させることを特徴とする光学
的造形法。
[Scope of Claims] A container having a light-transmitting window on the side or bottom surface, a base movable toward and away from the inner surface of the container of the light-transmitting window, and a light that irradiates light into the container through the light-transmitting window. Using an optical modeling device equipped with an irradiation device, light is irradiated through the transparent window and the base is gradually moved in a direction away from the window, so that a hardened layer corresponding to one cross section of the target shape is placed on the base. In an optical modeling method in which a target shape is formed by stacking the transparent window on the inner surface of the container, a resin coating layer is provided on the inner surface of the container, and when the cured layer is separated from the transparent window. An optical modeling method characterized by moving a translucent window in the direction of the window surface.
JP1009176A 1989-01-18 1989-01-18 Optical shaping method Granted JPH02188228A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1009176A JPH02188228A (en) 1989-01-18 1989-01-18 Optical shaping method
EP19900100525 EP0379068A3 (en) 1989-01-18 1990-01-11 Optical molding method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1009176A JPH02188228A (en) 1989-01-18 1989-01-18 Optical shaping method

Publications (2)

Publication Number Publication Date
JPH02188228A true JPH02188228A (en) 1990-07-24
JPH0523942B2 JPH0523942B2 (en) 1993-04-06

Family

ID=11713258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1009176A Granted JPH02188228A (en) 1989-01-18 1989-01-18 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH02188228A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155477A (en) * 2006-12-22 2008-07-10 Roland Dg Corp Three-dimensional modeling apparatus
JP2013528514A (en) * 2010-05-17 2013-07-11 ディーダブリューエス エス.アール.エル. Improved stereolithography machine
JP2015027738A (en) * 2013-07-30 2015-02-12 ローランドディー.ジー.株式会社 Three-dimensional contouring apparatus
JP2016515058A (en) * 2013-03-12 2016-05-26 オレンジ・メーカー・エルエルシー 3D printing using spiral stacking
JP2017523932A (en) * 2014-06-20 2017-08-24 カーボン,インコーポレイテッド Three-dimensional printing by reciprocating supply of polymerizable liquid
CN107877851A (en) * 2016-09-30 2018-04-06 三纬国际立体列印科技股份有限公司 Three-dimensional printing device and three-dimensional printing method
JP2019104228A (en) * 2017-12-12 2019-06-27 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. 3d printer and 3d printing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296428U (en) * 1976-01-19 1977-07-19
JPS53105048U (en) * 1977-01-25 1978-08-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5296428U (en) * 1976-01-19 1977-07-19
JPS53105048U (en) * 1977-01-25 1978-08-24

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008155477A (en) * 2006-12-22 2008-07-10 Roland Dg Corp Three-dimensional modeling apparatus
JP2013528514A (en) * 2010-05-17 2013-07-11 ディーダブリューエス エス.アール.エル. Improved stereolithography machine
JP2016515058A (en) * 2013-03-12 2016-05-26 オレンジ・メーカー・エルエルシー 3D printing using spiral stacking
EP3597398A1 (en) * 2013-03-12 2020-01-22 Orange Maker, LLC 3d printing using spiral buildup
JP2015027738A (en) * 2013-07-30 2015-02-12 ローランドディー.ジー.株式会社 Three-dimensional contouring apparatus
JP2017523932A (en) * 2014-06-20 2017-08-24 カーボン,インコーポレイテッド Three-dimensional printing by reciprocating supply of polymerizable liquid
CN107877851A (en) * 2016-09-30 2018-04-06 三纬国际立体列印科技股份有限公司 Three-dimensional printing device and three-dimensional printing method
JP2019104228A (en) * 2017-12-12 2019-06-27 三緯國際立體列印科技股▲ふん▼有限公司XYZprinting, Inc. 3d printer and 3d printing method

Also Published As

Publication number Publication date
JPH0523942B2 (en) 1993-04-06

Similar Documents

Publication Publication Date Title
US5089184A (en) Optical molding method
JPH0624773B2 (en) Optical modeling method
JPH07501998A (en) Method and device for manufacturing three-dimensional objects
JPH054898B2 (en)
JPH02188228A (en) Optical shaping method
JPH0224121A (en) Optical shaping method
JP5632699B2 (en) Stereolithography equipment
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
EP0379068A2 (en) Optical molding method and apparatus
JPH0479828B2 (en)
JPH0224122A (en) Treatment for making optical shaped body transparent
JPH07214675A (en) Method and apparatus for forming resin shaped object
JP2558355B2 (en) Three-dimensional shape forming method
JP3578590B2 (en) Stereolithography equipment using lamps
JPH02188230A (en) Optically shaping method
JPH0596631A (en) Method and apparatus for optical shaping
JPH058307A (en) Optically shaping method
JPH0224120A (en) Optical shaping method
JPH01237122A (en) Optical shaping method for thick wall section
JPH02108519A (en) Formation of three-dimensional shape and device therefor
JPH04366620A (en) Optical shaping method
JPH01237121A (en) Optical shaping method by multispot-light sources
JPH0452042Y2 (en)
JP2527021B2 (en) Optical modeling
JPH09141746A (en) Three-dimensional modeling device