JPH0224121A - Optical shaping method - Google Patents

Optical shaping method

Info

Publication number
JPH0224121A
JPH0224121A JP63172683A JP17268388A JPH0224121A JP H0224121 A JPH0224121 A JP H0224121A JP 63172683 A JP63172683 A JP 63172683A JP 17268388 A JP17268388 A JP 17268388A JP H0224121 A JPH0224121 A JP H0224121A
Authority
JP
Japan
Prior art keywords
base
light
amount
level
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63172683A
Other languages
Japanese (ja)
Other versions
JPH0523588B2 (en
Inventor
Katsumi Sato
勝美 佐藤
Yoshinao Hirano
平野 義直
Shigeru Nagamori
茂 永森
Katsuhide Murata
勝英 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63172683A priority Critical patent/JPH0224121A/en
Publication of JPH0224121A publication Critical patent/JPH0224121A/en
Publication of JPH0523588B2 publication Critical patent/JPH0523588B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To constitute the titled method so that light irradiation can be performed directly after shifting of a base and drastic curtailment in manufacturing hours is contrived by a method wherein at the time of shifting of the base by a pitch amount p, the same is shifted by a far larger amount p+l and the same is returned by an amount l. CONSTITUTION:Light is applied to the bottom 21a of a base 21 by positioning the same at a level 1 and formation of a cured matter is completed. Then the bottom 21a is raised up to a level 2 by an amount p+l, then lowered by distant amount l and suspended at a level 3. When the base is shifted in order of 1-3, at the time when the bottom of the base is raised up to the level 2, a gap of a great distance l is made between the cured matter and a light transmission window 13. Therefore, photosetting resin flows swiftly onto the cured matter or into a space between the cured matter and light transmission window. Since shifting of base itself can be performed swiftly with a driving device, after formation of the nth layer, the base is shifted by a fixed pitch amount p and time required for arriving at starting of light irradiation for formation of the n+1st layer can be made extremely short.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光硬化性樹脂に光束を照射して目的形状の硬化
体を製造する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical modeling method for producing a cured product having a desired shape by irradiating a photocurable resin with a light beam.

[従来の技術] 光硬化性樹脂に光束を照射して、該照射部分を硬化させ
、この硬化部分を水平方向に連続させると共に、さらに
その上側に光硬化性樹脂を供給して同様にして硬化させ
ることにより上下方向にも硬化体を連続させ、これを繰
り返すことにより目的形状の硬化体を製造する光学的造
形法は特開昭60−247515号、62−35966
号、62−101408号などにより公知である。光束
を走査する代りにマスクを用いる方法も公知である。
[Prior art] A photocurable resin is irradiated with a light beam to cure the irradiated portion, and this cured portion is continued in the horizontal direction, and a photocurable resin is further supplied above it and cured in the same manner. An optical modeling method in which the cured body is made to continue in the vertical direction by repeating this process to produce a cured body in the desired shape is disclosed in Japanese Patent Application Laid-open Nos. 60-247515 and 62-35966.
No. 62-101408. It is also known to use a mask instead of scanning the beam.

第3図はこの種の光学的造形法の一例を説明するための
装置の構成図である。
FIG. 3 is a configuration diagram of an apparatus for explaining an example of this type of optical modeling method.

攪拌機10を備えた容器11内には光硬化性樹脂12が
収容され、その液面12aに向けて光束14を照射する
ようにレンズ15A1ミラー16A、ミラー回転駆動装
置17A5光源20等よりなる光学系が設けられている
A photocurable resin 12 is housed in a container 11 equipped with an agitator 10, and an optical system includes a lens 15A, a mirror 16A, a mirror rotation drive device 17A, a light source 20, etc. so as to irradiate a light beam 14 toward the liquid surface 12a. is provided.

容器11内にはテーブル21が設置され、該テーブル2
1はエレベータ22により昇降可能とされている。これ
ら駆動装置17A1エレベータ22はコンピュータ23
により制御される。
A table 21 is installed inside the container 11, and the table 2
1 can be raised and lowered by an elevator 22. These drive devices 17A1 elevator 22 are computer 23
controlled by

上記装置により硬化体を製造する場合、まずテーブル2
1を液面12aよりもわずか下方に位置させ、光束14
を目的形状物の水平断面に倣って走査させる。この走査
はコンピュータ制御されたミラー16Aの回転により行
なわれる。
When producing a cured body using the above device, first the table 2
1 is located slightly below the liquid level 12a, and the luminous flux 14
is scanned along the horizontal cross section of the target object. This scanning is performed by computer-controlled rotation of mirror 16A.

目的形状物の一つの水平断面(この場合は底面に相当す
る部分)のすべてに光を照射した後、テーブル21を所
定ピッチだけ下降させ、硬化物24の上に未硬化の光硬
化性樹脂を流入させた後、上記と同様の光照射を行なう
。この手順を繰り退すことにより、目的形状の硬化体が
得られる。
After irradiating the entire horizontal cross section of the target object (in this case, the portion corresponding to the bottom surface) with light, the table 21 is lowered by a predetermined pitch, and uncured photocurable resin is placed on the cured material 24. After flowing in, the same light irradiation as above is performed. By repeating this procedure, a cured product having the desired shape can be obtained.

また、この種の光学的造形法として、底面又は側面に透
光窓を有する容器と、この透光窓を通して容器内に光を
照射する装置と、該容器内において透光窓から離反する
方向へ移動可能に設けられたベースを有するものがある
。この光学的造形法について第2図を参照して説明する
In addition, as this type of optical modeling method, a container having a transparent window on the bottom or side surface, a device that irradiates light into the container through the transparent window, and a device that irradiates light into the container through the transparent window in a direction away from the transparent window. Some have a movably provided base. This optical modeling method will be explained with reference to FIG. 2.

第2図において、容器11内には光硬化性樹脂12が収
容されている。容器11の底面には、石英ガラス等の透
光板よりなる透光窓13が設けられており、該透光窓1
3に向けて光束14を照射するように、レンズを内蔵し
た光出射部15、光出射部15を水平面内のX−Y方向
(X、Yは直交する2方向)に移動させるX −Y 9
劾装置17、光源20等よりなる光学系が設けられてい
る。
In FIG. 2, a photocurable resin 12 is housed in a container 11. As shown in FIG. A transparent window 13 made of a transparent plate such as quartz glass is provided on the bottom of the container 11.
The light emitting section 15 having a built-in lens and the light emitting section 15 are moved in the X-Y direction (X and Y are two orthogonal directions) in a horizontal plane so as to irradiate the light beam 14 toward the X-Y 9
An optical system including a light source 17, a light source 20, etc. is provided.

容器11内にはベース21が設置され、該ベース21は
エレベータ22により昇降可能とされている。これらX
−Y移動装置17、エレベータ22はコンピュータ23
により制御される。
A base 21 is installed inside the container 11, and the base 21 can be raised and lowered by an elevator 22. These X
-Y moving device 17, elevator 22 is computer 23
controlled by

上記装置により硬化体を製造する場合、まずベース21
を透光窓13よりもわずか上方に位置させ、光束14を
目的形状物の水平断面に倣って走査させる。この走査は
コンピュータ制御されたX−Y移動装置17により行な
われる。
When producing a cured body using the above device, first the base 21
is positioned slightly above the transparent window 13, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by a computer-controlled X-Y movement device 17.

目的形状物の一つの水平断面(この場合は底面又は上面
に相当する部分)のすべてに光を照射した後、ベース2
!を所定ピッチだけ上昇させ、硬化物24と透光窓21
との間に未硬化の光硬化性樹脂を流入させた後、上記と
同様の光照射を行なう。この手順を繰り返すことにより
、目的形状の硬化体が多層積層体として得られる。
After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom or top surface), the base 2
! is raised by a predetermined pitch, and the cured product 24 and the transparent window 21
After flowing an uncured photocurable resin between the two, the same light irradiation as above is performed. By repeating this procedure, a cured product having the desired shape can be obtained as a multilayer laminate.

[発明が解決しようとする課題] 上記の如く、この種の光学的造形法においては、第n層
目(nは1以上の整数)の硬化層を形成した後、ベース
を所定ピッチ2分だけ移動させ、第n層目の硬化層を未
硬化の光硬化性樹脂で被う必要がある。
[Problems to be Solved by the Invention] As described above, in this type of optical modeling method, after forming the n-th layer (n is an integer of 1 or more) hardened layer, the base is formed at a predetermined pitch of 2 minutes. It is necessary to move the n-th cured layer with uncured photocurable resin.

ところで、上記のとッチpは形成される硬化層の厚さと
一致するものであり、通常は1mm以下とりわけ0.5
mm以下と極めて小さい値である。そのため、第3図の
光学的造形法においては、硬化物24の上に未硬化の光
硬化性樹脂12が流れ込んできて均一厚さに硬化物24
を被うようになるのに極めて長い時間を要していた。
By the way, the above thickness p corresponds to the thickness of the hardened layer to be formed, and is usually 1 mm or less, especially 0.5 mm.
This is an extremely small value of less than mm. Therefore, in the optical modeling method shown in FIG.
It took a very long time for the patient to become covered with the .

第2図の光学的造形法においては、硬化物24と透光窓
13との間には液面高さ分だけ液圧がかかるから、第3
図の方法に比べると光硬化性樹脂は硬化物24と透光窓
13との間隙に流入し易いが、上記ピッチpが特に狭い
場合にはやはり該間隙間に流入し終るのにある程度の時
間がかかる。
In the optical modeling method shown in FIG. 2, a liquid pressure corresponding to the liquid level height is applied between the cured material 24 and the light-transmitting window 13.
Compared to the method shown in the figure, the photocurable resin flows into the gap between the cured material 24 and the transparent window 13 more easily, but if the pitch p is particularly narrow, it still takes a certain amount of time for the photocurable resin to finish flowing into the gap. It takes.

このようなことから、従来法では、ベースを所定ピッチ
移動させた後、光照射を開始するまでの待ち時間が長く
なっており、製造工程の時間も全体として長いものとな
っていた。
For this reason, in the conventional method, the waiting time until starting light irradiation after moving the base by a predetermined pitch is long, and the manufacturing process time is also long as a whole.

[課題を解決するための手段] 本発明は、ベースを所定ピッチ移動させた後、光照射を
行なって硬化層を順次に積層させるようにした光学的造
形法において、前記ベースをピッチ2分だけ移動さ廿る
に際し、まずpよりも大きなp+1分だけ移動させ、次
にベースを1分だけ戻すようにしたものである。
[Means for Solving the Problems] The present invention provides an optical modeling method in which the base is moved by a predetermined pitch and then the cured layers are successively laminated by light irradiation. When moving, the base is first moved by p+1, which is larger than p, and then the base is moved back by one minute.

[作用〕 かかる本発明方法によれば、ベースをp+J2分だけ移
動した際に硬化物の上や硬化物と透光窓との間に光硬化
性樹脂が迅速に流入する。ベース自体の移動は駆動装置
で迅速に行なえるので、本発明によれば第n層を形成し
た後、ベースを所定ピッチ2分だけ移動させて第n+1
層の形成用の光照射を開始するに到る間の時間が極めて
短かくなる。
[Operation] According to the method of the present invention, when the base is moved by p+J2, the photocurable resin quickly flows onto the cured product or between the cured product and the light-transmitting window. Since the base itself can be quickly moved by a drive device, according to the present invention, after forming the n-th layer, the base is moved by a predetermined pitch of 2 minutes to form the (n+1)-th layer.
The time required to start light irradiation for layer formation is extremely short.

[実施例] 以下、図面を用いて実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は第2図に示した装置を用いて光学的造形法を実
施する場合のベースの操作方法を示している。
FIG. 1 shows a base operating method when performing an optical modeling method using the apparatus shown in FIG. 2.

第1図は第1層目の硬化物24を形成した後、第2層目
を形成しようとしている状態に係るものである。第1図
において、ベース21はまずその下面21aが■で示す
レベルに位置されて光照射がなされ、硬化物24が形成
され終わっている。
FIG. 1 shows a state in which the second layer is about to be formed after the first layer of cured material 24 has been formed. In FIG. 1, the base 21 is first positioned so that its lower surface 21a is at the level indicated by ■, and is irradiated with light to complete the formation of the cured product 24.

ベース21は、その後、その下面21aが■で示すレベ
ルまでp+1分だけ上昇され、次に距111j2分だけ
下降され、■のレベルに停止されている。
Thereafter, the lower surface 21a of the base 21 is raised by a distance p+1 to the level indicated by ■, and then lowered by a distance 111j2, and is stopped at the level indicated by ■.

このように■〜■の順序でベース21を移動させると、
ベース21の下面が■まで上昇された際にベース21に
付着した硬化物24と透光窓13との間に著しく大きな
距離りの間隙が開く。従って、未硬化の光硬化性樹脂1
2が仮に相当に高粘性のものであっても、該硬化物24
と透光窓13との間に急速に流入される。 f!々の実
験の結果、本実施例において、ピッチpを0.1〜1m
m程度とした場合、距離1をピッチpの1倍以上とりわ
け5〜30倍、特に10〜20倍程度とするのが好適で
あることが認められた。
If you move the base 21 in the order of ■ to ■ in this way,
When the lower surface of the base 21 is raised to ■, a gap of a significantly large distance is opened between the cured material 24 attached to the base 21 and the transparent window 13. Therefore, uncured photocurable resin 1
Even if 2 has a considerably high viscosity, the cured product 24
and the transparent window 13. f! As a result of various experiments, in this example, the pitch p was set to 0.1 to 1 m.
When the distance is approximately m, it has been found that it is suitable to set the distance 1 to be at least 1 times the pitch p, particularly 5 to 30 times, especially approximately 10 to 20 times.

なお、本実施例は第2層目の形成時にベース21を移動
させる場′合に関するが、第3層目以降を形成する際の
ベース移動方法も同様にして行なえる。また、まずベー
ス21の下面21aを透光窓13に密着又はほぼ密着さ
せ、該下面21aや透光窓13の表面に付着した気泡を
追い出した後、ベース21を2分だけ上昇させる場合に
も本発明方法を適用できる。
Although this embodiment relates to the case where the base 21 is moved when forming the second layer, the base moving method when forming the third layer and subsequent layers can be performed in the same manner. Also, when the lower surface 21a of the base 21 is first brought into close contact or nearly so with the transparent window 13, and the air bubbles attached to the lower surface 21a and the surface of the transparent window 13 are expelled, the base 21 is raised for only 2 minutes. The method of the present invention can be applied.

目的形状体のすべての層を形成した後、硬化物24をベ
ース21から取り外し、必要に応じ仕上げ処理を施して
目的形状体を得ることができる。
After forming all the layers of the object with the desired shape, the cured product 24 is removed from the base 21 and finishing treatment can be performed as necessary to obtain the object with the desired shape.

上記実施例は、透光窓13を容器の底面に設け、光を容
器の下方から照射するようにしているが、本発明におい
ては容器11の側面に透光窓を設け、該容器11の側面
から光を照射するようにしても良い。この場合、ベース
を成形過程において徐々に側方に移動させれば良い。
In the above embodiment, the transparent window 13 is provided on the bottom surface of the container so that light is irradiated from below the container, but in the present invention, the transparent window 13 is provided on the side surface of the container 11. Light may also be irradiated from. In this case, the base may be gradually moved laterally during the molding process.

第4図は第3図に示した光学的造形法に本発明を適用し
た場合のベース移動図である。第4図は合計5層の硬化
物24を形成した後、第6層目を形成しようとしている
状態に係る。第4図において、ベース21の上面21b
が図中の■のレベルに位置されて第5層目の硬化物24
(24a)が形成された後、ベース21は上面21bが
■のレベルとなるようにp十℃分だけ下降され、次いで
距!11分だけ上昇され、上面21bが■のレベルとな
るようにピッチ2分だけB勅されている。この移動途中
の■の状態にあっては、光硬化性樹脂12の液面12a
と硬化物24aとの間に距1191分だけの極めて広い
間隔が開くので、光硬化性樹脂12が仮に相当に高粘性
のものであっても迅速に硬化物24a上に流入する。
FIG. 4 is a base movement diagram when the present invention is applied to the optical modeling method shown in FIG. 3. FIG. 4 shows a state where the sixth layer is about to be formed after a total of five layers of cured material 24 have been formed. In FIG. 4, the upper surface 21b of the base 21
is located at the level of ■ in the figure, and the fifth layer of cured material 24
After (24a) is formed, the base 21 is lowered by 10 degrees p so that the upper surface 21b is at the level of ■, and then the distance ! It is raised by 11 minutes, and the pitch is raised by 2 minutes so that the upper surface 21b is at the level of ■. In the state (■) during this movement, the liquid level 12a of the photocurable resin 12 is
Since there is an extremely wide distance of 1191 minutes between the photocurable resin 12 and the cured product 24a, even if the photocurable resin 12 has a considerably high viscosity, it quickly flows onto the cured product 24a.

なお、本実施例方法も第6層目以外の硬化物の形成時の
ベースfJaに適用できることは当然である。また、ベ
ース21上に第1層目の硬化物24を形成するに際して
も、まず上面21bを液面12aと面一とした後、ベー
ス21をp+j2分だけ下降させ、次いで1分だけ上昇
させるようにしても良い。このようにすれば、ベース2
1上に均一厚さの未硬化の光硬化性樹脂12液を均一厚
さに存在させることが極めて迅速に行なえる。
It goes without saying that the method of this example can also be applied to the base fJa when forming a cured product other than the sixth layer. Also, when forming the first layer of cured material 24 on the base 21, the upper surface 21b is first made flush with the liquid level 12a, and then the base 21 is lowered by p+j2 minutes, and then raised by 1 minute. You can also do it. If you do this, base 2
It is possible to extremely quickly make the uncured photocurable resin 12 liquid have a uniform thickness on the surface of the photocurable resin 12.

上記実施例では光束14を走査することにより硬化物2
4を創成しているが、本発明はこれを公知のマスク法に
適用し、例えば第5.6図の如く目的形状物の断面に相
当するスリット25を有したマスク26を用いても良い
。符号27は平行光束を示す。第5.6図のその他の符
号はそれぞれ第2.3図と同一部材を示している。
In the above embodiment, by scanning the light beam 14, the cured product 2 is
4, however, the present invention may apply this to a known mask method and use a mask 26 having a slit 25 corresponding to the cross section of the target shape, for example, as shown in FIG. 5.6. Reference numeral 27 indicates a parallel light beam. Other symbols in FIG. 5.6 indicate the same members as in FIG. 2.3.

本発明において、前記光硬化性樹脂としては、光照射に
より硬化する種々の樹脂を用いることができ、例えば変
性ポリウレタンメタクリレート、オリゴエステルアクリ
レート、ウレタンアクリレート、エポキシアクリレート
、感光性ポリイミド、アミノアルキドを挙げることがで
きる。
In the present invention, various resins that are cured by light irradiation can be used as the photocurable resin, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. I can do it.

前記光としては、使用する光硬化性樹脂に応じ、可視光
、紫外光等種々の光を用いることができる。該光は通常
の光としても良いが、レーザ光とすることにより、エネ
ルギーレベルを高めて造形時間を短縮し、良好な集光性
を利用して造形精度を向上させ得るという利点を得るこ
とができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable resin used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.

[効果] 以上の通り、本発明方法によればベースを所定ピッチず
つ移動させる工程を有する光学的造形法において、ベー
ス移動後直ちに光照射を開始することができる。従って
、製造時・間の著しい短縮が図れる。また、高粘性の光
硬化性樹脂を原料とする光学的造形法も実施できるので
、選択し得る原料光硬化性樹脂の範囲が拡張され、種々
の材料よりなる造形体を製造することが可能となる。
[Effects] As described above, according to the method of the present invention, light irradiation can be started immediately after the base is moved in an optical modeling method that includes a step of moving the base by a predetermined pitch. Therefore, the manufacturing time can be significantly shortened. In addition, optical modeling methods using high-viscosity photocurable resins as raw materials can be implemented, expanding the range of photocurable resins that can be selected as raw materials, making it possible to manufacture shaped objects made of various materials. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第4図は本発明方法を示すベース部分の拡大
図、第2図、第3図、第5図及び第6図は光学的造形装
置の断面図である。 12・・・光硬化性樹脂、  13・・・透光窓、16
・・・光ファイバー  20・・・光源、21・・・ベ
ース、     22・・・エレベータ。
1 and 4 are enlarged views of the base portion showing the method of the present invention, and FIGS. 2, 3, 5, and 6 are sectional views of the optical modeling apparatus. 12... Photocurable resin, 13... Transparent window, 16
...Optical fiber 20...Light source, 21...Base, 22...Elevator.

Claims (1)

【特許請求の範囲】 容器内に移動自在なベースを設け、該容器内に収容され
た光硬化性樹脂に光を照射することにより硬化物をベー
ス上またはベース下に形成させ、次いでベースを所定ピ
ッチで移動させ硬化物を光硬化性樹脂で被った後、光を
照射し、この工程を繰り返すことにより硬化物を積層し
て目的形状体を造形する光学的造形法において、 前記ベースを所定ピッチ移動させるに際し、まず目標と
する移動ピッチpよりも大なる距離p+1だけ移動させ
、次いで過剰移動距離l戻すことにより、ベースを目標
ピッチpだけ移動させることを特徴とする光学的造形法
[Claims] A movable base is provided in a container, a cured product is formed on or under the base by irradiating the photocurable resin contained in the container with light, and then the base is moved to a predetermined position. In an optical modeling method in which the cured product is covered with a photocurable resin by moving at a pitch, the base is irradiated with light, and this process is repeated to stack the cured product to form a target shape. An optical modeling method characterized in that when moving, the base is first moved by a distance p+1 greater than the target movement pitch p, and then returned by an excess movement distance l, thereby moving the base by the target pitch p.
JP63172683A 1988-07-13 1988-07-13 Optical shaping method Granted JPH0224121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172683A JPH0224121A (en) 1988-07-13 1988-07-13 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172683A JPH0224121A (en) 1988-07-13 1988-07-13 Optical shaping method

Publications (2)

Publication Number Publication Date
JPH0224121A true JPH0224121A (en) 1990-01-26
JPH0523588B2 JPH0523588B2 (en) 1993-04-05

Family

ID=15946427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172683A Granted JPH0224121A (en) 1988-07-13 1988-07-13 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH0224121A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201875A (en) * 1996-01-29 1997-08-05 Teijin Seiki Co Ltd Optical forming apparatus
JP2009264522A (en) * 2008-04-28 2009-11-12 Teruo Nakagami Clip nut
JP2016064652A (en) * 2014-09-18 2016-04-28 ローランドディー.ジー.株式会社 Three-dimensional molding device
JP2016172450A (en) * 2012-07-16 2016-09-29 ディーダブリューエス エス.アール.エル. Stereolithography method for producing three-dimensional object, comprising movement according to which supporting surface for the object intermittently approaches the bottom of container, it programmed product, and stereolithography apparatus using the method
JP2018504300A (en) * 2015-02-05 2018-02-15 カーボン,インコーポレイテッド Additive manufacturing method by intermittent exposure
JP2018528107A (en) * 2015-09-09 2018-09-27 カーボン,インコーポレイテッド Epoxy double-cured resin for additive manufacturing
JP2018528886A (en) * 2015-09-25 2018-10-04 カーボン,インコーポレイテッド Build plate assembly for continuous liquid interphase printing with lighting panel and associated method, system and device
JP2019519399A (en) * 2016-07-01 2019-07-11 カーボン,インコーポレイテッド Three-dimensional printing method and apparatus for reducing air bubbles by degassing via build plate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2706611B2 (en) * 1993-10-14 1998-01-28 帝人製機株式会社 Stereolithography method and stereolithography device
JP6287532B2 (en) 2014-04-21 2018-03-07 マックス株式会社 Binding parts

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object
JPS6314724A (en) * 1986-07-08 1988-01-21 Tooa Eiyoo Kk Prazosin preparation
JPH0248422A (en) * 1988-08-09 1990-02-19 Tanaka Kikinzoku Kogyo Kk Stirring rod for glass industry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object
JPS6314724A (en) * 1986-07-08 1988-01-21 Tooa Eiyoo Kk Prazosin preparation
JPH0248422A (en) * 1988-08-09 1990-02-19 Tanaka Kikinzoku Kogyo Kk Stirring rod for glass industry

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09201875A (en) * 1996-01-29 1997-08-05 Teijin Seiki Co Ltd Optical forming apparatus
JP2009264522A (en) * 2008-04-28 2009-11-12 Teruo Nakagami Clip nut
JP2016172450A (en) * 2012-07-16 2016-09-29 ディーダブリューエス エス.アール.エル. Stereolithography method for producing three-dimensional object, comprising movement according to which supporting surface for the object intermittently approaches the bottom of container, it programmed product, and stereolithography apparatus using the method
JP2016064652A (en) * 2014-09-18 2016-04-28 ローランドディー.ジー.株式会社 Three-dimensional molding device
JP2018504300A (en) * 2015-02-05 2018-02-15 カーボン,インコーポレイテッド Additive manufacturing method by intermittent exposure
JP2018528107A (en) * 2015-09-09 2018-09-27 カーボン,インコーポレイテッド Epoxy double-cured resin for additive manufacturing
JP2018528886A (en) * 2015-09-25 2018-10-04 カーボン,インコーポレイテッド Build plate assembly for continuous liquid interphase printing with lighting panel and associated method, system and device
JP2019519399A (en) * 2016-07-01 2019-07-11 カーボン,インコーポレイテッド Three-dimensional printing method and apparatus for reducing air bubbles by degassing via build plate

Also Published As

Publication number Publication date
JPH0523588B2 (en) 1993-04-05

Similar Documents

Publication Publication Date Title
JPH0342233A (en) Optical shaping method
JPH0224121A (en) Optical shaping method
JPS61225012A (en) Formation of three-dimensional configuration
JPH0224122A (en) Treatment for making optical shaped body transparent
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
KR20040102531A (en) Micro-stereolithography method and apparatus
JPH0596631A (en) Method and apparatus for optical shaping
JPH04371829A (en) Three dimensional shape-making method and device
JPH04301431A (en) Apparatus for molding optically molded product
JPH02188228A (en) Optical shaping method
JPS61116320A (en) Three-dimensional shape forming device
JPH0493228A (en) Method for forming three-dimensional matter
JPH04366620A (en) Optical shaping method
JPH0499618A (en) Formation of object having three-dimensional configuration
JPH08238678A (en) Optically molding machine
JPH05269864A (en) Three dimensional optical shaping device
JPH0224120A (en) Optical shaping method
JPH06246837A (en) Optically shaping method and device
JPH0514839Y2 (en)
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JP2551110B2 (en) Optical modeling
JPH11170377A (en) Method for photo-shaping and movable device and photo-shaping apparatus using the method
JPH0224125A (en) Optical shaping method
JPH05261830A (en) Optical shaping method
JPH0596632A (en) Method and apparatus for optical shaping