JP2001098309A - Method and device for producing metal fine powder and metal fine powder - Google Patents

Method and device for producing metal fine powder and metal fine powder

Info

Publication number
JP2001098309A
JP2001098309A JP27520599A JP27520599A JP2001098309A JP 2001098309 A JP2001098309 A JP 2001098309A JP 27520599 A JP27520599 A JP 27520599A JP 27520599 A JP27520599 A JP 27520599A JP 2001098309 A JP2001098309 A JP 2001098309A
Authority
JP
Japan
Prior art keywords
coil
fine
powder
metal
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27520599A
Other languages
Japanese (ja)
Inventor
Shigeaki Inada
茂昭 稲田
Mitsuhiro Yasuda
光宏 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP27520599A priority Critical patent/JP2001098309A/en
Publication of JP2001098309A publication Critical patent/JP2001098309A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fine powder of a metal or an alloy extremely high in purity, fine in the grain size and high in surface activity, to provide a producing method for obtaining the fine powder and to provide a device therefor. SOLUTION: A metal is floated and evaporated in a non-crucible state by a floating evaporation method to prevent the intrusion of impurities forma crucible, and the same is rapidly condensed from a vapor phase to obtain the fine powder of a metal or an alloy high in purity, fine in the grain size and high in surface activity. The floating evaporation device is composed of high frequency coils having a three step constitution of a floating coil, a heating coil and a repulsion coil, and the coiling directions of the floating coil and the repulsion coil are made mutually reverse.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高純度で微細な金属
の微粉末に関し、さらに詳しくは高周波加熱により無る
つぼ状態で溶融・蒸発させた後、気相から急冷凝縮させ
る金属微粉末の製造方法、およびこの方法によって得ら
れた金属微粉末にさらに他の金属蒸気を加え、低温プラ
ズマ下で複合合金化する金属微粉末の製造方法、これら
の製造方法に使用するための製造装置、ならびにこれら
の製造方法によって得られた金属微粉末に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity fine metal powder, and more particularly, to a method for producing a fine metal powder which is melted and evaporated in a crucible state by high-frequency heating and then rapidly cooled and condensed from a gas phase. And a method for producing a metal fine powder to be mixed alloyed under low-temperature plasma by further adding another metal vapor to the metal fine powder obtained by this method, a production apparatus for use in these production methods, and The present invention relates to a metal fine powder obtained by a production method.

【0002】[0002]

【従来の技術】金属の微粉末は燒結金属用、各種触媒
用、各種センサー用、磁気記録媒体、各種磁石用等に幅
広く使用されている。最近では技術開発の進展に伴い、
各種触媒用や各種センサー用として、金属微粉末の粒径
はますます細かくて表面活性の良いものが要求されるよ
うになってきた。また、磁気記録媒体やボンド磁石用等
としても粒径が細かく、配向性の良いものが要求される
ようになってきた。従来、金属の微粉末の製法としては
インゴットから粉砕・篩い分けして得るのが最も簡単な
方法である。しかしこの方法では不純物の混入が多く、
また粒径もあまり微細なものは得られない。最近では、
高純度で微細な金属微粉末の製造方法としては溶融蒸発
法や気相還元法が知られている。溶融蒸発法は1〜数十
Torrの減圧下で金属をるつぼ内で溶融し、蒸発させてこ
の蒸気を急冷して凝縮させ、微粉末として回収するもの
である。また、気相還元法は金属の化合物を還元性ガス
と還元反応させて直接気体または固体の金属粉末を得る
方法である。
2. Description of the Related Art Fine metal powders are widely used for sintered metals, various catalysts, various sensors, magnetic recording media, various magnets, and the like. Recently, with the development of technology,
For various types of catalysts and various types of sensors, finer metal powders having a finer particle size and higher surface activity have been required. For magnetic recording media, bonded magnets, and the like, those having a small particle size and good orientation have been required. Heretofore, the simplest method for producing a fine metal powder is to grind and sieve the ingot from an ingot. However, this method involves a lot of impurities,
In addition, particles having a very small particle size cannot be obtained. recently,
As a method for producing high-purity and fine metal fine powder, a melt evaporation method and a gas phase reduction method are known. Melt evaporation method is one to several tens
Metal is melted in a crucible under a reduced pressure of Torr, evaporated, and this vapor is rapidly cooled and condensed, and collected as fine powder. The gas-phase reduction method is a method in which a metal compound is reduced with a reducing gas to directly obtain a gas or a solid metal powder.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この溶
融蒸発法においてはるつぼ内で溶湯の対流が起こり、る
つぼからの酸素あるいは炭素、アルミニウム、シリコン
をはじめとする不純物の溶け込みがあること、また溶融
温度の不均一性が避けられないことから、目的とする高
純度の金属微粒子の取得は困難である。また生成された
微粒子同士の衝突が多く、微粒子が凝集してしまい、孤
立粒子が得られない欠点がある。さらに、生成した金属
微粉末の活性を生かした製品化プロセスが確立されてい
ない。また、気相還元法は原料となる金属化合物の選択
に制約があり、必要とする種類の金属が得にくいという
問題がある。上記のような問題点があるため、4ナイン
以上の高純度を有し、粒径が0.03μm以下で分散性
がよく、ほぼ球形の孤立粒子からなる金属微粉末は未だ
得られていない。ましてや高機能を有する合金微粉末は
未だ得られていない。本発明は、粒径が0.03μm以
下で分散性がよく、ほぼ球形の孤立粒子からなる金属微
粉末を提供することを目的とし、そのための合理的な製
造方法とその方法を実施するための装置を提供すること
を目的とする。
However, in this melt evaporation method, convection of the molten metal occurs in the crucible, and oxygen or impurities such as carbon, aluminum, and silicon dissolve from the crucible. It is difficult to obtain the desired high-purity metal fine particles because the inhomogeneity of the metal particles cannot be avoided. Further, there is a drawback that the generated fine particles often collide with each other and the fine particles are aggregated, so that isolated particles cannot be obtained. Furthermore, a commercialization process utilizing the activity of the generated metal fine powder has not been established. In addition, the gas-phase reduction method has a problem in that the selection of a metal compound as a raw material is restricted, and it is difficult to obtain a required type of metal. Due to the above-mentioned problems, a metal fine powder having high purity of 4 nines or more, a particle size of 0.03 μm or less, good dispersibility, and substantially spherical isolated particles has not yet been obtained. Furthermore, alloy fine powder having a high function has not yet been obtained. An object of the present invention is to provide a metal fine powder having a particle diameter of 0.03 μm or less and having good dispersibility and substantially spherical isolated particles, and a rational production method and a method for implementing the method are provided. It is intended to provide a device.

【0004】[0004]

【課題を解決するための手段】本発明は上記目的を達成
するために、金属を高周波コイル内でるつぼを使用する
ことなく浮遊加熱し、蒸発させて蒸気を急冷凝縮させる
ことにより金属微粉末を得る手段を採用した。また、本
発明では上記のように浮遊加熱蒸発の後急冷凝縮させた
複数の金属微粉末を、低温プラズマ下で合金化して合金
微粉末を得る手段を採用した。さらに、本発明では上記
のように浮遊加熱蒸発の後急冷凝縮させた金属微粉末
を、低温プラズマ下で生成した他の金属微粉末と共に別
の低温プラズマ下で合金化して合金微粉末を得る手段を
採用した。これらの手段において、原料金属を高周波コ
イル内で無るつぼ状態で浮遊加熱し、蒸発させて蒸気を
急冷凝縮させることにより、るつぼからの不純物の混入
が防止でき、微細で活性の高い金属微粉末を得ることが
できる。また本発明の方法によれば高純度の金属微粉末
を使用して合金微粉末を作るので、得られた合金微粉末
も極めて純度が高く、微細で分散性の良い金属微粉末が
得られる効果を有する。
According to the present invention, in order to achieve the above object, a metal fine powder is prepared by floating heating a metal in a high frequency coil without using a crucible and evaporating the metal to rapidly cool and condense the vapor. A means of obtaining was adopted. Further, in the present invention, means for obtaining a fine alloy powder by alloying a plurality of fine metal powders rapidly cooled and condensed after floating heating evaporation as described above under low-temperature plasma is employed. Further, in the present invention, means for obtaining an alloy fine powder by alloying the fine metal powder which has been rapidly cooled and condensed after the floating heating evaporation as described above together with another fine metal powder generated under low temperature plasma under another low temperature plasma. It was adopted. In these means, the raw material metal is floated and heated in a crucible state in a high-frequency coil, and is evaporated and quenched and condensed to prevent impurities from being mixed from the crucible. Obtainable. In addition, according to the method of the present invention, the alloy fine powder is produced by using the high-purity metal fine powder, so that the obtained alloy fine powder is also extremely high in purity, and the effect of obtaining fine and finely dispersible metal fine powder is obtained. Having.

【0005】まず、本発明の特徴である浮遊加熱・蒸発
法について説明する。高周波コイル内の電磁誘導作用に
より、物体をコイル中心部で磁気浮遊させ加熱溶融する
ことは既に知られている。すなわち、高周波コイルに電
流を付加するとコイル内にローレンツ力が発生してコイ
ル内にある物体が力を受ける。高周波コイルを垂直に配
置すれば物体は浮力を受けることになる。ここで高周波
コイルを正巻と逆巻の2種類準備し、これら2つの高周
波コイルを同軸上に配置すれば上向きと下向きの力が働
き、コイル内にある物体を高周波コイル帯域に留めてお
くことができる。この状態でさらに電磁誘導作用を利用
して物体を沸点以上の温度まで加熱すると、物体はやが
て気化するに至る。気化した金属をキャリアガスを用い
て高周波コイル帯から取り出すと、金属は直ちに凝縮し
て金属微粉末となる。物質の沸点ないしは凝縮点は物質
に固有の値を持つから、一旦気化して凝縮した金属粉は
不純物を含まず、極めて純度の高いものとなる。このよ
うにして得られた金属微粉末は、るつぼからの不純物の
汚染も無く、粒径は微細で極めて表面活性に富んだもの
となる。
First, the floating heating / evaporation method which is a feature of the present invention will be described. It is already known that an electromagnetic induction action in a high-frequency coil causes an object to magnetically float at the center of the coil and melt by heating. That is, when a current is applied to the high-frequency coil, Lorentz force is generated in the coil and an object in the coil receives the force. If the high-frequency coil is arranged vertically, the object receives buoyancy. Here, two types of high-frequency coil, normal and reverse, are prepared, and if these two high-frequency coils are arranged coaxially, upward and downward forces will act, and the object inside the coil will remain in the high-frequency coil band. Can be. In this state, when the object is further heated to a temperature equal to or higher than the boiling point by utilizing the electromagnetic induction, the object eventually vaporizes. When the vaporized metal is taken out of the high-frequency coil band using the carrier gas, the metal is immediately condensed into a fine metal powder. Since the boiling point or condensation point of a substance has a value specific to the substance, the metal powder once vaporized and condensed does not contain impurities and has extremely high purity. The fine metal powder thus obtained is free from impurities from the crucible, has a fine particle size, and is extremely rich in surface activity.

【0006】ローレンツ力を利用して金属を無るつぼ状
態で浮遊加熱・蒸発させるには、高周波コイルを3段に
構成すると良い。すなわち図2に示すように、反応管周
囲に反応管と同軸に浮遊コイル3、加熱コイル4、反撥
コイル5を下から順に配置する。浮遊コイル3は主とし
て反応管内の物体に上向きのローレンツ力を与えるため
のもので、コイルは上方に行くに従ってコイル直径が大
きくなっており、コイル内面はテーパー曲面ないしは指
数関数曲面をなすように構成してある。加熱コイル4は
反応管内の物体を溶融させ、さらに蒸発させるまで高温
に急速加熱するためのものである。このため加熱コイル
4は浮遊コイル3の直上に反応管に近づけて密に巻いて
配置する。反撥コイル5は浮遊コイル3によってローレ
ンツ力を与えられ、反応管内を上昇してきた物体を加熱
コイル帯に押し戻し、蒸発に至るまで充分加熱されるよ
うにするためのものである。このため反撥コイル5は最
上部に配置し、コイルの巻線方向は浮遊コイル3とは逆
方向に巻き線する。
In order to heat and evaporate a metal in a crucible state using Lorentz force, it is preferable to form a high-frequency coil in three stages. That is, as shown in FIG. 2, the floating coil 3, the heating coil 4, and the repulsion coil 5 are arranged around the reaction tube coaxially with the reaction tube in order from the bottom. The floating coil 3 is mainly for giving an upward Lorentz force to an object in the reaction tube. The coil has a larger coil diameter as it goes upward, and the inner surface of the coil is formed to have a tapered surface or an exponential surface. It is. The heating coil 4 is for melting the object in the reaction tube and rapidly heating it to a high temperature until it is further evaporated. For this reason, the heating coil 4 is arranged closely above the floating coil 3 close to the reaction tube. The repulsion coil 5 is provided with Lorentz force by the floating coil 3 and pushes the object rising in the reaction tube back to the heating coil band so that the object is sufficiently heated until evaporation. For this reason, the repulsion coil 5 is arranged at the uppermost part, and the winding direction of the coil is wound in the opposite direction to the floating coil 3.

【0007】浮遊コイル3、加熱コイル4、反撥コイル
5の各コイルの両端は、高周波電源6に接続し、増幅さ
れた高周波電流を印加できるようになっている。浮遊コ
イル3と反撥コイル5は直列に配線して一つの高周波電
源に接続しても良い。巻線方向が互いの反対なので、ロ
ーレンツ力も上向きと下向きに発生させることができ
る。しかし、浮遊コイル3、加熱コイル4、反撥コイル
5の各コイルを独立した高周波電源に接続し、各々独立
に出力制御できるようにした方が良い。金属の種類によ
って物性が異なるので、最適な負荷をかけるためであ
る。
Both ends of each of the floating coil 3, the heating coil 4, and the repulsion coil 5 are connected to a high-frequency power supply 6 so that an amplified high-frequency current can be applied. The floating coil 3 and the repulsion coil 5 may be wired in series and connected to one high-frequency power supply. Since the winding directions are opposite to each other, Lorentz force can also be generated upward and downward. However, it is better to connect the respective coils of the floating coil 3, the heating coil 4, and the repulsion coil 5 to independent high-frequency power sources so that the output can be independently controlled. This is because an optimal load is applied because the physical properties vary depending on the type of metal.

【0008】上記のような方法及び装置によって得られ
た金属粉は、微細で極めて表面活性に富んいるが故に、
浮遊加熱・蒸発方法により得られた複数の金属微粉末を
低温プラズマ装置に導入すると、微粉末同士が接触して
接合拡散し、内部まで均質な合金に変化する。このよう
にして不純物の汚染が無く、粒径は微細で極めて表面活
性に富んだ合金微粉末が得られる。
[0008] The metal powder obtained by the above method and apparatus is fine and extremely rich in surface activity.
When a plurality of fine metal powders obtained by the floating heating / evaporation method are introduced into a low-temperature plasma apparatus, the fine powders are brought into contact with each other, bonded and diffused, and transformed into a homogeneous alloy even inside. In this way, an alloy fine powder having no particle contamination, a fine particle size and extremely high surface activity can be obtained.

【0009】また別の方法として、上記方法により得ら
れた金属微粉末と、他の金属蒸気とを低温プラズマ反応
させることによっても合金粉末が得られる。不純物の混
入を避けるため、他の金属蒸気は金属化合物からプラズ
マ反応を利用して分解生成させたもの、もしくは還元生
成させたものが好適に利用できる。このようにして得ら
れた合金微粉末も、るつぼからの不純物の汚染が無く、
粒径は微細で極めて表面活性に富んだものである。
As another method, an alloy powder can also be obtained by subjecting a fine metal powder obtained by the above method to a low-temperature plasma reaction with another metal vapor. In order to avoid contamination with impurities, other metal vapors that are generated by decomposition from a metal compound using a plasma reaction or that generated by reduction can be suitably used. The alloy fine powder thus obtained also has no contamination of impurities from the crucible,
The particle size is fine and extremely rich in surface activity.

【0010】[0010]

【発明の実施の形態】次に、図面を使用して本発明の装
置について説明する。図1は本発明の装置の一例を説明
する図であり、浮遊加熱・蒸発法に使用する装置の一例
である。図に示すとおり本発明の浮遊蒸発装置1におい
ては、垂直に配置された反応管2の周囲に下から順番に
浮遊コイル3、加熱コイル4、反撥コイル5が配置して
ある。各コイルは水冷銅管で構成されている。先に図2
において説明したとおり、浮遊コイル3は上方に行くに
従って直径が大きくなり、浮遊コイル3の内面は指数関
数曲面に構成してある。浮遊コイル3の上方には加熱コ
イル4が反応管2に接近して配置してある。さらに加熱
コイル4の上方には反撥コイル5が配置してある。反撥
コイル5はその巻き線の方向が浮遊コイル3とは逆向き
である。浮遊コイル3、加熱コイル4、反撥コイル5は
高周波電源装置6に接続され、それぞれ独立に制御され
た高周波電流が印加できるように構成してある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, an apparatus according to the present invention will be described with reference to the drawings. FIG. 1 is a view for explaining an example of the apparatus of the present invention, and is an example of an apparatus used for a floating heating / evaporation method. As shown in the figure, in the floating evaporator 1 of the present invention, a floating coil 3, a heating coil 4, and a repulsion coil 5 are arranged in order from the bottom around a vertically arranged reaction tube 2. Each coil is composed of a water-cooled copper tube. Figure 2
As described above, the diameter of the floating coil 3 increases as it goes upward, and the inner surface of the floating coil 3 is formed as an exponential function curved surface. A heating coil 4 is arranged above the floating coil 3 so as to approach the reaction tube 2. Further, a repulsion coil 5 is disposed above the heating coil 4. The direction of the winding of the repulsion coil 5 is opposite to that of the floating coil 3. The floating coil 3, the heating coil 4, and the repulsion coil 5 are connected to a high-frequency power supply 6 so that independently controlled high-frequency currents can be applied.

【0011】原料の金属粉末は、原料ホッパー8の下部
のオリフィスを通してキャリアガス導入管7に投入さ
れ、アルゴン等の不活性のキャリアガスに搬送されて、
反応管2の下部の原料ガス導入管9から浮遊コイル3の
磁場領域に供給される。浮遊コイル3の磁場領域に供給
された原料金属粉は、ここでローレンツ力を受けて上方
に浮揚する。さらに上方に浮揚しようとすると、反撥コ
イル5により下方に向けたローレンツ力を受けて降下
し、加熱コイル4の領域を浮遊する。原料金属粉はこの
間に急速に加熱され、瞬時に溶融・蒸発する。蒸発した
金属はキャリアガスによって搬送され、高周波コイル帯
域を出たところで凝縮し、キャリアガスで搬送され反応
管2から排出されて捕集装置10に入る。捕集装置10
は流路断面積が広くなっており、キャリアガスの流速が
急速に落ちて金属微粒子が沈下するようになっている。
さらに捕集装置10はサイクロンやバグフィルター等を
組み合わせて金属微粒子を効率的に捕集できる構造とす
ることもできる。捕集装置10を出たキャリアガスは、
除外装置11に入って有害物質やダストを完全に除去し
て無害化した後放出される。
The raw metal powder is introduced into the carrier gas inlet pipe 7 through an orifice below the raw material hopper 8, and is conveyed to an inert carrier gas such as argon.
The gas is supplied to the magnetic field region of the floating coil 3 from the source gas introduction pipe 9 below the reaction tube 2. The raw metal powder supplied to the magnetic field region of the floating coil 3 floats upward under Lorentz force. If the user wants to levitate further upward, the repulsion coil 5 receives the downward Lorentz force to descend, and floats in the area of the heating coil 4. During this time, the raw metal powder is rapidly heated and instantaneously melts and evaporates. The vaporized metal is conveyed by the carrier gas, condensed when leaving the high-frequency coil zone, conveyed by the carrier gas, discharged from the reaction tube 2 and enters the collection device 10. Collection device 10
The cross-sectional area of the channel is wide, and the flow rate of the carrier gas is rapidly reduced so that the metal fine particles sink.
Further, the trapping device 10 can be configured to be able to trap metal fine particles efficiently by combining a cyclone, a bag filter and the like. The carrier gas exiting the collecting device 10 is
After entering the exclusion device 11, the harmful substances and dust are completely removed and detoxified, and then released.

【0012】次に、本発明の装置の他の例を説明する。
図3は2系列の浮遊蒸発装置101、201と低温プラ
ズマ装置30とを組み合わせた合金微粉末製造装置の例
を示す図である。浮遊蒸発装置101、201の構造と
機能は前記説明のとおりである。各浮遊蒸発装置10
1、201によって生成した金属微粉末は、キャリアガ
スに搬送されて、低温プラズマ装置30に連結されたキ
ャリアガス導入管17から、低温プラズマ装置30に導
かれる。低温プラズマ装置30はプラズマ反応管12の
内部を油回転ポンプ15や拡散ポンプ14を使用して
0.1〜10Torr程度まで減圧し、アルゴンガス単独、
窒素、酸素、メタン又はこれらとアルゴンとの混合ガス
等をプラズマガスとして使用し、高周波コイル13に高
周波電流を印加して加熱し、プラズマ反応管12の内部
を400℃以上1000℃以下の温度に維持して、プラ
ズマ状態を発生させるように構成されている。プラズマ
ガスにアルゴン単体を使用するときは純金属が得られ、
窒素を使用する場合は窒化物、酸素を使用する場合は酸
化物、メタンを使用する場合は炭化物がそれぞれ得られ
る。このように本発明によればセラッミクや複合材料の
製造も容易となる。
Next, another example of the apparatus of the present invention will be described.
FIG. 3 is a view showing an example of an alloy fine powder production apparatus in which two series of floating evaporation apparatuses 101 and 201 and a low-temperature plasma apparatus 30 are combined. The structures and functions of the floating evaporators 101 and 201 are as described above. Each floating evaporator 10
The fine metal powder generated by the steps 1 and 201 is conveyed to a carrier gas and guided to the low-temperature plasma device 30 from the carrier gas introduction pipe 17 connected to the low-temperature plasma device 30. The low-temperature plasma apparatus 30 depressurizes the inside of the plasma reaction tube 12 to about 0.1 to 10 Torr by using the oil rotary pump 15 and the diffusion pump 14,
Nitrogen, oxygen, methane or a mixed gas of these and argon is used as a plasma gas, and a high-frequency current is applied to the high-frequency coil 13 to heat the inside of the plasma reaction tube 12 to a temperature of 400 ° C. or more and 1000 ° C. or less. It is configured to maintain and generate a plasma state. When using only argon as the plasma gas, pure metal is obtained,
When nitrogen is used, nitride is obtained, when oxygen is used, oxide is obtained, and when methane is used, carbide is obtained. Thus, according to the present invention, the production of ceramics and composite materials is also facilitated.

【0013】プラズマ状態のプラズマ反応管12内に先
の浮遊蒸発装置101、201で得られた金属微粉末が
入ると、微細で表面活性の高い粒子同士が結合して合金
化が進む。合金化は1000℃以下の低温でも急速に進
行する。このようにして合金化した微粉末はキャリアガ
スで搬送されて捕集装置10で捕集される。
When the fine metal powder obtained by the floating evaporators 101 and 201 enters the plasma reaction tube 12 in a plasma state, fine particles having high surface activity are bonded to each other, and alloying proceeds. Alloying proceeds rapidly even at a low temperature of 1000 ° C. or less. The fine powder alloyed in this manner is transported by a carrier gas and collected by the collection device 10.

【0014】さらに、本発明の装置の別の例を説明す
る。図4は浮遊蒸発装置101と2系列の低温プラズマ
装置301、302とを組み合わせた合金微粉末製造装
置の例を示す図である。ここで低温プラズマ装置301
では金属化合物と還元ガスをプラズマ状態下で還元反応
させ、金属粉末を得るものである。たとえば、加熱昇華
装置308で蒸発させた金属のハロゲン化合物の蒸気
と、キャリアガス導入管307からキャリアガスである
アルゴンガスとともに導入した水素等の還元ガスをプラ
ズマ反応管311に導入し、高周波電流を印加してプラ
ズマ状態にすると水素による還元反応が進行し、金属微
粉末が生成する。このようにして得られた金属微粉末
と、先に浮遊蒸発装置によって得られた金属微粉末を、
別の低温プラズマ装置302に導入してプラズマ状態に
すると、微細で表面活性の高い粒子同士が結合して合金
化が進む。このように本発明では浮遊蒸発法によって得
られた金属微粉末同士を利用して合金化しても良いし、
浮遊蒸発法によって得られた金属微粉末とプラズマ還元
法によって得られた金属微粉末とを利用して合金化する
こともできる。合金元素の数に従って浮遊蒸発装置ある
いはプラズマ還元装置を組み合わせればよい。
Further, another example of the apparatus of the present invention will be described. FIG. 4 is a diagram showing an example of an alloy fine powder production apparatus in which the floating evaporator 101 and two series of low-temperature plasma apparatuses 301 and 302 are combined. Here, the low-temperature plasma device 301
In this method, a metal compound and a reducing gas are subjected to a reduction reaction in a plasma state to obtain a metal powder. For example, a vapor of a metal halide compound evaporated in the heating sublimation device 308 and a reducing gas such as hydrogen introduced together with an argon gas as a carrier gas from a carrier gas introduction tube 307 are introduced into the plasma reaction tube 311 to generate a high-frequency current. When a voltage is applied to form a plasma state, a reduction reaction by hydrogen proceeds, and fine metal powder is generated. The metal fine powder thus obtained and the metal fine powder previously obtained by the floating evaporator are
When introduced into another low-temperature plasma apparatus 302 to be in a plasma state, fine and highly surface-active particles are bonded to each other and alloying proceeds. As described above, in the present invention, alloying may be performed using metal fine powders obtained by the floating evaporation method,
Alloying can also be performed using the fine metal powder obtained by the floating evaporation method and the fine metal powder obtained by the plasma reduction method. What is necessary is just to combine a floating evaporation apparatus or a plasma reduction apparatus according to the number of alloy elements.

【0015】[0015]

【作用】本発明は高周波コイルに働くローレンツ力を利
用して金属粒子を浮遊溶融させ、不純物の混入を防止す
ると共に、さらに加熱して蒸発させてガス状とし気相か
ら急冷凝縮させて極めて微細な粒径の金属微粉末を得る
ものである。また、このようにして得られた複数の微粉
末を低温プラズマを利用して合金化するものである。あ
るいはまた浮遊蒸発させて急冷凝縮させた微粉末と低温
プラズマを利用して得た金属蒸気とを低温プラズマを利
用して合金化するものである。
The present invention utilizes the Lorentz force acting on a high-frequency coil to suspend and melt metal particles, prevent the entry of impurities, and further heat and evaporate them into a gaseous form, which is rapidly cooled and condensed from the gas phase to obtain extremely fine particles. The purpose is to obtain a fine metal powder having a large particle size. Further, the plurality of fine powders thus obtained are alloyed using low-temperature plasma. Alternatively, the fine powder which is subjected to floating evaporation and rapidly cooled and condensed is alloyed with metal vapor obtained using low-temperature plasma using low-temperature plasma.

【0016】[0016]

【実施例】以下実施例を用いて説明する。 (実施例1)図1に示す装置を利用して銅微粉末を製造
した。粒径0.3mm以下の電解銅粉末を、毎分2,0
00mgの割合で毎分500Nmlのアルゴンガスに搬
送させて図1の反応管2下部の原料供給管9から供給し
た。発信周波数360kHzの高周波電源から、浮遊コ
イル3と反撥コイル5に合わせて5kwの電力を印加
し、加熱コイル4には10kwの電力を印加した。この
結果、原料供給管9から供給された原料銅分は、浮遊コ
イル3内に入り浮上し、反撥コイル5内で逆に浮遊を抑
えられて加熱コイル4内に入り、溶融蒸発して銅蒸気と
なったものが反応管2の上部の高周波コイルから外れた
部分で凝集し、アルゴンガスに搬送されて捕集装置10
で集められた。このようにして得られた銅微粉末は純度
が99.999%で、粒径は0.01〜0.03μmの
高純度微粉末であった。この銅微粉末は活性が高く、導
電ペーストとして好適なものであった。
Embodiments will be described below with reference to embodiments. (Example 1) Copper fine powder was produced using the apparatus shown in FIG. Electrolytic copper powder having a particle size of 0.3 mm or less
At a rate of 00 mg, it was transported to 500 Nml of argon gas per minute and supplied from the raw material supply pipe 9 at the lower part of the reaction tube 2 in FIG. A power of 5 kW was applied to the floating coil 3 and the repulsion coil 5 from a high-frequency power source having a transmission frequency of 360 kHz, and a power of 10 kW was applied to the heating coil 4. As a result, the raw copper component supplied from the raw material supply pipe 9 enters the floating coil 3 and floats, and the floating is suppressed in the repulsion coil 5 and enters the heating coil 4 to melt and evaporate to form a copper vapor. Is aggregated at a portion of the upper part of the reaction tube 2 which is outside the high-frequency coil, and is conveyed to the argon gas to be collected by the collecting device 10.
Collected in. The copper fine powder thus obtained was a high-purity fine powder having a purity of 99.999% and a particle size of 0.01 to 0.03 μm. This copper fine powder had high activity and was suitable as a conductive paste.

【0017】(実施例2)次に、図3示す装置を利用し
てFe−Co合金微粉末を製造した。浮遊蒸発装置10
1には純度99.9%、粒径0.3mm以下の電解鉄粉
末を、毎分2,000mgの割合で毎分500Nmlの
アルゴンガスに搬送させて供給した。印加した高周波電
力は実施例1の場合と同様である。浮遊蒸発装置201
には純度99.9%、粒径0.3mm以下の電解コバル
ト粉末を、毎分2,000mgの割合で毎分500Nm
lのアルゴンガスに搬送させて供給した。印加した高周
波電力は浮遊蒸発装置101と同様であった。浮遊蒸発
装置101と浮遊蒸発装置201から排出された、それ
ぞれ鉄微粉末とコバルト微粉末を含むアルゴンガスを低
温プラズマ装置30に供給し、発信周波数360kHz
の高周波電源から2kwの電力を印加した。捕集装置1
0で集められた微粉末は、純度が99.999%で、粒
径は0.01〜0.03μmの高純度Fe−Co合金微
粉末であった。このFe−Co合金微粉末は粒径が細か
く、磁気記録材として好適なものであった。
(Example 2) Next, Fe-Co alloy fine powder was produced using the apparatus shown in FIG. Floating evaporator 10
Electrode No. 1 was supplied with electrolytic iron powder having a purity of 99.9% and a particle size of 0.3 mm or less, which was transferred at a rate of 2,000 mg / min to an argon gas at 500 Nml / min. The applied high frequency power is the same as in the first embodiment. Floating evaporator 201
Has an electrolytic cobalt powder having a purity of 99.9% and a particle size of 0.3 mm or less at a rate of 2,000 mg / min and 500 Nm / min.
1 argon gas. The applied high frequency power was the same as that of the floating evaporator 101. The argon gas containing the iron fine powder and the cobalt fine powder respectively discharged from the floating evaporator 101 and the floating evaporator 201 is supplied to the low-temperature plasma device 30 and transmitted at a frequency of 360 kHz.
2 kW of power was applied from the high frequency power supply of Collection device 1
The fine powder collected at 0 was a high-purity Fe-Co alloy fine powder having a purity of 99.999% and a particle size of 0.01 to 0.03 μm. This Fe—Co alloy fine powder had a small particle size and was suitable as a magnetic recording material.

【0018】(実施例3)図4に示す装置において、原
料金属蒸気発生用の低温プラズマ装置301を2系列設
置してNd−Fe−B合金微粉末を製造した。すなわ
ち、浮遊蒸発装置101には純度99.9%、粒径0.
3mm以下の電解鉄粉末を、毎分2,018.8mgの
割合で毎分500Nmlのアルゴンガスに搬送させて供
給した。印加した高周波電力は実施例1の場合と同様で
ある。その結果、鉄の微粉末を含むアルゴンガスが第3
の低温プラズマ装置に送り込まれた。
Example 3 In the apparatus shown in FIG. 4, two series of low-temperature plasma apparatuses 301 for generating raw material metal vapor were installed to produce Nd—Fe—B alloy fine powder. That is, the floating evaporator 101 has a purity of 99.9% and a particle size of 0.9.
Electrolytic iron powder of 3 mm or less was supplied at a rate of 2,018.8 mg per minute by being conveyed to 500 Nml per minute of argon gas. The applied high frequency power is the same as in the first embodiment. As a result, argon gas containing fine iron powder is
Was sent to the low-temperature plasma equipment.

【0019】次に、第1の低温プラズマ装置には、30
0Nml/minの塩化ホウ素(BCl3 )ガスと45
0Nml/minの水素(H2 )ガスの混合ガス、及び
キャリアガスとして50Nml/minのアルゴンガス
を供給した。プラズマ反応管には発信周波数360kH
zの高周波電源から1.3kwの電力を印加して、プラ
ズマ反応管の内を圧力3.2Torr、温度を600℃
に維持した。その結果、次式で示される反応に従ってホ
ウ素と塩化水素(HCl)が得られた。 2BCl3 + 3H2 = 6HCl + 2B・・・(1) プラズマ反応管から排出されたホウ素微粒子を含むアル
ゴンガスは冷却装置に導かれ、液体窒素で冷却されて塩
化水素ガスは液化して回収除去された。その結果、ホウ
素微粒子を含むアルゴンガスのみが第3の低温プラズマ
装置に送り込まれた。
Next, in the first low-temperature plasma apparatus, 30
0Nml / min boron chloride (BCl 3 ) gas and 45
A mixed gas of 0 Nml / min hydrogen (H 2 ) gas and 50 Nml / min argon gas as a carrier gas were supplied. A transmission frequency of 360 kHz is used for the plasma reaction tube.
A power of 1.3 kw is applied from a high frequency power supply of z, a pressure of 3.2 Torr and a temperature of 600 ° C. in the plasma reaction tube.
Maintained. As a result, boron and hydrogen chloride (HCl) were obtained according to the reaction represented by the following formula. 2BCl 3 + 3H 2 = 6HCl + 2B (1) Argon gas containing fine boron particles discharged from the plasma reaction tube is led to a cooling device, cooled by liquid nitrogen, and hydrogen chloride gas is liquefied and recovered and removed. Was done. As a result, only the argon gas containing the boron fine particles was sent to the third low-temperature plasma device.

【0020】一方、第2の低温プラズマ装置には、塩化
ネオジム(NdCl3 )を加熱昇華させたて気化させた
ガスを44.4Nml/minの割合で100Nml/
minのアルゴンガスをキャリアガスとして供給すると
共に、67.2Nml/minの水素(H2 )ガスを供
給した。プラズマ反応管には発信周波数360kHzの
高周波電源から1.3kwの電力を印加して、プラズマ
反応管の内を圧力0.84Torr、温度を600℃に
維持した。その結果、次式で示される反応に従ってネオ
ジムと塩化水素(HCl)が得られた。 2NdCl3 + 3H2 = 6HCl + 2Nd・・・(2) プラズマ反応管から排出されたネオジム微粒子を含むア
ルゴンガスは冷却装置に導かれ、液体窒素で冷却されて
塩化水素ガスは液化して回収除去された。その結果、ネ
オジム微粒子を含むアルゴンガスのみが第3の低温プラ
ズマ装置に送り込まれた。
On the other hand, in the second low-temperature plasma apparatus, a gas obtained by heating and sublimating neodymium chloride (NdCl 3 ) and vaporizing it at a rate of 44.4 Nml / min at 100 Nml / min.
min gas was supplied as a carrier gas, and hydrogen (H 2 ) gas at 67.2 N ml / min was supplied. A power of 1.3 kW was applied to the plasma reaction tube from a high-frequency power supply having a transmission frequency of 360 kHz, and the inside of the plasma reaction tube was maintained at a pressure of 0.84 Torr and a temperature of 600 ° C. As a result, neodymium and hydrogen chloride (HCl) were obtained according to the reaction represented by the following formula. 2NdCl 3 + 3H 2 = 6HCl + 2Nd (2) Argon gas containing neodymium fine particles discharged from the plasma reaction tube is led to a cooling device, cooled by liquid nitrogen, and hydrogen chloride gas is liquefied to be collected and removed. Was done. As a result, only the argon gas containing the neodymium fine particles was sent to the third low-temperature plasma device.

【0021】第3の低温プラズマ装置のプラズマ反応管
には、発信周波数360kHzの高周波電源から2kw
の電力を印加して、プラズマ反応管の内を圧力6Tor
r、温度を800℃に維持した。その結果、浮遊蒸発装
置から送られた鉄の微粉末を含むアルゴンガスと、第1
の低温プラズマ装置から送られたホウ素微粒子を含むア
ルゴンガス及び第2の低温プラズマ装置から送られたネ
オジム微粒子を含むアルゴンガスが混合され、プラズマ
雰囲気下で合金化され、捕集装置で集められた微粉末
は、粒径0.01〜0.03μm、純度99.998%
のNd2Fe141合金微粉末であった。このNd2Fe
141合金微粉末は圧粉工程で高充填率が得られ、配向
性も高くボンド磁石にしたところ30MGOeの最大磁
力積の高特性が得られた。
A high-frequency power source having a transmission frequency of 360 kHz is supplied to the plasma reaction tube of the third low-temperature plasma apparatus at 2 kW.
And a pressure of 6 Torr inside the plasma reaction tube.
r, The temperature was maintained at 800 ° C. As a result, argon gas containing fine iron powder sent from the floating evaporator was
The argon gas containing the boron fine particles sent from the low-temperature plasma device and the argon gas containing the neodymium fine particles sent from the second low-temperature plasma device were mixed, alloyed under the plasma atmosphere, and collected by the collector. The fine powder has a particle size of 0.01 to 0.03 μm and a purity of 99.998%.
Nd 2 Fe 14 B 1 alloy fine powder. This Nd 2 Fe
14 B 1 alloy powder is a high filling rate can be obtained in powder process, high characteristics of maximum magnetic product of 30MGOe was to increase the bonded magnet also orientation was obtained.

【0022】[0022]

【発明の効果】本発明の金属微粉末の製造方法によれば
粒径が極めて微細で独立した孤立粒子からなり、きわめ
て表面活性に富んだ金属微粉末が得られる。また、本発
明の金属微粉末の製造方法は生成微粒子の活性効果を失
うことなく輸送性に富み、製品化工程への組み込みが容
易である。その結果、製品の高い性能維持が保証され
る。また、本発明によればセラミックや複合材料の製造
も容易となる。本発明により得られる金属微粉末を使用
すれば高純度の合金微粒子及びファインセラミックスが
得られ、これらを利用した微粒子センサー、バルク材表
面改質、磁気記録媒体、各種触媒、ハイパーサーミア用
微粒子、磁性流体等への応用が期待できる。
According to the method for producing metal fine powder of the present invention, a metal fine powder composed of isolated particles having extremely fine particle diameters and having extremely high surface activity can be obtained. In addition, the method for producing a metal fine powder of the present invention is rich in transportability without losing the activity effect of the produced fine particles, and can be easily incorporated into a commercialization process. As a result, high performance maintenance of the product is guaranteed. Further, according to the present invention, the production of ceramics and composite materials becomes easy. By using the metal fine powder obtained by the present invention, high-purity alloy fine particles and fine ceramics can be obtained, and a fine particle sensor, bulk material surface modification, magnetic recording medium, various catalysts, hyperthermia fine particles, and magnetic fluid using these are obtained. It can be expected to be applied to such applications.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置の一例を説明する図である。FIG. 1 is a diagram illustrating an example of the device of the present invention.

【図2】図1の装置のコイル部分を拡大して示した図で
ある。
FIG. 2 is an enlarged view showing a coil portion of the apparatus of FIG. 1;

【図3】本発明の装置の他の例を説明する図である。FIG. 3 is a diagram illustrating another example of the device of the present invention.

【図4】本発明の装置の他の例を説明する図である。FIG. 4 is a diagram illustrating another example of the device of the present invention.

【符号の説明】[Explanation of symbols]

1,101,201・・・・・浮遊蒸発装置、2,102,
202・・・・・反応管、3,103,203・・・・・浮遊コイ
ル、4,104,204・・・・・加熱コイル、5,10
5,205・・・・・反撥コイル、6・・・・・高周波電源、7,
17,107,207,307・・・・・キャリアガス導入
管、8,108,208・・・・・原料ホッパー、9,10
9,209・・・・・原料ガス導入管、10・・・・・捕集装置、
11・・・・・除害装置、12,311,312・・・・・プラズ
マ反応管、13・・・・・プラズマコイル、14・・・・・拡散ポ
ンプ、15・・・・・油回転ポンプ、16・・・・・バルブ、3
0,301,302・・・・・低温プラズマ装置、308・・・
・・加熱昇華装置
1, 101, 201 ... floating evaporator, 2, 102,
202, a reaction tube, 3, 103, 203, a floating coil, 4, 104, 204, a heating coil, 5, 10
..., A repulsion coil, 6,.
17, 107, 207, 307 ... Carrier gas introduction pipe, 8, 108, 208 ... Raw material hopper, 9, 10
9,209 ····································
11 ... abatement apparatus, 12, 311, 312 ... plasma reaction tube, 13 ... plasma coil, 14 ... diffusion pump, 15 ... oil rotation Pump, 16 valves, 3
0, 301, 302 ... low-temperature plasma apparatus, 308 ...
..Heat sublimation equipment

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA04 BA03 BA05 BA06 BB06 BB12 CA01 CA08 DA02 EF08 EG01 EK03  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4K017 AA04 BA03 BA05 BA06 BB06 BB12 CA01 CA08 DA02 EF08 EG01 EK03

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 原料金属を不活性気流中の高周波加熱溶
融装置内で浮遊溶融させ、次いで蒸発させた後不活性気
流とともに急冷して凝縮させることを特徴とする金属微
粉末の製造方法。
1. A method for producing a fine metal powder, comprising the steps of: fusing and melting a raw material metal in a high-frequency heating / melting apparatus in an inert gas stream; evaporating the molten metal;
【請求項2】 複数の原料金属を別々に不活性気流中の
高周波加熱溶融装置内で浮遊溶融させ、次いで蒸発させ
た後急冷凝縮させ、生成した金属微粉末を含む複数の不
活性気流を低温プラズマ反応装置に導き、低温プラズマ
中で複合化することを特徴とする金属微粉末の製造方
法。
2. A plurality of raw material metals are separately floated and melted in a high-frequency heating / melting device in an inert gas stream, then evaporated and quenched and condensed, and the plurality of inert gas streams containing the generated fine metal powder are cooled to a low temperature. A method for producing a metal fine powder, which is led to a plasma reactor and is compounded in low-temperature plasma.
【請求項3】 原料金属を不活性気流中の高周波加熱溶
融装置内で浮遊溶融させ、次いで蒸発させた後不活性気
流とともに急冷して凝縮させ、凝縮した金属微粉末を含
む不活性気流を低温プラズマ反応装置に導き、別の低温
プラズマ中で生成させた他の金属蒸気と混合して、低温
プラズマ中で合金化することを特徴とする金属微粉末の
製造方法。
3. The raw material metal is floated and melted in a high-frequency heating / melting device in an inert gas stream, and then evaporated and rapidly cooled and condensed with the inert gas stream. The inert gas stream containing the condensed metal fine powder is cooled to a low temperature. A method for producing a fine metal powder, comprising: introducing the mixture into another low-temperature plasma; introducing the mixture into another low-temperature plasma; and alloying the mixture in the low-temperature plasma.
【請求項4】 内部に不活性気流を流して垂直に配置し
た加熱・蒸発管の周囲に、高周波発信器の出力端子に接
続された同心円状の浮揚コイルと加熱コイルと反撥コイ
ルを下部から上部に向かってこの順番に順次配置し、反
応管の一端はキャリアガス供給装置に接続され、反応管
の他端は粉末捕集装置に接続されており、該浮揚コイル
は内面がテーパー面ないしは指数関数曲面となるように
加熱コイルの方向に向かって直径が大きくなり、該加熱
コイルはコイル直径が一定で浮揚コイルの最大直径より
も小さな直径を有しており、かつコイルの巻線方向が浮
揚コイルと同一であり、該反撥コイルは浮揚コイルと巻
線方向が逆向きであることを特徴とする金属微粉末の製
造装置。
4. A concentric levitation coil, a heating coil and a repulsion coil connected to an output terminal of a high-frequency oscillator are arranged from the bottom to the top around a vertically arranged heating / evaporating tube through which an inert gas flows. The one end of the reaction tube is connected to the carrier gas supply device, the other end of the reaction tube is connected to the powder collecting device, and the inside surface of the levitation coil is a tapered surface or an exponential function. The diameter of the heating coil increases toward the direction of the heating coil so as to form a curved surface, the heating coil has a constant coil diameter and a diameter smaller than the maximum diameter of the levitating coil, and the winding direction of the coil is the levitating coil. The repelling coil has a winding direction opposite to that of a levitating coil.
【請求項5】 加熱コイルの外側に水平磁場形成用の磁
石を備えたことを特徴とする請求項4に記載の金属微粉
末の製造装置。
5. The apparatus for producing fine metal powder according to claim 4, wherein a magnet for forming a horizontal magnetic field is provided outside the heating coil.
【請求項6】 請求項4に記載の金属微粉末の製造装置
において、加熱・蒸発管が複数あり、各加熱・蒸発管の
他端が粉末捕集装置に代えて低温プラズマ反応管の一端
に接続されており、該低温プラズマ反応管の他端は粉末
捕集装置に接続されていることを特徴とする金属微粉末
の製造装置。
6. The apparatus for producing fine metal powder according to claim 4, wherein a plurality of heating / evaporating tubes are provided, and the other end of each heating / evaporating tube is connected to one end of a low-temperature plasma reaction tube in place of the powder collecting device. An apparatus for producing a fine metal powder, wherein the other end of the low-temperature plasma reaction tube is connected to a powder collecting device.
【請求項7】 請求項4に記載の金属微粉末の製造装置
において、複数個の加熱・蒸発管の一部を低温プラズマ
反応管に置換したことを特徴とする金属微粉末の製造装
置。
7. The apparatus for producing fine metal powder according to claim 4, wherein a part of the plurality of heating / evaporating tubes is replaced with a low-temperature plasma reaction tube.
【請求項8】 請求項1ないし請求項3のいずれかに記
載の製造方法もしくは請求項4ないし請求項7のいずれ
かに記載の製造装置によって得られた金属微粉末。
8. A metal fine powder obtained by the production method according to claim 1 or the production apparatus according to claim 4.
【請求項9】 金属微粉末の純度が4ナイン以上である
ことを特徴とする請求項8に記載の金属微粉末。
9. The fine metal powder according to claim 8, wherein the purity of the fine metal powder is at least 4 nines.
【請求項10】 前記金属微粉末が鉄−コバルト合金で
あることを特徴とする請求項8または請求項9に記載の
金属微粉末。
10. The fine metal powder according to claim 8, wherein the fine metal powder is an iron-cobalt alloy.
【請求項11】 前記金属微粉末がネオジム−鉄−ボロ
ン合金であることを特徴とする請求項8または請求項9
に記載の金属微粉末。
11. The metal fine powder is a neodymium-iron-boron alloy.
The metal fine powder according to the above.
【請求項12】 前記金属微粉末が銅であることを特徴
とする請求項8または請求項9に記載の金属微粉末。
12. The fine metal powder according to claim 8, wherein the fine metal powder is copper.
JP27520599A 1999-09-28 1999-09-28 Method and device for producing metal fine powder and metal fine powder Pending JP2001098309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27520599A JP2001098309A (en) 1999-09-28 1999-09-28 Method and device for producing metal fine powder and metal fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27520599A JP2001098309A (en) 1999-09-28 1999-09-28 Method and device for producing metal fine powder and metal fine powder

Publications (1)

Publication Number Publication Date
JP2001098309A true JP2001098309A (en) 2001-04-10

Family

ID=17552166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27520599A Pending JP2001098309A (en) 1999-09-28 1999-09-28 Method and device for producing metal fine powder and metal fine powder

Country Status (1)

Country Link
JP (1) JP2001098309A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511748A (en) * 2004-09-03 2008-04-17 シーブイアールディ、インコ、リミテッド Method for producing metal powder
JP2010199361A (en) * 2009-02-26 2010-09-09 Hitachi Metals Ltd Method of manufacturing iron nitride magnetic fine particle
JP2013510243A (en) * 2009-11-10 2013-03-21 テクノロジアン テュトキムスケスクス ヴェーテーテー Nanoparticle production method and nanoparticle production apparatus
WO2013157454A1 (en) * 2012-04-20 2013-10-24 昭栄化学工業株式会社 Method for manufacturing metal powder
CN107175337A (en) * 2017-05-22 2017-09-19 加拿大艾浦莱斯有限公司 A kind of metal powder preparation method and its device based on plasma atomization technique
CN107946013A (en) * 2017-11-27 2018-04-20 江民德 A kind of production technology of neodymium iron boron composite magnetic

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008511748A (en) * 2004-09-03 2008-04-17 シーブイアールディ、インコ、リミテッド Method for producing metal powder
JP4932718B2 (en) * 2004-09-03 2012-05-16 ヴァーレ、インコ、リミテッド Method for producing metal powder
JP2010199361A (en) * 2009-02-26 2010-09-09 Hitachi Metals Ltd Method of manufacturing iron nitride magnetic fine particle
JP2013510243A (en) * 2009-11-10 2013-03-21 テクノロジアン テュトキムスケスクス ヴェーテーテー Nanoparticle production method and nanoparticle production apparatus
WO2013157454A1 (en) * 2012-04-20 2013-10-24 昭栄化学工業株式会社 Method for manufacturing metal powder
US9561543B2 (en) 2012-04-20 2017-02-07 Shoei Chemical Inc. Method for manufacturing metal powder
CN107175337A (en) * 2017-05-22 2017-09-19 加拿大艾浦莱斯有限公司 A kind of metal powder preparation method and its device based on plasma atomization technique
CN107946013A (en) * 2017-11-27 2018-04-20 江民德 A kind of production technology of neodymium iron boron composite magnetic
CN107946013B (en) * 2017-11-27 2019-06-07 江民德 A kind of production technology of neodymium iron boron composite magnetic

Similar Documents

Publication Publication Date Title
US5593740A (en) Method and apparatus for making carbon-encapsulated ultrafine metal particles
JP4286777B2 (en) High frequency induction plasma reactor for mass production of nano powder
US6689192B1 (en) Method for producing metallic nanoparticles
Bica Nanoparticle production by plasma
JP5666785B2 (en) Method for producing core-shell structured nanoparticles
JP2780135B2 (en) Method and apparatus for producing and separating fullerenes
Lee et al. Synthesis of Mn–Al alloy nanoparticles by plasma arc discharge
JP2007503973A (en) Methods for the synthesis, separation and purification of powder materials
JP2012533155A (en) Method for producing electrochemically active / inactive nanocomposite materials
JP2001098309A (en) Method and device for producing metal fine powder and metal fine powder
JP2546511B2 (en) Method for synthesizing fullerene and carbon nanotube
EP0645207A2 (en) Ultrafine particles of amorphous metal and method for production thereof
JPH01306510A (en) Improvement for manufacturing super fine particle powder
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
Tian et al. Patterned boron nanowires and field emission properties
JPS63170212A (en) Production of hyper-fine powder of metal boride
CN1178759C (en) Composite nano metallic powder material having aluminium oxide shell and its preparation method
JPH1171605A (en) Manufacture of fine particle, and manufacturing device therefor
JP2008285700A (en) Molybdenum ultrafine powder, and method for producing the same
JP3563083B2 (en) Method and apparatus for gas deposition of ultrafine particles
JP3578486B2 (en) Method and apparatus for producing single-phase γ'-Fe4N ultrafine particles
Bica Plasma device for magnetic nanoparticles production
JPS60224706A (en) Production of ultrafine metallic particles
JP2005154834A (en) Ruthenium ultrafine powder and its production method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030701