JPH01275708A - Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride - Google Patents

Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride

Info

Publication number
JPH01275708A
JPH01275708A JP10388588A JP10388588A JPH01275708A JP H01275708 A JPH01275708 A JP H01275708A JP 10388588 A JP10388588 A JP 10388588A JP 10388588 A JP10388588 A JP 10388588A JP H01275708 A JPH01275708 A JP H01275708A
Authority
JP
Japan
Prior art keywords
nickel
superfine particles
titanium
nitrogen
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10388588A
Other languages
Japanese (ja)
Other versions
JPH0327601B2 (en
Inventor
Satoru Ono
悟 大野
Hideo Okuyama
秀男 奥山
Masaya Ozawa
尾澤 正也
Kazuhiro Honma
本間 一広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP10388588A priority Critical patent/JPH01275708A/en
Publication of JPH01275708A publication Critical patent/JPH01275708A/en
Publication of JPH0327601B2 publication Critical patent/JPH0327601B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To easily and nonpolutingly obtain the composite superfine particles of Ni and TiN joined with each other using a simple device by heating, melting and evaporating an Ni-Ti alloy or a powder mixture composed of Ni and Ti by the hot plasma generated in gaseous nitrogen, etc., then condensing the evaporated matter. CONSTITUTION:The Ni-Ti alloy contg. >=20atomic% Ti or the powder mixture composed of Ni and Ti is heated and melted by hot plasma 2 generated in an atmosphere gas of nitrogen or gaseous mixture composed of nitrogen and hydrogen or these gases diluted with an inert gas to form the Ni-Ti alloy 3. The vapor generated from this alloy 3 is condensed and cooled in the above- mentioned atmosphere gas to form the above-mentioned superfine particles which are carried by the atmosphere gases flow heading from an atmosphere gas introducing port 4 through a cooler 6 toward a superfine particles capturing device 7 and are captured by the capturing device 7. The above-mentioned composite superfine particles are thus obtd. easily without pollution by the simple device.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒径11μm以下の超微粒子化したニッケル粒
子と窒化チタン粒子が接合し友複合超微粒子の製造法に
関する。この複合超微粒子は触媒、例えば水素と一酸化
炭素よりメタンを合成する触媒として有用であり、また
センサー機能、電磁気的性質等の発現も期待される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing ultrafine composite particles in which ultrafine nickel particles having a particle size of 11 μm or less and titanium nitride particles are bonded together. This composite ultrafine particle is useful as a catalyst, for example, a catalyst for synthesizing methane from hydrogen and carbon monoxide, and is also expected to exhibit sensor functions, electromagnetic properties, etc.

従来技術 従来の超微粒子の複合化技術としては、抵抗加熱により
別々に蒸発させた金属蒸気または金属酸化物蒸気の両者
を酸化雰囲気中で凝縮させて、酸化物超微粒子同士の複
合超微粒子の製造法がある(例えば、フィツクスvO1
,7(1985)N’o5.P292)。
Prior Art Conventional ultrafine particle composite technology involves producing composite ultrafine particles of ultrafine oxide particles by condensing both metal vapor or metal oxide vapor, which have been separately evaporated by resistance heating, in an oxidizing atmosphere. (e.g. fix vO1
, 7 (1985) N'o5. P292).

この方法では、超微粒子の複合化が必ずしも完全でなく
、また、酸化物以外の複合超微粒子を得ることができな
い問題点があった。
This method has the problem that the composite of ultrafine particles is not necessarily perfect and that composite ultrafine particles of materials other than oxides cannot be obtained.

発明の目的 本発明は自然界に存在しない超微粒子化されたニッケル
と窒化チタン超微粒子の接合した複合超微粒子を製造す
る方法を提供することを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to provide a method for producing composite ultrafine particles in which ultrafine nickel and titanium nitride ultrafine particles, which do not exist in nature, are bonded together.

発明の構成 本発明者らは前記目的を達成すべく鋭意研究の結果、窒
素または窒素と水素の混合ガスあるいはこれらのガスを
不活性ガスにより希釈したガス中で発生させた熱プラズ
マにより、ニッケル−チタン合金またはニッケルとチタ
ンの混合粉末を加熱溶融して蒸発させ、蒸発物を凝縮さ
せると、ニッケルと窒化チタンの超微粒子の接合した複
合超微粒子を形成することを見出した。
Structure of the Invention As a result of intensive research to achieve the above object, the inventors of the present invention have discovered that nickel-hydrogen is produced by thermal plasma generated in nitrogen, a mixed gas of nitrogen and hydrogen, or a gas prepared by diluting these gases with an inert gas. We have discovered that when a titanium alloy or a mixed powder of nickel and titanium is heated and melted and evaporated, and the evaporated material is condensed, composite ultrafine particles are formed by bonding ultrafine particles of nickel and titanium nitride.

この知見に基づいて本発明を完成したものである。The present invention was completed based on this knowledge.

本発明の要旨は、 チタンを20原子%以上含んだニッケル−チタン合金ま
たはニッケルとチタンの混合粉末を窒素または窒素と水
素の混合ガスあるいはこれらのガスを不活性ガスにより
希釈したガス中で発生させた熱プラズマにより溶融・蒸
発させ、蒸発物を凝縮させることを特徴とするニッケル
と窒化チタン超微粒子の接合した複合超微粒子の製造法
にある。
The gist of the present invention is to generate a nickel-titanium alloy containing 20 atomic percent or more of titanium or a mixed powder of nickel and titanium in nitrogen, a mixed gas of nitrogen and hydrogen, or a gas obtained by diluting these gases with an inert gas. The present invention relates to a method for producing composite ultrafine particles of bonded nickel and titanium nitride ultrafine particles, which are characterized by melting and evaporating using thermal plasma and condensing the evaporated material.

この複合超微粒子の生成機構の詳細は明らかではないが
、本発明者らがさきに見出した水素プラズマによる金属
超微粒子の生成現象(特許第1146170号)と同様
に、アークプラズマ内で活性化された水素や窒素(原子
状あるいはイオン状の水素や窒素)と溶融金属との反応
過程において、該溶融金属が強制的に蒸発されるととも
に、この蒸気がニッケル−チタン合金粒子として凝縮し
、この粒子が凝固・冷却する際に、該粒子中のチタンが
窒化チタンとして晶出することにより、ニッケルと窒化
チタンの複合化した超微粒子が形成されるものと考えら
れる。
The details of the generation mechanism of these composite ultrafine particles are not clear, but similar to the generation phenomenon of metal ultrafine particles by hydrogen plasma that the present inventors discovered earlier (Japanese Patent No. 1146170), they are activated in arc plasma. During the reaction process between hydrogen and nitrogen (atomic or ionic hydrogen and nitrogen) and molten metal, the molten metal is forcibly evaporated and this vapor condenses as nickel-titanium alloy particles. It is thought that when the particles solidify and cool, the titanium in the particles crystallizes as titanium nitride, thereby forming ultrafine particles that are a composite of nickel and titanium nitride.

慣 ゛本発明における出発物書としては、ニッケルとチタン
の合金をそのまま用いてもよいがニッケル粉とチタン粉
を所定の割合で混合した混合物を熱プラズマで加熱・溶
融しても良い(この加熱・溶融により、該混合物は合金
化される)。
Conventionally, as a starting material in the present invention, an alloy of nickel and titanium may be used as is, or a mixture of nickel powder and titanium powder in a predetermined ratio may be heated and melted with thermal plasma (this heating - Upon melting, the mixture is alloyed).

なお、出発物質としてのニッケル−チタンの合金あるい
は混合物の組成は、ニッケルが1〜8゜原子%、チタン
が99〜20原子%の範囲、望ましくはニッケルが10
〜60原子%チタンが90〜40原子%の範囲である。
The composition of the nickel-titanium alloy or mixture as a starting material is 1 to 8 at% nickel and 99 to 20 at% titanium, preferably 10 to 20 at% nickel.
~60 at.% titanium in the range of 90-40 at.%.

チタンが20原子%未満であると、生成した得られない
ので、20原子%以上であることが必要である。
If titanium is less than 20 atomic %, it will not be produced, so it is necessary to have a titanium content of 20 atomic % or more.

熱プラズマを発生する雰囲気としては、窒素または窒素
と水素の混合ガスあるいはこれらのガスを不活性ガスで
希釈した混合ガスが使用されるが、超微粒子の発生効率
やプラズマの安定性、操業性などの観点より、窒素を1
〜30%(体積比)含む窒素と水素の混合ガスあるいは
窒素を1〜20%、水素を20〜70%を含む窒素と水
素と不活性ガスとの混合ガスとすることが望ましい。ま
た、この雰囲気の圧力は、熱プラズマを安定に発生・維
持しうる範囲(通常、約50 Torr〜5atm)で
あれば任意であるが、装置形態や操業性の観点からは大
気圧近傍の圧力が望ましい。
The atmosphere for generating thermal plasma is nitrogen, a mixture of nitrogen and hydrogen, or a mixture of these gases diluted with an inert gas. From the viewpoint of
It is desirable to use a mixed gas of nitrogen and hydrogen containing ~30% (by volume) or a mixed gas of nitrogen, hydrogen, and an inert gas containing 1~20% nitrogen and 20~70% hydrogen. The pressure of this atmosphere is arbitrary as long as it is within a range that can stably generate and maintain thermal plasma (usually about 50 Torr to 5 atm), but from the viewpoint of equipment form and operability, a pressure close to atmospheric pressure is recommended. is desirable.

該合金を加熱・溶融して蒸発させる之めの熱−プラズマ
としては、直流または交流アーク、移行式または非移行
式プラズマジェットが利用できるが、熱効率の点より、
直流アークあるいは移行式プラズマジェットを使用する
ことが望ましい。
As the thermal plasma for heating, melting and vaporizing the alloy, direct current or alternating current arc, transfer type or non-transfer type plasma jet can be used, but from the viewpoint of thermal efficiency,
Preferably, a direct current arc or transferred plasma jet is used.

本発明の方法におけるニッケルー窒化チタンの複合超微
粒子を製造するための装置としては第1図に示したよう
な、本発明者らが先に発明した金属超微粒子の製造装置
(特許第1226806号)が挙げられる。図中、1は
密閉容器、2は熱プラズマ、3は溶融ニッケル−チタン
合金、4は雰囲気ガスの導入口、5は溶解台、6は冷却
器、7は超微粒子捕集器である。
The apparatus for producing ultrafine nickel-titanium nitride composite particles in the method of the present invention is the apparatus for producing ultrafine metal particles previously invented by the present inventors (Japanese Patent No. 1226806) as shown in Figure 1. can be mentioned. In the figure, 1 is a closed container, 2 is a thermal plasma, 3 is a molten nickel-titanium alloy, 4 is an atmospheric gas inlet, 5 is a melting table, 6 is a cooler, and 7 is an ultrafine particle collector.

溶融ニッケル−チタン合金から発生した蒸気は、雰囲気
ガス中で凝縮・冷却されて複合超微粒子となり、雰囲気
ガス導入口4から冷却器6を経て超微粒子捕集器7へ向
かう雰囲気ガス流によって捕集器に搬送され、捕集され
る。
The vapor generated from the molten nickel-titanium alloy is condensed and cooled in the atmospheric gas to become composite ultrafine particles, which are collected by the atmospheric gas flow from the atmospheric gas inlet 4 through the cooler 6 to the ultrafine particle collector 7. It is transported to a container and collected.

実施例 1 第1図に示す装置を用い、熱プラズマ発生方法としては
直流アーク(正極性、電流260A。
Example 1 Using the apparatus shown in Fig. 1, a direct current arc (positive polarity, current 260 A) was used as a thermal plasma generation method.

電圧25〜30v)を、雰囲気は7%窒素−46%水素
−47%アルゴンをそれぞれ使用し、80原子%チタン
ー20原子%ニッケル合金を加熱・溶融し、ニッケルー
窒化チタンの複合超微粒子を作製した。得られたニッケ
ルー窒化チタンの複合超微粒子の電子顕微鏡写真を第2
図に示す。この複合超微粒子は、中央部に窒化チタンが
あシ、その両端や側面にニッケルが結合したもので、そ
の粒径はいずれも0.5μm以下の超微粒子となってい
る。
Using a voltage of 25 to 30 V) and an atmosphere of 7% nitrogen, 46% hydrogen, and 47% argon, an 80 atom% titanium-20 atom% nickel alloy was heated and melted to produce nickel-titanium nitride composite ultrafine particles. . The second electron micrograph of the obtained nickel-titanium nitride composite ultrafine particles
As shown in the figure. These composite ultrafine particles have titanium nitride in the center and nickel bonded to both ends and sides, and each particle size is 0.5 μm or less.

実施例 2 実施例1の装置およびプラズマ発生条件、雰囲気を使用
し、出発物質であるニッケル−チタン合金のチタン濃度
を10〜90原子%の範囲で変化させてニッケルー窒化
チタンの複合超微粒子を作製した。得られた複合超微粒
子中の窒化チタン濃度(モル%)とニッケル−チタン合
金中のチタン濃度(原子%)の関係を第3図に示す。同
図より、原料中のチタン濃度が20原子%未満では複合
超微粒子が得られず、チタン濃度が約40原子%以上に
おいて、複合超微粒子中の窒化チタン濃度が急激に増大
することがわかる。
Example 2 Using the apparatus, plasma generation conditions, and atmosphere of Example 1, nickel-titanium nitride composite ultrafine particles were produced by varying the titanium concentration of the starting material nickel-titanium alloy in the range of 10 to 90 at%. did. FIG. 3 shows the relationship between the titanium nitride concentration (mol %) in the obtained composite ultrafine particles and the titanium concentration (atomic %) in the nickel-titanium alloy. From the figure, it can be seen that when the titanium concentration in the raw material is less than 20 at%, composite ultrafine particles cannot be obtained, and when the titanium concentration is about 40 at% or more, the titanium nitride concentration in the composite ultrafine particles increases rapidly.

本発明の方法で作った50原子%N i −T i N
複合超微粒子を使用し、H2:C0=1=1の混合ガス
を原料とし、触媒温度を200〜350Cに変化させて
メタンを合成した。なお、比較のためにNiとTiNの
混合超微粉、ラネーNiとTi超を 微井子の混合粉も併せて実験に供し友。
50 atom%N i −T i N made by the method of the present invention
Methane was synthesized using composite ultrafine particles, using a mixed gas of H2:C0=1=1 as a raw material, and changing the catalyst temperature from 200 to 350C. For comparison, a mixed ultrafine powder of Ni and TiN and a mixed powder of Raney Ni and Ti superfine were also used in the experiment.

合成反応速度はいずれの場合もある温度(活性増大温度
)を境にして急激に増大する傾向を示した。その活性増
大温度は混合超微粉(約300C)、ラネーN1−Tl
N(約280C)、本発明の複合超微粒子(250C)
の順に低下し、CO転化率は逆に上記の順序で増大する
傾向を示した。これにより複合超微粒子が極めて高い触
媒活性を有することがわかる。
In all cases, the synthesis reaction rate showed a tendency to rapidly increase after a certain temperature (activity increase temperature). Its activity increase temperature is mixed ultrafine powder (approximately 300C), Raney N1-Tl
N (approximately 280C), composite ultrafine particles of the present invention (250C)
The CO conversion rate decreased in the above order, and conversely, the CO conversion rate showed a tendency to increase in the above order. This shows that the composite ultrafine particles have extremely high catalytic activity.

発明の効果 本発明の方法によれば、簡易な装置により、容易かつ無
公害的にニッケルと窒化チタンの複合化した超微粒子を
製造することができる。このようにして得られたニッケ
ルー窒化チタンの複合超微粒子は、触媒やセンサー、電
子材料として新しい機能を開発することができるという
優れた効果も発現し得られるという効果を有する。
Effects of the Invention According to the method of the present invention, ultrafine composite particles of nickel and titanium nitride can be produced easily and pollution-free using a simple device. The nickel-titanium nitride composite ultrafine particles thus obtained have the advantage of being able to develop new functions as catalysts, sensors, and electronic materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を実施する装置の概要図、第2図
は本発明の方法で得られたニッケルと窒化チタン超微粒
子の複合超微粒子の電子顕微鏡写真、第3図は原料のチ
タン濃度と得られる複合超微粒子中の窒化チタン濃度(
モル%)の関係図を示す。 1:密閉容器  2:熱プラズマ 3:溶融ニッケル−チタン合金 4、:雰囲気ガスの導入口  5:溶解台6:冷却器 
 7:超微粒子捕集器 特許出願人 科学技術庁金属材料技術研究所長中  川
  曜 − 第(関 第2図 第3図
Fig. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, Fig. 2 is an electron micrograph of composite ultrafine particles of nickel and titanium nitride ultrafine particles obtained by the method of the present invention, and Fig. 3 is a photograph of titanium as a raw material. Concentration and titanium nitride concentration in the obtained composite ultrafine particles (
mol%) is shown. 1: Closed container 2: Thermal plasma 3: Molten nickel-titanium alloy 4: Atmospheric gas inlet 5: Melting table 6: Cooler
7: Ultrafine particle collector Patent applicant Yo Kawa, Director, Institute of Metals and Materials Technology, Science and Technology Agency - No. 2 (Seki 2, 3)

Claims (1)

【特許請求の範囲】[Claims] チタンを20原子%以上含んだニッケル−チタン合金ま
たはニッケルとチタンの混合粉末を、窒素または窒素と
水素の混合ガスあるいはこれらのガスを不活性ガスによ
り希釈したガス中で発生させた熱プラズマにより溶融・
蒸発させ、蒸発物を凝縮させることを特徴とするニッケ
ルと窒化チタン超微粒子の接合した複合超微粒子の製造
法。
Melting a nickel-titanium alloy containing 20 atomic percent or more of titanium or a mixed powder of nickel and titanium using thermal plasma generated in nitrogen, a mixed gas of nitrogen and hydrogen, or a gas prepared by diluting these gases with an inert gas.・
A method for producing composite ultrafine particles of bonded nickel and titanium nitride ultrafine particles, characterized by evaporation and condensation of the evaporated material.
JP10388588A 1988-04-28 1988-04-28 Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride Granted JPH01275708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10388588A JPH01275708A (en) 1988-04-28 1988-04-28 Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10388588A JPH01275708A (en) 1988-04-28 1988-04-28 Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride

Publications (2)

Publication Number Publication Date
JPH01275708A true JPH01275708A (en) 1989-11-06
JPH0327601B2 JPH0327601B2 (en) 1991-04-16

Family

ID=14365887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10388588A Granted JPH01275708A (en) 1988-04-28 1988-04-28 Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride

Country Status (1)

Country Link
JP (1) JPH01275708A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010147098A1 (en) * 2009-06-15 2010-12-23 東レ株式会社 Black composite particle, black resin composition, color filter substrate and liquid crystal display
JP2014139509A (en) * 2007-05-11 2014-07-31 Sdc Materials Inc Heat exchanger, cooler, and cooling method
JP2014200779A (en) * 2013-04-10 2014-10-27 東芝三菱電機産業システム株式会社 Particulate generator
CN104858443A (en) * 2015-05-25 2015-08-26 常熟锐钛金属制品有限公司 Preparation method for high-purity nanoscale titanium-nickel alloy powder
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5241984B2 (en) * 2000-04-10 2013-07-17 テトロニクス リミテッド Twin plasma torch device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190302A (en) * 1983-03-11 1984-10-29 Tokyo Tekko Kk Method and device for producing ultrafine particle
JPS61113703A (en) * 1984-11-09 1986-05-31 Ulvac Corp Production of pulverous powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190302A (en) * 1983-03-11 1984-10-29 Tokyo Tekko Kk Method and device for producing ultrafine particle
JPS61113703A (en) * 1984-11-09 1986-05-31 Ulvac Corp Production of pulverous powder

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
JP2014139509A (en) * 2007-05-11 2014-07-31 Sdc Materials Inc Heat exchanger, cooler, and cooling method
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
WO2010147098A1 (en) * 2009-06-15 2010-12-23 東レ株式会社 Black composite particle, black resin composition, color filter substrate and liquid crystal display
JP5875179B2 (en) * 2009-06-15 2016-03-02 東レ株式会社 Black composite fine particles, black resin composition, color filter substrate and liquid crystal display device
JPWO2010147098A1 (en) * 2009-06-15 2012-12-06 東レ株式会社 Black composite fine particles, black resin composition, color filter substrate and liquid crystal display device
CN102459084A (en) * 2009-06-15 2012-05-16 东丽株式会社 Black composite particle, black resin composition, color filter substrate and liquid crystal display
TWI483999B (en) * 2009-06-15 2015-05-11 Toray Industries Black composite fine particle, black resin composition, color filter substrate and liquid crystal display
JP2015227282A (en) * 2009-06-15 2015-12-17 東レ株式会社 Black color composite fine particle, black color resin composition, color filter substrate and liquid crystal display device
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
JP2014200779A (en) * 2013-04-10 2014-10-27 東芝三菱電機産業システム株式会社 Particulate generator
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
CN104858443A (en) * 2015-05-25 2015-08-26 常熟锐钛金属制品有限公司 Preparation method for high-purity nanoscale titanium-nickel alloy powder

Also Published As

Publication number Publication date
JPH0327601B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
JPH01275708A (en) Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride
JP2662986B2 (en) Method for producing ultrafine tungsten or tungsten oxide particles
US4892579A (en) Process for preparing an amorphous alloy body from mixed crystalline elemental metal powders
JPH0433490B2 (en)
JPS6193828A (en) Preparation of ultra-fine particle mixture
JPS59227765A (en) Manufacture of ceramic super fine particle
Majumdar et al. Copper (I) oxide powder generation by spray pyrolysis
US3848068A (en) Method for producing metal compounds
JP4611464B2 (en) Method for producing metal powder
JPS6140723B2 (en)
JP2004124257A (en) Metal copper particulate, and production method therefor
JPS63170212A (en) Production of hyper-fine powder of metal boride
JPS6156209A (en) Production of ultrafine noble metal particle
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JPS634829A (en) Production of hydrogen-permeable medium
JPS62282635A (en) Production of mixture of ultra-fine aluminum nitride powder and ultra-fine oxidation-resistant aluminum powder
US5549951A (en) Composite ultrafine particles of nitrides, method for production and sintered article thereof
JP2001158613A (en) Low-class silicon oxide powder and method for producing the same
JPS5957904A (en) Production of ultrafine particle of metallic nitride
JP2001098309A (en) Method and device for producing metal fine powder and metal fine powder
JPS62283805A (en) Production of extremely fine aluminum nitride powder
JPS61153208A (en) Manufacture of hyperfine metallic powder with metal having high melting point as medium
JPH04350106A (en) Alloy hiper fine particle and production thereof
JPS5926909A (en) Preparation of powder
Ohno et al. Preparation and Characterization of Metal Ceramic, their Mixed and Composite Nanoparticles Prepared by a DC Arc Plasma Method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term