JPH0224120A - Optical shaping method - Google Patents

Optical shaping method

Info

Publication number
JPH0224120A
JPH0224120A JP63172682A JP17268288A JPH0224120A JP H0224120 A JPH0224120 A JP H0224120A JP 63172682 A JP63172682 A JP 63172682A JP 17268288 A JP17268288 A JP 17268288A JP H0224120 A JPH0224120 A JP H0224120A
Authority
JP
Japan
Prior art keywords
light
base
window
transmission window
light transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63172682A
Other languages
Japanese (ja)
Other versions
JPH0533899B2 (en
Inventor
Yoshinao Hirano
平野 義直
Shigeru Nagamori
茂 永森
Katsumi Sato
勝美 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP63172682A priority Critical patent/JPH0224120A/en
Publication of JPH0224120A publication Critical patent/JPH0224120A/en
Publication of JPH0533899B2 publication Critical patent/JPH0533899B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0888Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using transparant moulds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To constitute the title method so that a vacant hole part is not generated in a target-shaped body by preventing scattering of irradiating light, by a method wherein after removal of bubbles between a base surface and light transmitting window by sticking a base on, or close to, the light transmission window, light irradiation and base shifting are performed by separating the base from the light transmission window. CONSTITUTION:A base 21 is stuck on, or close to, a light transmission window 13 prior to shaping. Bubbles which have been kept stuck to the bottom of the base 21 or the top of the light transmission window 13 are removed through a space between the base 21 and light transmission window 13. After removal of the bubbles, a cured layer 24 of the first layer is formed by applying light to the layer by separating the base 21 from the light transmission window 13 by a fixed distance. Then after separation of the base 21 by the fixed distance further from the light transmission window 13, the light is applied to the layer and the cured layer 24 of the second layer is formed. The irradiating light is applied to photosetting resin and the photosetting resin flows into a space between the base and light transmission window. The bubbles are not taken into a cured matter of the photosetting resin.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光硬化性樹脂に光を照射して目的形状の硬化体
を製造する光学的造形法に関する。詳しくは、容器に設
けた透光窓から容器内の光硬化性樹脂に向って光を照射
する光学的造形法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an optical modeling method for producing a cured product having a desired shape by irradiating a photocurable resin with light. Specifically, the present invention relates to an optical modeling method in which light is irradiated from a light-transmitting window provided in a container toward a photocurable resin inside the container.

[従来の技術] 光硬化性樹脂に光束を照射して、該照射部分を硬化させ
、この硬化部分を水平方向に連続させると共に、さらに
その上側に光硬化性樹脂を供給して同様にして硬化させ
ることにより上下方向にも硬化体を連続させ、これを繰
り返すことにより目的形状の硬化体を製造する光学的造
形法は特開昭60−247515号、62−35966
号、62−101408号などにより公知である。光束
を走査する代りにマスクを用いる方法も公知である。
[Prior art] A photocurable resin is irradiated with a light beam to cure the irradiated portion, and this cured portion is continued in the horizontal direction, and a photocurable resin is further supplied above it and cured in the same manner. An optical modeling method in which the cured body is made to continue in the vertical direction by repeating this process to produce a cured body in the desired shape is disclosed in Japanese Patent Application Laid-open Nos. 60-247515 and 62-35966.
No. 62-101408. It is also known to use a mask instead of scanning the beam.

かかる光学的造形法として、底面又は側面に透光窓を有
する容器と、この透光窓を通して容器内に光を照射する
装置と、該容器内において透光窓から離反する方向へ8
動可能に設けられたベースを有するものがある。この光
学的造形法について第2図を参照して説明する。
Such an optical modeling method includes a container having a light-transmitting window on the bottom or side surface, a device that irradiates light into the container through the light-transmitting window, and a device that irradiates light into the container through the light-transmitting window, and a device that emits light into the container in a direction away from the light-transmitting window.
Some have a movably mounted base. This optical modeling method will be explained with reference to FIG. 2.

第2図において、容器11内には光硬化性樹脂12が収
容されている。容器11の底面には、石英ガラス等の透
光板よりなる透光窓13が設けられており、該透光窓1
3に向けて光束14を照射するように、レンズを内蔵し
た光出射部15、光ファイバー16、光出射部15を水
平面内のX−Y方向(X、Yは直交する2方向)に移動
させるx−Y8i!jl装置17、光源20等よりなる
光学系(照射装置)が設けられている。
In FIG. 2, a photocurable resin 12 is housed in a container 11. As shown in FIG. A transparent window 13 made of a transparent plate such as quartz glass is provided on the bottom of the container 11.
moving the light emitting unit 15 with a built-in lens, the optical fiber 16, and the light emitting unit 15 in the X-Y direction (X and Y are two orthogonal directions) in a horizontal plane so as to irradiate the light beam 14 toward -Y8i! An optical system (irradiation device) including a jl device 17, a light source 20, etc. is provided.

容器11内にはベース21が設置され、該ベース21は
エレベータ22により昇降可能とされている。これら移
動装置17、エレベータ22はコンピュータ23により
制御される。
A base 21 is installed inside the container 11, and the base 21 can be raised and lowered by an elevator 22. These moving device 17 and elevator 22 are controlled by a computer 23.

上記装置により硬化体を製造する場合、まずベース21
を透光窓13よりもわずか上方に位置させ、光束14を
目的形状物の水平断面に倣って走査させる。この走査は
コンピュータ制御されたx−y8動装置により行なわれ
る。
When producing a cured body using the above device, first the base 21
is positioned slightly above the transparent window 13, and the light beam 14 is scanned along the horizontal cross section of the target object. This scanning is performed by a computer controlled x-y eight motion system.

目的形状物の一つの水平断面(この場合は底面又は上面
に相当する部分)のすべてに光を照射した後、ベース2
1をわずかに上昇させ、硬化物24と透光窓21との間
に未硬化の光硬化性樹脂を流入させた後、上記と同様の
光照射を行なう。
After irradiating the entire horizontal cross section of the target shape (in this case, the part corresponding to the bottom or top surface), the base 2
1 is slightly raised to flow the uncured photocurable resin between the cured material 24 and the light-transmitting window 21, and then the same light irradiation as above is performed.

この手順を繰り返すことにより、目的形状の硬化体が多
層積層体として得られる。
By repeating this procedure, a cured product having the desired shape can be obtained as a multilayer laminate.

[発明が解決しようとする課題] 上記の光学的造形法においては、容器11内に光硬化性
樹脂12を注ぎ込んだりした際にベース21の表面や透
光窓13の容器内側面に気泡が付着してしまい、照射さ
れた光を散乱させたり、光がベース21と透光窓13と
の間に流入することを妨げたりする等の支障が生じてい
た。また、ベース面上に付着した気泡が硬化物に取り込
まれ、目的形状体に空孔部を生じさせるおそれもあった
[Problems to be Solved by the Invention] In the optical modeling method described above, when the photocurable resin 12 is poured into the container 11, air bubbles adhere to the surface of the base 21 and the inner surface of the container of the transparent window 13. This causes problems such as scattering the irradiated light and preventing light from flowing between the base 21 and the light-transmitting window 13. In addition, there was also a risk that air bubbles adhering to the base surface would be incorporated into the cured product, creating voids in the target shaped body.

[課題を解決するための手段] 本発明は、容器の透光窓から光を照射すると共にベース
を徐々に透光窓から離反させ、目的形状体の断面に相当
する光硬化性樹脂の硬化層を多数積層することにより目
的形状体を造形するようにした光学的造形法において、
造形工程に先立ってベースを透光窓に密着又は近接させ
、該ベースと透光窓との間から気泡を追い出すようにし
たものである。
[Means for Solving the Problems] The present invention irradiates light from a light-transmitting window of a container, gradually moves the base away from the light-transmitting window, and forms a cured layer of a photocurable resin corresponding to a cross section of a target shaped object. In an optical modeling method that creates a target shape by laminating a large number of
Prior to the modeling process, the base is brought into close contact with or close to the light-transmitting window, and air bubbles are expelled from between the base and the light-transmitting window.

[作用] かかる本発明方法にあっては、ベース表面及び透光窓の
容器内側面から気泡が確実に除去されるので、照射され
た光が散乱されることなく光硬化性樹脂に照射される。
[Operation] In the method of the present invention, air bubbles are reliably removed from the base surface and the inner surface of the container of the light-transmitting window, so that the irradiated light is irradiated onto the photocurable resin without being scattered. .

また、光硬化性樹脂がベースと透光窓との間に円滑に流
入する。さらに、光硬化性樹脂の硬化物中には気泡が取
り込まれない。
Furthermore, the photocurable resin smoothly flows between the base and the light-transmitting window. Furthermore, air bubbles are not incorporated into the cured product of the photocurable resin.

[実施例] 以下、図面を用いて実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は実施例方法において、造形に先立ってベース2
1を透光窓13に密着させた状態を示している。なお、
第1図のその他の構成は前述した第2図と同じであり、
同一部材に同一符号を付しである。
Figure 1 shows the base 2
1 is shown in close contact with a transparent window 13. In addition,
The other configurations in FIG. 1 are the same as those in FIG. 2 described above,
The same members are given the same reference numerals.

このようにベース21を透光窓13に密着させることに
より、ベース21の下面や透光窓13の上面に付着して
いた気泡は完全にベース21と透光窓13との間から追
い出される如くして除去される。なお、このようにベー
ス21を透光窓13に密着させてから離反させるように
すると、第1層目の硬化層を形成するための初期間隙(
ベース21と透光窓13との間隔)を正確に予定値に設
定できる。従って、第1層目の硬化層の厚さの精度が高
い。
By bringing the base 21 into close contact with the transparent window 13 in this way, air bubbles that have adhered to the lower surface of the base 21 and the upper surface of the transparent window 13 can be completely expelled from between the base 21 and the transparent window 13. removed. Note that by bringing the base 21 into close contact with the transparent window 13 and then separating it in this way, the initial gap for forming the first hardened layer (
The distance between the base 21 and the transparent window 13 can be accurately set to the expected value. Therefore, the accuracy of the thickness of the first hardened layer is high.

上記のように気泡が除去された後、ベース21を所定距
離だけ(例えば0.1〜1mm程度)だけ透光窓13か
ら離反させ、次いで光を照射することによりまず第1N
目の硬化層24を形成する。次いで、ベース21を所定
距離だけさらに透光窓13から離反させた後、光を照射
し、第2層目の硬化層24を形成する。なお、光硬化性
樹脂24の硬化物はベース21と透光窓13との間に生
成し、これらベース21及び透光窓13の双方の表面に
硬化物が付着するが、硬化物がベース21の表面により
強力に付着するようにベース21及び透光窓13の表面
構成がなされている。
After the air bubbles are removed as described above, the base 21 is moved away from the transparent window 13 by a predetermined distance (for example, about 0.1 to 1 mm), and then the first N
A hardened layer 24 is formed. Next, after the base 21 is further separated from the transparent window 13 by a predetermined distance, light is irradiated to form a second hardened layer 24. Note that the cured product of the photocurable resin 24 is generated between the base 21 and the light-transmitting window 13, and the cured product adheres to the surfaces of both the base 21 and the light-transmitting window 13. The surfaces of the base 21 and the light-transmitting window 13 are structured so that they adhere more strongly to the surface of the base 21 and the light-transmitting window 13.

従って、第1層目、第2層目又はそれに引き続く硬化層
を形成した後ベース21を移動させるときは、硬化物2
4と透光窓13の表面との間が剥離し、硬化物24と透
光窓13との間が前記所定距離だけ離反する。
Therefore, when moving the base 21 after forming the first layer, the second layer, or the subsequent cured layer, the cured product 2
4 and the surface of the light-transmitting window 13 are separated, and the cured material 24 and the light-transmitting window 13 are separated by the predetermined distance.

目的形状体のすべての層を形成した後、硬化物24をベ
ース21から取り外し、必要に応じ仕上げ処理を施して
目的形状体を得ることができる。
After forming all the layers of the object with the desired shape, the cured product 24 is removed from the base 21 and finishing treatment can be performed as necessary to obtain the object with the desired shape.

上記実施例ではベース21を透光窓13に密着させてい
るが、本発明にあっては、ベース21と透光窓13との
間から気泡を追い出し得る程度にベース21を透光窓1
3に近接させるようにしても良い。
In the embodiment described above, the base 21 is brought into close contact with the light-transmitting window 13, but in the present invention, the base 21 is brought into close contact with the light-transmitting window 13 to the extent that air bubbles can be expelled from between the base 21 and the light-transmitting window 13.
It may be arranged to be close to 3.

上記実施例は、透光窓13を容器の底面に設は光を容器
の下方から照射するようにしているが、本発明において
は容器11の側面に透光窓を設け、該容器11の側面か
ら光を照射するようにしても良い。この場合、ベースを
成形過程において徐々に側方に移動させれば良い。
In the above embodiment, the light-transmitting window 13 is provided on the bottom surface of the container so that light is irradiated from below the container, but in the present invention, the light-transmitting window 13 is provided on the side surface of the container 11. Light may also be irradiated from. In this case, the base may be gradually moved laterally during the molding process.

上記実施例では、x −y y)動装置17により光束
14を走査しているが、光源からの光をミラー(図示略
)で反射させた後、レンズで収束させて光硬化性樹脂に
照射する光学系を採用しても良い、この場合はミラーを
回転させることにより光束を走査できる。
In the above embodiment, the light beam 14 is scanned by the x-y-y moving device 17, but the light from the light source is reflected by a mirror (not shown), converged by a lens, and irradiated onto the photocurable resin. In this case, the light beam can be scanned by rotating the mirror.

上記実施例では光束14を走査することにより硬化物2
4を創成しているが、本発明はこれを公知のマスク法に
適用し、例えば第3図の如く目的形状物の断面に相当す
るスリット25を有したマスク26を用いても良い、符
号27は平行光束を示す、第3図のその他の符号は第1
.2図と同一部材を示している。
In the above embodiment, by scanning the light beam 14, the cured product 2 is
4, but the present invention applies this to a known mask method, and for example, as shown in FIG. 3, a mask 26 having a slit 25 corresponding to the cross section of the target shape may be used. indicates a parallel light beam; other symbols in Fig. 3 indicate the first
.. The same members as in Figure 2 are shown.

本発明において、前記光硬化性樹脂としては、光照射に
より硬化する種々の樹脂を用いることができ、例えば変
性ポリウレタンメタクリレート、オリゴエステルアクリ
レート、ウレタンアクリレート、エポキシアクリレート
、感光性ポリイミド、アミノアルキドを挙げることがで
キル。
In the present invention, various resins that are cured by light irradiation can be used as the photocurable resin, such as modified polyurethane methacrylate, oligoester acrylate, urethane acrylate, epoxy acrylate, photosensitive polyimide, and amino alkyd. Gade kill.

前記光としては、使用する光硬化性樹脂に応じ、可視光
、紫外光等種々の光を用いることができる。該光は通常
の光としても良いが、レーザ光とすることにより、エネ
ルギーレベルを高めて造形時間を短縮し、良好な集光性
を利用して造形精度を向上させ得るという利点を得るこ
とができる。
As the light, various types of light such as visible light and ultraviolet light can be used depending on the photocurable resin used. Although the light may be ordinary light, using laser light has the advantages of increasing the energy level, shortening the modeling time, and improving the modeling accuracy by utilizing good light focusing. can.

[効果] 以上の通り、本発明の光学的造形法によれば、ベース表
面及び透光窓面から気泡が除去されるので、光を散乱さ
せることなく予定されていた箇所に所要強度の光を照射
できる。また、光硬化性樹脂がベースと透光窓との間あ
るいは硬化物と透光窓との間に円滑に流入するようにな
る。これらのことから、本発明方法によると寸法精度の
高い造形体を予定通りの製造時間で造形できる。また、
硬化物中に気泡が取り込まれることも確実に防止される
[Effect] As described above, according to the optical modeling method of the present invention, air bubbles are removed from the base surface and the light-transmitting window surface, so light of the required intensity can be directed to the planned location without scattering the light. Can be irradiated. Furthermore, the photocurable resin can smoothly flow between the base and the light-transmitting window or between the cured product and the light-transmitting window. For these reasons, according to the method of the present invention, a molded object with high dimensional accuracy can be manufactured within a scheduled manufacturing time. Also,
Air bubbles are also reliably prevented from being incorporated into the cured product.

さらに、本発明方法によれば、第17!1目の硬化層を
形成するためのベースと透光窓との初期間隙を精度良く
形成することができるので、第1層目の硬化層の厚さ精
度が極めて高い。
Furthermore, according to the method of the present invention, the initial gap between the base and the light-transmitting window for forming the 17th!1st hardened layer can be formed with high precision, so that the thickness of the first hardened layer can be The accuracy is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び第3図は本発明の実施例に係る方法
を実施するための装置構成図である。 12・・・光硬化性樹脂、13・・・透光窓、16・・
・光ファイバー 20・・・光源、21・・・ベース、
   22・・・エレベータ。
FIG. 1, FIG. 2, and FIG. 3 are configuration diagrams of an apparatus for carrying out a method according to an embodiment of the present invention. 12... Photocurable resin, 13... Transparent window, 16...
・Optical fiber 20... light source, 21... base,
22...Elevator.

Claims (1)

【特許請求の範囲】 側面又は底面に透光窓を有する容器、該透光窓の容器内
側面に対して接離方向に移動可能なベース及び該透光窓
を通して容器内へ光を照射する光照射装置を備えた光学
的造形装置を用い、該透光窓を通して光を照射すると共
に前記ベースを徐々に窓から離反方向へ移動させ、目的
形状体の一断面に相当する硬化層を前記ベース上に積み
重ねることにより目的形状体を造形する光学的造形法に
おいて、 まず前記ベースを透光窓に密着又は近接させることによ
りベース面と透光窓との間の気泡を除去した後、該ベー
スを透光窓から離反させ、その後前記光照射及びベース
移動を行なわせて造形するようにしたことを特徴とする
光学的造形法。
[Scope of Claims] A container having a light-transmitting window on the side or bottom surface, a base movable toward and away from the inner surface of the container of the light-transmitting window, and a light that irradiates light into the container through the light-transmitting window. Using an optical modeling device equipped with an irradiation device, light is irradiated through the transparent window and the base is gradually moved in a direction away from the window, so that a hardened layer corresponding to one cross section of the target shape is placed on the base. In an optical modeling method in which a target shape is formed by stacking the base on a transparent window, air bubbles between the base surface and the transparent window are removed by first bringing the base into close contact with or close to the transparent window, and then the base is placed in a transparent manner. 1. An optical modeling method characterized in that modeling is performed by moving the object away from the optical window and then performing the light irradiation and base movement.
JP63172682A 1988-07-13 1988-07-13 Optical shaping method Granted JPH0224120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63172682A JPH0224120A (en) 1988-07-13 1988-07-13 Optical shaping method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63172682A JPH0224120A (en) 1988-07-13 1988-07-13 Optical shaping method

Publications (2)

Publication Number Publication Date
JPH0224120A true JPH0224120A (en) 1990-01-26
JPH0533899B2 JPH0533899B2 (en) 1993-05-20

Family

ID=15946410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63172682A Granted JPH0224120A (en) 1988-07-13 1988-07-13 Optical shaping method

Country Status (1)

Country Link
JP (1) JPH0224120A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089184A (en) * 1989-01-18 1992-02-18 Mitsui Engineering And Shipbuilding Co., Ltd. Optical molding method
JP4663813B2 (en) * 2008-02-20 2011-04-06 裕 道脇 Both screw body and female screw body
JP2019519407A (en) * 2016-06-27 2019-07-11 フォームラブス, インコーポレーテッドFormlabs, Inc. Position detection technique for additive manufacturing and related systems and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56144478A (en) * 1980-04-12 1981-11-10 Hideo Kodama Stereoscopic figure drawing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5089184A (en) * 1989-01-18 1992-02-18 Mitsui Engineering And Shipbuilding Co., Ltd. Optical molding method
JP4663813B2 (en) * 2008-02-20 2011-04-06 裕 道脇 Both screw body and female screw body
JP2019519407A (en) * 2016-06-27 2019-07-11 フォームラブス, インコーポレーテッドFormlabs, Inc. Position detection technique for additive manufacturing and related systems and methods

Also Published As

Publication number Publication date
JPH0533899B2 (en) 1993-05-20

Similar Documents

Publication Publication Date Title
US5089185A (en) Optical molding method
US5089184A (en) Optical molding method
JPH0224121A (en) Optical shaping method
JPH0224122A (en) Treatment for making optical shaped body transparent
JPH0224120A (en) Optical shaping method
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JPH02188228A (en) Optical shaping method
JPH0493228A (en) Method for forming three-dimensional matter
JP2617532B2 (en) Method and apparatus for forming a three-dimensional shape
JPH058307A (en) Optically shaping method
KR20040102531A (en) Micro-stereolithography method and apparatus
JP3805749B2 (en) Thin film curing stereolithography equipment
JP2527021B2 (en) Optical modeling
JPH0499618A (en) Formation of object having three-dimensional configuration
JPH0596631A (en) Method and apparatus for optical shaping
JP2586953Y2 (en) Stereolithography
JPH04366620A (en) Optical shaping method
JP2551110B2 (en) Optical modeling
KR100236566B1 (en) Multi photosolidification method and apparatus
JPH0514839Y2 (en)
JPH0533900B2 (en)
JPH01237121A (en) Optical shaping method by multispot-light sources
JPH09141746A (en) Three-dimensional modeling device
JPH02103127A (en) Method and apparatus for forming three-dimensional configuration
JPH0514837Y2 (en)