JPH0224122A - Treatment for making optical shaped body transparent - Google Patents

Treatment for making optical shaped body transparent

Info

Publication number
JPH0224122A
JPH0224122A JP63172684A JP17268488A JPH0224122A JP H0224122 A JPH0224122 A JP H0224122A JP 63172684 A JP63172684 A JP 63172684A JP 17268488 A JP17268488 A JP 17268488A JP H0224122 A JPH0224122 A JP H0224122A
Authority
JP
Japan
Prior art keywords
shaped body
resin liquid
transparent
cured
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63172684A
Other languages
Japanese (ja)
Other versions
JPH0479826B2 (en
Inventor
Katsuhide Murata
勝英 村田
Katsumi Sato
勝美 佐藤
Shigeru Nagamori
茂 永森
Yoshinao Hirano
平野 義直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63172684A priority Critical patent/JPH0224122A/en
Publication of JPH0224122A publication Critical patent/JPH0224122A/en
Publication of JPH0479826B2 publication Critical patent/JPH0479826B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Abstract

PURPOSE:To constitute the title method so that an opaque shaped body can be made transparent easily by curing a transparent resin liquid by sticking the same to the surface of an optical shaped body. CONSTITUTION:After washing of a shaped body manufactured through optical shaping method by spraying or pouring a solvent over the same at need, a transparent resin liquid is applied to the surface of the same with spraying or other method. In this instance, a recessed part (a) of the surface of the shaped body is filled with the resin liquid and a quantity of the resin liquid of such an extent as to obtain a smooth surface is stuck to the surface. Then the resin lidded stuck to the surface is cured by applying light to the same or heating the same, a recessed part of the surface of the shaped body is made a smooth surface by filling a cured matter (b) into the recessed part and the resin liquid is made transparent by eliminating diffused reflection.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光硬化性樹脂に光を照射して目的形状の硬化体
を製造する光学的造形法により製造される造形体を透明
化する処理方法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a process for making transparent a shaped body produced by an optical modeling method in which a photocurable resin is irradiated with light to produce a cured body in a desired shape. Regarding the method.

[従来の技術] 光硬化性樹脂に光束を照射して、該照射部分を硬化させ
、この硬化部分を水平方向に連続させると共に、さらに
その上側に光硬化性樹脂を供給して同様にして硬化させ
ることにより上下方向にも硬化体を連続させ、これを繰
り返すことにより目的形状の硬化体を製造する光学的造
形法は特開昭60−247515号、62−35966
号、62−101408号などにより公知である。光束
を走査する代りにマスクを用いる方法も公知である。
[Prior art] A photocurable resin is irradiated with a light beam to cure the irradiated portion, and this cured portion is continued in the horizontal direction, and a photocurable resin is further supplied above it and cured in the same manner. An optical modeling method in which the cured body is made to continue in the vertical direction by repeating this process to produce a cured body in the desired shape is disclosed in Japanese Patent Application Laid-open Nos. 60-247515 and 62-35966.
No. 62-101408. It is also known to use a mask instead of scanning the beam.

また、光硬化性樹脂をノズルの先端から流出させると共
に、流出された樹脂に光を照射して樹脂を硬化させ、か
つノズルを3次元模型の断面に沿って13!lIさせ、
硬化樹脂(硬化体)を積み重ねることにより3次元模型
を製造する方法も近年開発されつつある。
In addition, the photocurable resin is caused to flow out from the tip of the nozzle, and the outflowed resin is irradiated with light to harden the resin, and the nozzle is moved along the cross section of the three-dimensional model. Let me
A method of manufacturing a three-dimensional model by stacking cured resins (cured bodies) has also been developed in recent years.

第2図〜第4図は各々かかる光学的造形法を実施するた
めの装置の一例を示す断面図である。
FIGS. 2 to 4 are cross-sectional views each showing an example of an apparatus for carrying out such an optical modeling method.

第2図の装置において、容器11内に光硬化性樹脂12
が収容されている。容器11の底面にはガラス等の透光
板よりなる透光窓13が設けられており、該透光窓13
に向けて光束14を照射するように、レンズを内蔵した
光出射部15、光ファイバー16、光出射部15を水平
面内のX−Y方向(X、Yは直交する2方向)に′8!
l]させるX−Y移動装置17、光源20等よりなる光
学系が設けられている。容器11内にはベース21が設
置され、該ベース21はエレベータ22により昇降可能
とされている。これらX−Y移動装置17、エレベータ
22はコンピュータ23により制御される。
In the apparatus shown in FIG. 2, a photocurable resin 12 is placed in a container 11.
is accommodated. A transparent window 13 made of a transparent plate such as glass is provided on the bottom of the container 11.
The light emitting part 15 with a built-in lens, the optical fiber 16, and the light emitting part 15 are moved in the X-Y direction (X and Y are two orthogonal directions) in a horizontal plane so as to irradiate the light beam 14 toward '8!'
An optical system including an X-Y moving device 17, a light source 20, etc., is provided. A base 21 is installed inside the container 11, and the base 21 can be raised and lowered by an elevator 22. These XY moving device 17 and elevator 22 are controlled by a computer 23.

上記装置により硬化体を製造する場合、まずベース21
を透光窓13よりもわずか下方に位置させ、光束14を
目的形状物の水平断面に倣って走査させる。この走査は
コンピュータ制御されたX−Y移動装置17により行な
われる。目的形状物の一つの水平断面(この場合は底面
又は上面に相当する部分)のすべてに光を照射した後、
ベース21をわずかに上昇させ、硬化物24とベース2
1との間に未硬化の光硬化性樹脂を流入させた後、上記
と同様の光照射を行う。この手順を繰り返すことにより
、目的形状の硬化体が多層積層体として得られる。
When producing a cured body using the above device, first the base 21
is positioned slightly below the transparent window 13, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by a computer-controlled X-Y movement device 17. After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom or top surface),
Slightly raise the base 21, and remove the cured product 24 and the base 2.
1, and then the same light irradiation as above is performed. By repeating this procedure, a cured product having the desired shape can be obtained as a multilayer laminate.

第3図の装置においては、光硬化性樹脂12の液面12
aに向けて光束14を照射するようにレンズ28、ミラ
ー29、ミラー回転駆動装置29a、光源20等よりな
る光学系が設けられている。容器11内にはベース21
が設置され、該ベース21はエレベータ22により昇降
可能とされている。これら駆動装置29a、エレベータ
22はコンピュータ23により制御される。
In the apparatus shown in FIG. 3, the liquid level 12 of the photocurable resin 12 is
An optical system including a lens 28, a mirror 29, a mirror rotation drive device 29a, a light source 20, etc. is provided so as to irradiate the light beam 14 toward the direction a. The base 21 is inside the container 11.
is installed, and the base 21 can be raised and lowered by an elevator 22. These drive device 29a and elevator 22 are controlled by a computer 23.

上記装置により硬化体を製造する場合、まずベース21
上の基板21aを液面12aよりもわずか下方に位置さ
せ、光束14を目的形状物の水平断面に倣って走査させ
る。この走査はコンピュータ制御されたミラー29の回
転により行われる。目的形状物の一つの水平断面(この
場合は底面に相当する部分)のすべてに光を照射した後
、ベース21をわずかに下降させ、硬化物24の上に未
硬化の光硬化性樹脂を流入させた後、上記と同様の光照
射を行う、この手順を繰り返すことにより、目的形状の
硬化体が得られる。
When producing a cured body using the above device, first the base 21
The upper substrate 21a is positioned slightly below the liquid level 12a, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by computer-controlled rotation of mirror 29. After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom surface), the base 21 is lowered slightly and uncured photocurable resin is poured onto the cured material 24. After that, by repeating this procedure of performing light irradiation similar to the above, a cured product having the desired shape can be obtained.

第4図は別の光学的造形装置を説明する斜視図である。FIG. 4 is a perspective view illustrating another optical modeling device.

符号30は未硬化の光硬化性樹脂を貯蔵する貯槽であり
、フィーダ32、配管36及びポンプ37を介してノズ
ル38に接続されており、光硬化性樹脂が該ノズル38
へ供給可能とされている。該ノズル38はロボット装置
39のロボットアーム40の先端に取り付けられており
、xlY、Z方向にそれぞれ移動自在とされている。な
お、X、Y、Zは直交する3次元座標軸を示している。
A storage tank 30 stores uncured photocurable resin, and is connected to a nozzle 38 via a feeder 32, piping 36, and a pump 37, and the photocurable resin is stored in the nozzle 38.
It is said that it can be supplied to The nozzle 38 is attached to the tip of the robot arm 40 of the robot device 39, and is movable in the xlY and Z directions. Note that X, Y, and Z indicate orthogonal three-dimensional coordinate axes.

符号41は光源であり、光ファイバー42を介してノズ
ル38に接続され、該ノズル38の先端から流出される
光硬化性樹脂に光を照射可能としている。符号43はポ
ンプ37、ロボット装置39及び光源41を制御するコ
ンピュータである。
Reference numeral 41 denotes a light source, which is connected to the nozzle 38 via an optical fiber 42, and is capable of irradiating light onto the photocurable resin flowing out from the tip of the nozzle 38. Reference numeral 43 is a computer that controls the pump 37, the robot device 39, and the light source 41.

このように構成された装置を用いて3次元模型を製造す
る場合、まず、コンピュータ43に製造しようとする3
次元模型44の水平断面データを入力しておく。水平断
面データとは、3次元模型44を所要の高さ方向(Z方
向)の厚みごとにいわゆる輪切りを行うように水平方向
に沿ってとりだ断面における形状である。第4図の3次
元模型44は自動車のモデルであり、その車体のルーフ
近傍付近における所要の厚さをもった断面45の形状が
一つの水平断面データとなる。この自動車モデルとして
の3次元模型44は、多数の薄い肉厚の断面の積み重ね
体として形成され、全ての断面の形状がコンピュータ4
3に入力される。コンピュータ43に入力された水平断
面データに基いて、コンピュータ43はポンプ37及び
ロボット装置39の制御を行う。第4図では、成形用板
材46の上にまずタイヤ4フの最低部が形成され、順次
その上にタイヤ47の中央部から上部並びに車体48の
底部が形成され、順次上方の部分が積み重ねられる。符
号45で示す閉じたループ形状の断面を形成する場合、
ノズル38はループ状の軌跡を描くように移動される。
When manufacturing a three-dimensional model using the apparatus configured in this way, first, the computer 43
Horizontal cross-sectional data of the dimensional model 44 is input in advance. The horizontal cross-sectional data is the shape of the three-dimensional model 44 taken along the horizontal direction so as to be cut into rounds at each required thickness in the height direction (Z direction). The three-dimensional model 44 in FIG. 4 is a model of a car, and the shape of a cross section 45 having a required thickness near the roof of the car body is one piece of horizontal cross-sectional data. The three-dimensional model 44 as a car model is formed as a stack of many thin cross-sections, and the shape of all the cross-sections is determined by the computer.
3 is input. Based on the horizontal section data input to the computer 43, the computer 43 controls the pump 37 and the robot device 39. In FIG. 4, the lowest part of the tire 4 is first formed on the forming plate 46, and then the center and upper parts of the tire 47 and the bottom part of the vehicle body 48 are formed thereon, and the upper parts are stacked one after another. . When forming a closed loop-shaped cross section indicated by reference numeral 45,
The nozzle 38 is moved so as to draw a loop-shaped trajectory.

ノズル38から流出した樹脂にはノズル38の先端の投
光部から光が照射される。これにより、流出した樹脂は
直ちに硬化を開始し、既に積層されかつ所要の硬度にま
で硬化している模型44の断面45上に積み重ねられる
The resin flowing out from the nozzle 38 is irradiated with light from a light projection part at the tip of the nozzle 38. As a result, the resin that flows out immediately starts to harden and is stacked on the cross section 45 of the model 44 that has already been laminated and hardened to the required hardness.

[発明が解決しようとする課題] このように、硬化体を層状に積み重ねてゆく光学的造形
法により製造される造形体は、積み重ねられた硬化体の
各層の間に段差が生じるため、その表面が平滑面ではな
く凹凸面となる。
[Problems to be Solved by the Invention] In this way, the shaped body manufactured by the optical modeling method in which cured bodies are stacked in layers has a difference in level between each layer of the stacked cured bodies, so that the surface of the shaped body is becomes an uneven surface instead of a smooth surface.

即ち、例えば第2図の1部の拡大図である第1図(a)
に示す如く、順次積み上げ位置をずらすように積層され
た硬化物24 a、 24 b、 24 cにおいては
、それぞれの硬化物間に段差状の隅角部がある。
That is, for example, FIG. 1(a) is an enlarged view of a portion of FIG.
As shown in the figure, in the cured products 24 a, 24 b, and 24 c stacked one after another so that the stacking positions are shifted, there are stepped corner portions between the respective cured products.

また、硬化物24の垂直断面形状も全く完全な方形にな
るものではなく、光が照射される例が拡大する台形又は
三角形の断面形状になることが多い。(光を下方から照
射している第2図の装置による造形体においては、各層
の硬化物24は第1図に示す如く下方へいわゆる末広が
りとなる台形の断面形状となる。なお、逆に上方から光
を照射するタイプの光学的造形装置(図示略)では、硬
化物の上面側が広くなる台形断面形状になり易い。
Furthermore, the vertical cross-sectional shape of the cured product 24 is not completely rectangular, and the cross-sectional shape that is irradiated with light is often an expanding trapezoid or triangle. (In a modeled object produced by the apparatus shown in FIG. 2 in which light is irradiated from below, the cured material 24 of each layer has a trapezoidal cross-sectional shape that widens downward as shown in FIG. 1. In an optical shaping device (not shown) that irradiates light from above, the cured product tends to have a trapezoidal cross-sectional shape that is wider on the upper surface side.

このようなことから、硬化物24を積層してなる造形体
は、その側面に多数の微細な凹凸(第1図の符号aは凹
部を示す。)を有したものとなっていた。そして、従来
の光学的造形法で製造される造形体は、この凹凸表面で
の光の乱反射のためにスリ硝子の如く透明感の乏しい造
形体となっていた。
For this reason, the shaped body formed by laminating the cured material 24 had a large number of fine irregularities (the symbol "a" in FIG. 1 indicates a concave part) on its side surface. The shaped bodies manufactured by conventional optical shaping methods have poor transparency, like ground glass, due to the diffuse reflection of light on the uneven surface.

このような凹凸の存在のために不透明体とされている造
形体を透明化する方法としては、造形体の表面を適当な
方法で研磨することにより段差Aをなくし、平滑表面と
する方法も考えられるが、この方法は、研磨に多大な労
力を要し、工業的に有利な方法とはいえない。
As a method of making a shaped object transparent due to the presence of such unevenness, it is also possible to polish the surface of the shaped object using an appropriate method to eliminate the step A and make it a smooth surface. However, this method requires a great deal of effort for polishing and cannot be said to be an industrially advantageous method.

本発明の目的は、このような従来の光学的造形法で製造
された不透明な造形体を容易に透明化することができる
方法を提供することにある。
An object of the present invention is to provide a method that can easily make an opaque shaped object manufactured by such a conventional optical modeling method transparent.

[課題を解決するための手段] 本発明の光学的造形体の透明化処理方法は、光硬化性樹
脂の硬化物を積み重ねて、造形する光学的造形法で製造
された造形体の表面に、透明な樹脂液を付着させて、硬
化させることを特徴とする。
[Means for Solving the Problems] The method for transparentizing an optically shaped object of the present invention includes stacking cured products of photocurable resin and applying the following steps to the surface of a shaped object manufactured by an optical modeling method. It is characterized by applying a transparent resin liquid and curing it.

[作 用] 本発明の方法によれば、光学的造形法により製造された
造形体の表面の凹凸が該樹脂液の硬化物により埋められ
滑らかな表面となる。従って、本発明によれば、造形体
を透明化することが可能とされる。
[Function] According to the method of the present invention, the unevenness on the surface of the shaped body manufactured by the optical shaping method is filled with the cured product of the resin liquid, resulting in a smooth surface. Therefore, according to the present invention, it is possible to make a shaped object transparent.

[実施例] 以下、本発明につき詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail.

本発明においては、例えば第2〜4図に示した光学的造
形法により製造された造形体を必要に応じ溶剤を噴露し
たり注ぎかけたりすることにより洗浄した後、その表面
に、透明な樹脂液を付着させる。透明樹脂液の付着方法
としては、スプレー、刷毛塗り等の塗布方法の他、造形
体を樹脂液中に浸漬する方法等を採用することができる
In the present invention, for example, after a shaped body manufactured by the optical modeling method shown in FIGS. 2 to 4 is cleaned by spraying or pouring a solvent as necessary, a transparent layer is applied to the surface of the shaped body. Apply resin liquid. As a method for applying the transparent resin liquid, in addition to coating methods such as spraying and brush coating, a method of immersing the shaped body in the resin liquid can be adopted.

なお、造形体を上記の如く洗浄する場合において透明樹
脂液の粘性が低いときには、洗浄液として当該透明樹脂
液を用いても良い。このようにすれば、洗浄と透明樹脂
液の付着とを同時に行なうことができる。
Note that when cleaning the shaped object as described above, when the viscosity of the transparent resin liquid is low, the transparent resin liquid may be used as the cleaning liquid. In this way, cleaning and adhesion of the transparent resin liquid can be performed at the same time.

この透明樹脂液は、造形体表面の凹部aが樹脂液で埋め
られ、滑らかな表面が得られる程度の量で良い。造形体
の表面に過度に多量の樹脂液が付着すると、造形体の寸
法、形状が変わってしまうおそれがある。(ただし、樹
脂液をペイントの如く均一厚に塗着できるならば、透明
樹脂液を厚く塗着しても良い。) 本発明では、上記の如くして造形体表面に付着させた樹
脂液を硬化させる。この樹脂液の硬化は、用いる樹脂液
が光硬化性樹脂の液であれば、これに光を照射すること
により行なう。また、樹脂液が熱硬化性樹脂液である場
合には、オーブン等の適当な加熱装置により加熱して硬
化させることができる。
The amount of the transparent resin liquid may be such that the recesses a on the surface of the shaped object are filled with the resin liquid and a smooth surface is obtained. If an excessively large amount of resin liquid adheres to the surface of the shaped object, the dimensions and shape of the shaped object may change. (However, if the resin liquid can be applied in a uniform thickness like paint, the transparent resin liquid may be applied thickly.) In the present invention, the resin liquid attached to the surface of the modeled object as described above can be applied thickly. Let it harden. If the resin liquid used is a photocurable resin liquid, the resin liquid is cured by irradiating it with light. Furthermore, when the resin liquid is a thermosetting resin liquid, it can be heated and cured using a suitable heating device such as an oven.

このようにして、付着させた樹脂液を硬化させることに
より、第1図(b)に示す如く、造形体表面の凹部が樹
脂液の硬化物すにより埋められ、滑らかな表面となるの
で、造形体が透明となる。
By curing the attached resin liquid in this way, the recesses on the surface of the object are filled with the hardened resin liquid, resulting in a smooth surface, as shown in Figure 1(b). The body becomes transparent.

本発明では、この硬化物すの屈折率が硬化物24とほぼ
等しい値となるような透明樹脂液を用いると、造形体の
透明度が一層高いものとなる。
In the present invention, when a transparent resin liquid is used such that the refractive index of the cured product is approximately the same as that of the cured product 24, the transparency of the shaped object becomes even higher.

本発明において、前記光硬化性樹脂としては、光照射に
より硬化する種々の物質を用いることかでき、例えば変
性ポリウレタンメタクリレート、オリゴエステルアクリ
レート、ウレタンアクリレート、エポキシアクリレート
、感光性ポリイミド、アミノアルキドを挙げることがで
きる。
In the present invention, various substances that are cured by light irradiation can be used as the photocurable resin, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. I can do it.

このような光硬化性樹脂の硬化体に付着させる透明な樹
脂液としては、光硬化性樹脂、熱硬化性樹脂等の液を用
いることができる。なお、前記の通りこの透明樹脂液と
しては、その硬化物が上記硬化性樹脂の硬化物と屈折率
がほぼ等しいものが好適である。上記光硬化性樹脂の屈
折率は通常1.4〜1.6程度であることから、屈折率
がほぼ1.4〜1.6の範囲である透明な樹脂を適宜選
定する。一般には、造形に用いた光硬化性樹脂を適当な
溶剤で希釈した液を用いるのが有利である。即ち、造形
に用いる光硬化性樹脂は高粘性であるため、これを適当
な粘度に希釈して用いる。
As the transparent resin liquid to be applied to the cured body of such a photocurable resin, liquids such as photocurable resins and thermosetting resins can be used. As mentioned above, this transparent resin liquid is preferably one whose cured product has approximately the same refractive index as the cured product of the curable resin. Since the refractive index of the photocurable resin is usually about 1.4 to 1.6, a transparent resin having a refractive index of approximately 1.4 to 1.6 is appropriately selected. Generally, it is advantageous to use a solution obtained by diluting the photocurable resin used for modeling with an appropriate solvent. That is, since the photocurable resin used for modeling has a high viscosity, it is diluted to an appropriate viscosity before use.

なお、造形に用いる光硬化性樹脂が低粘性のものであれ
ば、これをそのまま使用することもできる。
Note that if the photocurable resin used for modeling has low viscosity, it can be used as is.

本発明では、造形体表面に付着させる樹脂は無職透明で
あっても良く、有色透明であっても良い。
In the present invention, the resin attached to the surface of the shaped object may be transparent or colored.

[発明の効果] 以上の通り、本発明の方法によれば、表面が滑らかで、
透明度が著しく高く美麗な造形体を容易かつ効率的に製
造することができる。
[Effects of the Invention] As described above, according to the method of the present invention, the surface is smooth and
A beautiful shaped body with extremely high transparency can be easily and efficiently produced.

【図面の簡単な説明】 第1図は硬化体表面の断面図、第2図、第3図及び第4
図は光学的造形装置の構成図である。 12・・・光硬化性樹脂、  14・・・光束、16・
・・光ファイバー  20・・・光源、21・・・ベー
ス、     22・・・エレベータ、24・・・硬化
物。 代理人  弁理士  重 野  剛 第1図 (a) 第3図 (b)
[Brief explanation of the drawings] Figure 1 is a sectional view of the surface of the cured product, Figures 2, 3 and 4.
The figure is a configuration diagram of an optical modeling device. 12... Photocurable resin, 14... Luminous flux, 16.
...Optical fiber 20...Light source, 21...Base, 22...Elevator, 24...Cured product. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 (a) Figure 3 (b)

Claims (1)

【特許請求の範囲】[Claims] (1)光硬化性樹脂の硬化物を積み重ねる光学的造形法
により製造された造形体の表面に、透明な樹脂液を付着
させて、硬化させることを特徴とする光学的造形体の透
明化処理方法。
(1) Transparency treatment for optical shaped bodies, which is characterized by applying a transparent resin liquid to the surface of a shaped body manufactured by an optical modeling method in which cured products of photocurable resin are stacked, and then curing it. Method.
JP63172684A 1988-07-13 1988-07-13 Treatment for making optical shaped body transparent Granted JPH0224122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172684A JPH0224122A (en) 1988-07-13 1988-07-13 Treatment for making optical shaped body transparent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172684A JPH0224122A (en) 1988-07-13 1988-07-13 Treatment for making optical shaped body transparent

Publications (2)

Publication Number Publication Date
JPH0224122A true JPH0224122A (en) 1990-01-26
JPH0479826B2 JPH0479826B2 (en) 1992-12-17

Family

ID=15946444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172684A Granted JPH0224122A (en) 1988-07-13 1988-07-13 Treatment for making optical shaped body transparent

Country Status (1)

Country Link
JP (1) JPH0224122A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295831A (en) * 1988-10-01 1990-04-06 Matsushita Electric Works Ltd Forming method and apparatus of three dimensional shape
JPH04169221A (en) * 1990-11-02 1992-06-17 Mitsubishi Corp High accuracy optical solidifying and shaping apparatus
JPH08174680A (en) * 1994-12-22 1996-07-09 Japan Synthetic Rubber Co Ltd Optical shaping method
JPH09234798A (en) * 1996-02-29 1997-09-09 Toyoda Mach Works Ltd Thin film laminated body and manufacture thereof
JP2005262865A (en) * 2004-02-17 2005-09-29 Toshiki Shinno Method for making three-dimensional structure transparent and transparent three-dimensional structure
JP2010094912A (en) * 2008-10-17 2010-04-30 Cmet Inc Method of treating optical solid shape
US8123999B2 (en) 2002-04-17 2012-02-28 Stratasys, Inc. Smoothing method for layered deposition modeling
US8765045B2 (en) 2007-01-12 2014-07-01 Stratasys, Inc. Surface-treatment method for rapid-manufactured three-dimensional objects
JP2016525967A (en) * 2013-06-07 2016-09-01 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique Eyeglass lens manufacturing process and system
JP2018062169A (en) * 2016-10-11 2018-04-19 ゼロックス コーポレイションXerox Corporation System and method for finishing surface of three-dimensional (3d) object formed by layered modeling system
JP2021508626A (en) * 2018-02-21 2021-03-11 カーボン,インコーポレイテッド Strengthening the adhesion of objects to carriers during additional manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110942A (en) * 1978-02-21 1979-08-30 Sony Corp Manufacture of mold for formation
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54110942A (en) * 1978-02-21 1979-08-30 Sony Corp Manufacture of mold for formation
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device
JPS60247515A (en) * 1984-05-23 1985-12-07 Oosakafu Optical shaping method
JPS6235966A (en) * 1984-08-08 1987-02-16 スリーデイー、システムズ、インコーポレーテッド Method and apparatus for generating 3-d object

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295831A (en) * 1988-10-01 1990-04-06 Matsushita Electric Works Ltd Forming method and apparatus of three dimensional shape
JPH04169221A (en) * 1990-11-02 1992-06-17 Mitsubishi Corp High accuracy optical solidifying and shaping apparatus
JPH08174680A (en) * 1994-12-22 1996-07-09 Japan Synthetic Rubber Co Ltd Optical shaping method
JPH09234798A (en) * 1996-02-29 1997-09-09 Toyoda Mach Works Ltd Thin film laminated body and manufacture thereof
US8123999B2 (en) 2002-04-17 2012-02-28 Stratasys, Inc. Smoothing method for layered deposition modeling
JP2005262865A (en) * 2004-02-17 2005-09-29 Toshiki Shinno Method for making three-dimensional structure transparent and transparent three-dimensional structure
US8765045B2 (en) 2007-01-12 2014-07-01 Stratasys, Inc. Surface-treatment method for rapid-manufactured three-dimensional objects
JP2010094912A (en) * 2008-10-17 2010-04-30 Cmet Inc Method of treating optical solid shape
JP2016525967A (en) * 2013-06-07 2016-09-01 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティックEssilor International Compagnie Generale D’ Optique Eyeglass lens manufacturing process and system
JP2018062169A (en) * 2016-10-11 2018-04-19 ゼロックス コーポレイションXerox Corporation System and method for finishing surface of three-dimensional (3d) object formed by layered modeling system
JP2021508626A (en) * 2018-02-21 2021-03-11 カーボン,インコーポレイテッド Strengthening the adhesion of objects to carriers during additional manufacturing

Also Published As

Publication number Publication date
JPH0479826B2 (en) 1992-12-17

Similar Documents

Publication Publication Date Title
JPH0624773B2 (en) Optical modeling method
JPH0224122A (en) Treatment for making optical shaped body transparent
JPS61114818A (en) Apparatus for forming solid configuration
WO2007023724A1 (en) Stereolithography apparatus and stereolithography method
JP5007174B2 (en) Stereolithography of 3D shaped objects
JPH0523588B2 (en)
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JPH06246837A (en) Optically shaping method and device
JP4626446B2 (en) Stereolithography apparatus and stereolithography method
JPH04168036A (en) Automatic shaping device
JPS63145016A (en) Device for forming solid shape
JPH02188228A (en) Optical shaping method
JPH07329190A (en) Manufacture of 3-dimensional object and manufacturing equipment
JPS63141724A (en) Forming three dimensional shape
JPH04366620A (en) Optical shaping method
JPH0533899B2 (en)
JPH0452042Y2 (en)
JP2551110B2 (en) Optical modeling
JPH0514837Y2 (en)
JPH0733629U (en) Stereolithography device
JP2527021B2 (en) Optical modeling
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JPH01232025A (en) Optical shaping method
JPH0459231A (en) Ejection-type three-dimensional molding device
JPH01232026A (en) Optical shaping method by porous mask