JP2662986B2 - Method for producing ultrafine tungsten or tungsten oxide particles - Google Patents

Method for producing ultrafine tungsten or tungsten oxide particles

Info

Publication number
JP2662986B2
JP2662986B2 JP63154868A JP15486888A JP2662986B2 JP 2662986 B2 JP2662986 B2 JP 2662986B2 JP 63154868 A JP63154868 A JP 63154868A JP 15486888 A JP15486888 A JP 15486888A JP 2662986 B2 JP2662986 B2 JP 2662986B2
Authority
JP
Japan
Prior art keywords
tungsten
plasma
gas
ultrafine
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63154868A
Other languages
Japanese (ja)
Other versions
JPH026339A (en
Inventor
正道 宇高
誠二 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koshuha Netsuren KK
Original Assignee
Koshuha Netsuren KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koshuha Netsuren KK filed Critical Koshuha Netsuren KK
Priority to JP63154868A priority Critical patent/JP2662986B2/en
Publication of JPH026339A publication Critical patent/JPH026339A/en
Application granted granted Critical
Publication of JP2662986B2 publication Critical patent/JP2662986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高温プラブマを用いてタングステン粉末原料
からタングステン超微粒子を,また酸化タングステン粉
末原料から酸化タングステン・タングステン混在超微粒
子を連続的に製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention continuously produces tungsten ultrafine particles from a tungsten powder raw material and tungsten oxide / tungsten mixed ultrafine particles from a tungsten oxide powder raw material using a high-temperature plasma. About the method.

(従来の技術および問題点) 超微粒子はそれが有する顕著な特性に注目され、各種
成分系超微粒子の製造法が研究・開発されつつある。タ
ングステン超微粒子も例えば焼結材への添加成分等とし
ての需要が見込まれ、また酸化タングステン超微粒子も
還元法により容易にタングステン超微粒子とすることが
可能であるので、前段階物質として同様である。
(Conventional technology and problems) Ultrafine particles are noted for their outstanding properties, and methods for producing various component-based ultrafine particles are being researched and developed. Tungsten ultrafine particles are also expected to be demanded, for example, as an additive component to a sintered material, and tungsten oxide ultrafine particles can be easily converted into tungsten ultrafine particles by a reduction method. .

ところで、超微粒子を得るための方法は種々あるが、
バルクや通常粒径粉末のタングステン(以下元素記号の
Wを用いる)ないし酸化タングステン(以下化合物記号
のWO3を用いる)から超微粒子を得んとする場合、Wが
特に高融点金属として知られているところから、直ちに
高温プラズマを用いる方法が好ましいと想到される。
By the way, there are various methods for obtaining ultrafine particles,
In the case of obtaining ultrafine particles from tungsten of a bulk or powder having a normal particle diameter (hereinafter, using W of an element symbol) or tungsten oxide (hereinafter, using WO 3 of a compound symbol), W is particularly known as a high melting point metal. From this point, it is thought that a method using high-temperature plasma is immediately preferable.

而して高温プラズマを発生させ、当該高温プラズマを
用いて素材から超微粒子を生成可能な従来法としては、
アークプラズマ法,高周波プラズマ法,直流プラズマジ
エツト法,あるいはハイプリツドプラズマ法等が挙げら
れる。これらの方法は周知の如く常圧(大気圧)状態下
で高温プラズマを発生させ得るが、以下に概要を述べる
とともに、従来技術をそのままWやWO3の超微粒子化に
用いた場合に生ずる問題点を指摘する。
As a conventional method capable of generating high-temperature plasma and generating ultrafine particles from a material using the high-temperature plasma,
Examples thereof include an arc plasma method, a high-frequency plasma method, a direct current plasma jet method, and a hybrid plasma method. These methods may generate a high temperature plasma at atmospheric pressure under (atmospheric pressure) conditions as is well known, together with the outlined below, the problem arising when using the ultrafine particles of the prior art as it is W or WO 3 Point out the point.

アークプラズマ法は,第2図(a)に示す如く,水冷
銅ハースH上に被溶解材バルクBを載置して陽極と
し、その上方所定間隙を隔てて陰極である棒状電極CA
の先端を位置させ、両極間に電圧を印加して高温のアー
クプラズマP1を発生させ、当該アークプラズマP1によつ
てバルクBを溶融・蒸発せしめ、発生する蒸気を冷却し
て超微粒子を得るようにしている。
In the arc plasma method, as shown in FIG. 2 (a), a material B to be melted is placed on a water-cooled copper hearth H to serve as an anode, and a bar-shaped electrode CA serving as a cathode is provided with a predetermined gap therebetween.
The tip is positioned, and to generate an arc plasma P 1 of high temperature by applying a voltage between the electrodes, the arc plasma P 1 to allowed melting and evaporating the Yotsute bulk B, and by cooling the steam generated ultrafine particles I'm trying to get.

同法に従つてWO3超微粒子を製造する場合には、WO3
バルクBとWからなる棒状電極CAとで両極を構成し、常
圧下で酸素ガスのアークプラズマP1によりWO3超微粒子
を生成させることができる。また、WのバルクBと棒状
電極CAとを用い、水素ガスのアークプラズマP1によりW
超微粒子を生成可能である。然し乍ら、アークプラズマ
法は発生するアークプラズマP1の直径が極めて小さく、
生成率が極度に低く工業的生産には程遠いという欠点が
あるとともに、バルクBが蒸発し尽くせば生産は停止さ
れ、さらには棒状電極CAも消耗するので、連続生産には
不向きという欠点がある。
When manufacturing the Supporting connexion WO 3 ultrafine particles law, constitutes a bipolar with a rod electrode CA consisting of bulk B and W of WO 3, oxygen gas under normal pressure arc plasma P 1 by WO 3 ultrafine particles Can be generated. Further, using the bulk B and the rod-shaped electrode CA of W, W by arc plasma P 1 of hydrogen gas
Ultra fine particles can be produced. However, the arc plasma method is extremely small diameter of the arc plasma P 1 occurring,
The production rate is extremely low and it is far from industrial production, and if the bulk B evaporates completely, the production is stopped and the rod-shaped electrode CA is also consumed, so that it is not suitable for continuous production.

高周波プラズマ法は,第2図(b)に示す如く,所定
雰囲気かつ常圧を維持する反応室CH、当該反応室CHに開
口するプラズマトーチT、当該プラズマトーチTの外周
を巻回する高周波コイルC、および当該高周波コイルC
へ給電する高周波電源Eを備えた装置を用いる。プラズ
マトーチT内へ供給されるコアガス(プラズマの生成に
供されるガスを云う)Gを高周波電磁エネルギーにより
高温プラズマP2化し、当該高温プラズマフレームP2中へ
粉末原料をキヤリヤガスCGにのせて連続供給し、粉末原
料をプラズマフレームP2内で溶融・蒸発させ、かつ雰囲
気ガスと反応させる。反応により生成した粒子はプラズ
マフレームP2外に移行する過程で凝集して超微粒子とな
つて雰囲気ガス中に浮遊するので、雰囲気ガス排出路上
に設けた回収器に捕集するようにしている。
As shown in FIG. 2 (b), the high-frequency plasma method uses a reaction chamber CH that maintains a predetermined atmosphere and normal pressure, a plasma torch T that opens into the reaction chamber CH, and a high-frequency coil that winds around the outer periphery of the plasma torch T. C and the high-frequency coil C
A device having a high-frequency power supply E for supplying power to the power supply is used. Continuous plasma torch core gas supplied into the T (referred gas used for generating plasma) G-temperature plasma P 2 turned into a high-frequency electromagnetic energy, by placing the powder material in Kiyariyagasu CG to the high temperature plasma flame P 2 in supplied, the powder raw material was melted and vaporized in the plasma flame P 2, and is reacted with the atmospheric gas. Since particles produced by the reaction is suspended in atmospheric gas aggregate during the process of transition to the outer plasma flame P 2 Te summer and ultrafine particles, so that collecting the collector provided in the atmospheric gas discharge path.

本発明者は、本発明をなすに先立つて同法に従つてW
ないしWO3粉末原料を超微粒子化せんとする実験を行つ
た。当該実験ではアルゴン等の不活性ガスをコアガスG
とし、粉末原料をコアガスGと同質のキヤリヤガスCGに
のせてプラズマフレームP2の中間位置へ向けて供給する
ようにしたが、殆ど超微粒子化されないという実験結果
に終わつた。
Prior to making the present invention, the present inventor
An experiment was conducted in which WO 3 powder raw material was converted into ultrafine particles. In this experiment, an inert gas such as argon was used as the core gas G.
And then, but put the powder material in Kiyariyagasu CG core gas G the same quality and to supply toward the intermediate position of the plasma flame P 2, Owa almost experimental results that are not ultrafine particles ivy.

また、上記実験の不首尾が粉末原料をプラズマフレー
ムP2の低温域plに供給する設定としたため、Wの高融点
・高沸点特性(融点:3387℃,沸点:5927℃)やプラズマ
領域内での滞留時間の短かさに起因するやも知れぬと想
定し、コアガスGに粉末原料をのせてプラズマフレーム
P2中心高温域ph(10000K)に送り込むようにしたが、そ
の供給量を極度に僅少としない限り,高温プラズマフレ
ームP2が不安定となるという実験結果が得られ、当該試
みも失敗に終わつた。
Further, failure of the experiment for the powder raw material was supplied set to a low temperature region pl of plasma flame P 2, high melting and high-boiling characteristics of W (melting point: 3387 ° C., boiling point: 5927 ° C.) and in the plasma region Assuming that it is likely to be due to the short residence time, the powder material is placed on the core gas G and the plasma flame
Was as fed into P 2 around the high temperature zone ph (10000K), unless insignificant the supply quantity to extreme, the experimental results that the high temperature plasma flame P 2 becomes unstable is obtained, the attempt also Owa failed I got it.

直流プラズマジエツト法は、第3図(c)に示す如
く,水冷陰極CAと水冷陽極AN、コアガスGの供給路T1
および粉末原料をのせるキヤリヤガスCGの供給路T2を備
えたプラズマジエツトガンPGを用いて高温プラズマP3
発生させるもので、通常は肉盛り,熔接等に使用され
る。同法はプラズマフレームP3の高温域phに粉末原料を
送り込んでもプラズマP3の不安定を招来しないという利
点がある。
In the DC plasma jet method, as shown in FIG. 3 (c), a water-cooled cathode CA, a water-cooled anode AN, a supply path T 1 for a core gas G,
And the supply path T 2 of the Kiyariyagasu CG placing the powder material by using a plasma jet gun PG with those which generate high temperature plasma P 3, usually padding is used for welding or the like. Law has the advantage be fed to the powder material to a high temperature range ph plasma frame P 3 is not lead to instability of the plasma P 3.

同法に従つてWないしWO3粉末原料を超微粒子化せん
として、陰極CAをW材製,陽極ANを銅材製とし、コアガ
スGおよびキヤリヤガスCGに不活性ガスを用いて実験し
てみたが、プラズマP3の流速があまりにも高速のため、
粉末原料がプラズマフレームP3の中心高温域phを通過す
るにも拘わらず、充分に溶融・蒸発する暇なくプラズマ
フレームP3外に排出され、超微粒子化するに到らなかつ
た。
According to the same method, W or WO 3 powder raw material was made into ultrafine particles, the cathode CA was made of W material, the anode AN was made of copper material, and the core gas G and the carrier gas CG were tested using an inert gas. , because of the high speed the flow velocity of the plasma P 3 is too,
Powder source despite passing through the center hot zone ph plasma frame P 3, are sufficiently melted and discharged leisure without outer plasma flame P 3 evaporates, has failed lead to super fine particles.

ハイプリツドプラズマ法は図示を省略するが、上記高
周波プラズマ法と直流プラズマジエツト法とを組合せた
もので、プラズマジエツトの流速が高速のため、直流プ
ラズマジエツト法における場合と同様にWないしWO3
超微粒子化には不適であつた。
Although not shown, the hybrid plasma method is a combination of the high-frequency plasma method and the DC plasma jet method, and the flow rate of the plasma jet is high, so that W or W is the same as in the DC plasma jet method. It has been made unsuitable for ultra-fine particles of WO 3.

(発明の目的) 本発明はW超微粒子もしくはWO3超微粒子を製造する
場合、高温プラズマが得られる各従来法に存する上述の
問題点を解決するためになされたもので、粉末原料がW
ならばW超微粒子,WO3ならばWO3・W混在超微粒子を100
%生成率で連続生産可能とするタングステンもしくは酸
化タングステン超微粒子の製造方法を提供することを目
的とする。
If INVENTION An object of the present invention is to produce a W ultrafine particles or WO 3 ultrafine particles, which has been made to solve the above problems existing in the prior art high temperature plasma is obtained, the powder material is W
If W ultra-fine particles, the WO 3 if WO 3 · W mixed ultrafine particles 100
It is an object of the present invention to provide a method for producing ultrafine particles of tungsten or tungsten oxide which enables continuous production at a% production rate.

(発明の構成) 本発明の構成は、 (1)100%窒素ガス,もしくは主成分が窒素ガスでア
ルゴンを添加したコアガスならびに雰囲気ガスを用い、 (2)微減圧雰囲気中に高温プラズマを発生せしめ、 (3)当該プラズマフレーム中へタングステン,もしく
は酸化タングステンの粉末原料を上記ガスと同質のキヤ
リヤガスにのせて連続供給することにより、 (4)上記粉末原料から超微粒子を生成せしめ、 (5)上記微減圧雰囲気を維持するために吸引される雰
囲気ガス流中に浮遊する超微粒子を連続的に捕集・回収
するようにした ことを特徴とするタングステンもしくは酸化タングステ
ン超微粒子の製造方法にある。
(Structure of the Invention) The structure of the present invention is as follows: (1) 100% nitrogen gas or a core gas containing nitrogen gas as a main component and an atmosphere gas, and (2) high-temperature plasma is generated in a slightly reduced pressure atmosphere. (3) By continuously supplying a powder material of tungsten or tungsten oxide to the plasma frame on a carrier gas having the same quality as the above gas, (4) generating ultrafine particles from the powder material; A method for producing ultrafine tungsten or tungsten oxide particles, characterized in that ultrafine particles floating in an atmosphere gas flow sucked to maintain a slightly reduced pressure atmosphere are continuously collected and collected.

(発明の作用) 本発明法の特徴は、窒素ガス(以下分子記号N2と記
す)をコアガス,キヤリヤガスおよび雰囲気ガスとして
使用し、当該窒素ガスをa,超微粒子化反応に関与させる
とともに、b,プラズマの流速を不活性ガス使用時の場合
のそれより抑制するようにし、常圧で高温プラズマを
発生可能,かつ連続生産を可能とする従来法,即ち高周
波プラズマ法,直流プラズマジエツト法,あるいはハイ
ブリツドプラズマ法等におけるプラズマフレームを敢え
て微減圧した反応容器内で発生させることにより、上記
aとの相乗効果でプラズマフレーム領域,特に尾炎部
領域を拡大させるようにした点にある。
Feature of the present invention method (the action of the invention), nitrogen gas (hereinafter referred to as molecular symbol N 2) a core gas, used as Kiyariyagasu and atmospheric gas, the nitrogen gas a, together with to participate in micronized reaction, b The conventional method that suppresses the plasma flow rate from that in the case of using an inert gas and can generate high-temperature plasma at normal pressure and enables continuous production, that is, high-frequency plasma method, DC plasma jet method, Alternatively, a plasma flame in a hybrid plasma method or the like is intentionally generated in a reaction vessel which is slightly depressurized, so that the plasma flame region, particularly the tail flame region, is enlarged by a synergistic effect with the above-mentioned a.

上記構成によつて、プラズマフレームは高エンタルピ
ー化され、N2分子の解離により活性化した単原子となつ
たNが供給される粉末原料の溶融・蒸発を促進し、さら
にはNが拡大したプラズマフレーム領域内でWないしWO
3蒸気と会合して超微粒子化反応をするに充分な時間を
確保し得る作用を発揮することとなる。
According to the above configuration, the plasma flame has a high enthalpy, promotes the melting and evaporation of the powder raw material to which N, which is activated as a single atom activated by dissociation of N 2 molecules, is supplied, and further, the plasma in which N is expanded W or WO in the frame area
(3) An effect capable of securing a sufficient time for performing the ultrafine particle-forming reaction in association with the vapor is exerted.

この場合の微減圧は、実験結果から少なくとも700tor
r以下ならばプラズマフレームの領域拡大作用を齎す。
In this case, the decompression is at least 700 torr based on the experimental results.
If it is less than r, an effect of expanding the area of the plasma frame is brought about.

また、粉末原料がWである場合にはW超微粒子が、WO
3である場合にはWO3・W混在超微粒子が生成され、その
生成率はいずれの場合でも供給原料の100%である。
When the powder material is W, W ultrafine particles are
If it is 3 WO 3 · W mixed ultrafine particles are produced, the production rate is 100% of the feedstock either case.

プラズマフレーム領域内での化学反応式は現時点で同
定されないが、以下のように推定される。即ち,例えば
供給粉末原料がWの場合には、高温域でN2から解離した
単原子NがW蒸気と結合し、一時的に大きさが原子ない
し分子レベルのWN2,もしくはWN等の中間生成物蒸気とな
る。当該中間生成物蒸気は不定性であるので,3000K以下
の低温域でNのN2への結合力が中間生成物結合力に勝
り、N2となると同時にWが解離されるものと思われる。
また、供給粉末原料がWO3の場合には、中間生成物蒸気
の組成は不明なるも、少なくとも低温域でNのN2への結
合力がWとOとの結合力に勝ることが実験結果から明確
にされるところである。
Although the chemical reaction formula in the plasma flame region has not been identified at this time, it is estimated as follows. That is, for example, when the supply powder raw material is W, a single atom N dissociated from N 2 in a high temperature region is combined with W vapor, and temporarily has an intermediate size such as WN 2 or WN of an atomic or molecular level. It becomes product vapor. Since the intermediate product vapor is indefinite, it is considered that the binding force of N to N 2 exceeds the intermediate product binding force in a low temperature region of 3000 K or less, and W is dissociated simultaneously with N 2 .
When the feed powder material is WO 3 , although the composition of the intermediate product vapor is unknown, the experimental results show that at least in the low temperature region, the bonding force of N to N 2 exceeds the bonding force of W and O. Is to be clarified from.

而して、WないしWO3の超微粒子化にはN2の高温プラ
ズマが奏功するが、本発明者が本発明に先立つて行つた
アルゴン(Ar)100%の高温プラズマを用いた実験では
超微粒子化に失敗しており、少なくとも単原子Nの分子
N2への再結合が超微粒子化に寄与するとする推定が当を
得ていることを裏付けしている。
Thus, high-temperature plasma of N 2 is effective in converting W or WO 3 into ultrafine particles. However, in experiments conducted by the present inventor prior to the present invention using high-temperature plasma of 100% argon (Ar), ultra-high-temperature plasma was used. Failure to atomize, at least a molecule of monoatomic N
This suggests that the presumption that recombination to N 2 contributes to ultrafine particle formation is correct.

(実施例) 本発明を例えば直流プラズマジエツト法に実施した場
合を第1図に示す。
(Example) FIG. 1 shows a case where the present invention is applied to, for example, a DC plasma jet method.

図において、1は直流電源、2は第2図(c)に示し
た同様な構造からなる上記直流電源1に接続するプラズ
マジエツトガン、3は上記プラズマジエツトガン2の先
端が挿入状態で配置されている反応容器、4は粉末原料
供給装置、5および6はN2およびArの供給源、7は反応
容器3に一方端が開口し,外周を冷却水Waで冷却される
水冷導管、8は上記水冷導管7の他方端が接続され,例
えば超微粒子を捕捉可能なメツシユのフイルタを備えた
回収器、9は上記回収器8に連接配置されたポンプであ
る。
In the drawing, 1 is a DC power supply, 2 is a plasma jet gun connected to the DC power supply 1 having the same structure as shown in FIG. 2 (c), and 3 is a plasma jet gun 2 with its tip inserted. A reaction vessel 4 disposed therein, a powder raw material supply apparatus, 5 and 6 supply sources of N 2 and Ar, 7 a water-cooled conduit having one end open to the reaction vessel 3 and an outer periphery cooled by cooling water Wa, Reference numeral 8 denotes a collector connected to the other end of the water-cooled conduit 7 and provided with, for example, a mesh filter capable of capturing ultrafine particles. Reference numeral 9 denotes a pump connected to the collector 8.

上記プラズマジエツトガン2には、管路T1を介して例
えばN2・Ar混合ガスがコアガスGとして供給され、また
管路T2を介して粉末原料供給装置4から単位時間当たり
所定量の粉末原料がN2・Ar混合ガスからなるキヤリヤガ
スCGにのせられて供給される。
The plasma jet gun 2 is supplied with, for example, an N 2 .Ar mixed gas as a core gas G via a pipe T 1, and a predetermined amount per unit time from the powder raw material supply device 4 via a pipe T 2 . The powder raw material is supplied by being carried on a carrier gas CG comprising a N 2 .Ar mixed gas.

上記構成からなる装置により超微粒子を製造する場合
を以下に述べる。
The case where ultrafine particles are produced by the apparatus having the above configuration will be described below.

まず、ポンプ9を始動させて反応容器3,水冷導管7,お
よび回収器8それぞれのエア抜きをするとともに、管路
T1を介してコアガスGを反応容器3内に流入させてエア
雰囲気をコアガスG雰囲気に置換し、次いでコアガスG
の流入量とポンプ9の吸引力との関係において反応容器
3内の圧力が700torr以下の所定圧を維持する如く制御
・調整のうえ、プラズマジエツトガン2を点火する。プ
ラズマジエツトガン2の反応容器3内に位置する先端開
口から発生するプラズマフレームPは、N2もしくは主成
分がN2のコアガスを用い,かつ反応容器3内が微減圧状
態としてあるので、従来法に比べてプラズマの流速は抑
制されるとともに、プラズマフレーム領域,特に低温域
plが広範囲に拡大している。この状態において管路T2
開とし、粉末原料をキヤリヤガスCGにのせて供給する。
粉末原料は前掲作用の項で述べたとおりプラズマフレー
ムP内で蒸気となり、当該蒸気は活性化したNと反応し
たのち、凝集しつつ超微粒子となつてプラズマフレーム
P外へ移行し、反応容器3内の雰囲気ガス中に浮遊す
る。反応容器3の雰囲気ガスは順次導管7を介して回収
器8へと導かれるので、雰囲気ガス中に浮遊する超微粒
子は回収器8内のフイルタに捕捉され、回収される。
First, the pump 9 is started to evacuate the reaction vessel 3, the water-cooled conduit 7, and the recovery unit 8 respectively,
The core gas G is caused to flow into the reaction vessel 3 through T 1 to replace the air atmosphere with the core gas G atmosphere.
The plasma jet gun 2 is ignited after controlling and adjusting the pressure in the reaction vessel 3 to maintain a predetermined pressure of 700 torr or less in relation to the inflow amount of the pump 9 and the suction force of the pump 9. The plasma frame P generated from the tip opening located in the reaction vessel 3 of the plasma jet gun 2 uses a core gas of N 2 or a main component of N 2 and the inside of the reaction vessel 3 is in a slightly reduced pressure state. The plasma flow rate is suppressed as compared with the plasma method,
pl is widespread. The conduit T 2 is opened in this state, supplies topped with powdered raw material Kiyariyagasu CG.
The powdered raw material is converted into vapor in the plasma flame P as described in the section of the above-mentioned action, and the vapor reacts with the activated N, and then aggregates into ultra-fine particles to move out of the plasma flame P, and the reaction vessel 3 It floats in the atmosphere gas inside. Since the atmosphere gas in the reaction vessel 3 is sequentially led to the collection device 8 through the conduit 7, the ultrafine particles floating in the atmosphere gas are captured by the filter in the collection device 8 and collected.

(実験例) 本発明者が上記装置を用いて行つた多数の実験中の一
例を以下に開示する。
(Experimental Examples) An example of a number of experiments performed by the inventor using the above-described apparatus will be disclosed below.

○実験条件 *粉末原料:WO3 平均粒径……20μm *プラズマガス(コアガス,キヤリヤガス) 成分および流量:N2……15/min Ar…… 5/min *プラズマ入力:電圧…… 60V 電流……100V ○実験結果 上記条件に従つて超微粒子を得た。その結果を下記す
る。
○ Experimental conditions * Powder material: WO 3 average particle size ... 20 μm * Plasma gas (core gas, carrier gas) Composition and flow rate: N 2 ... 15 / min Ar ... 5 / min * Plasma input: voltage ... 60 V current ... … 100 V ○ Experimental results Under the above conditions, ultrafine particles were obtained. The results are described below.

*超微粒子粒径……0.05μm *超微粒子化率……100% *超微粒子組成: WO3……90% W ……10% 尚、得られた超微粒子をX線回折検査に付し、超微粒子
中にNの存在,即ちWN2ないしWNの生成の有無を調査し
た。当該検査で、Nは全く検出されなかつた。
* Ultra-fine particle size: 0.05 μm * Ultra-fine particle conversion rate: 100% * Ultra-fine particle composition: WO 3 ... 90% W ... 10% The obtained ultra-fine particles were subjected to an X-ray diffraction test. The existence of N in the ultrafine particles, that is, the presence or absence of WN 2 to WN was investigated. In the test, N was not detected at all.

上記実験結果は本発明方法がWO3超微粒子製造に画期
的に奏功することを立証した。
The above experimental results the present invention a method is established that remarkably successful in WO 3 ultrafine particles produced.

また、上記装置を使用して粉末原料をWとした実験例
ではW超微粒子が生成され、その超微粒子化率も100%
であり、X線回折検査でもNの存在は皆無であることが
確認されている。
Further, in the experimental example in which the powder material was W using the above apparatus, W ultrafine particles were generated, and the ultrafine particle formation rate was 100%.
X-ray diffraction inspection has confirmed that N is completely absent.

(他の実施例) 上記実施例および開示実施例では、プラズマガスとし
てN2・Ar混合ガスであつたが、Arはプラズマ安定用であ
り、例えば点火時にArを少量混入し、プラズマが安定し
たら順次Arの供給を絞つてゆき、N2のみを供給するよう
にしてもよい。この場合でも超微粒子の生成に何等の支
障も生じない。
(Other Embodiments) In the above embodiments and the disclosed embodiments, the N 2 · Ar mixed gas was used as the plasma gas. However, Ar is used for stabilizing the plasma. The supply of Ar may be sequentially reduced to supply only N 2 . Even in this case, there is no hindrance to the generation of ultrafine particles.

また、上記実施例はプラズマジエツトガン2を用いて
高温プラズマを発生させる直流プラズマジエツト法に本
発明法を適用した場合であつたが、本発明法は高周波プ
ラズマ法やハイブリツドプラズマ法により高温プラズマ
を発生させる場合にも適用可能である。ただし、高周波
プラズマ法に適用する場合には、キヤリヤガスCGを可及
的にプラズマの根本部に近い位置に吹き込む設定とし、
高融点,高沸点特性を有する粉末原料がプラズマフレー
ムの中心高温域ph内を確実に通過する如く供給する配慮
が必要である。
In the above embodiment, the method of the present invention is applied to a DC plasma jet method for generating high-temperature plasma using the plasma jet gun 2, but the method of the present invention is applied to a high-frequency plasma method or a hybrid plasma method. The present invention is also applicable when generating plasma. However, when applied to the high-frequency plasma method, the carrier gas CG should be blown as close to the base of the plasma as possible.
Care must be taken to ensure that the powder raw material having high melting point and high boiling point characteristics passes through the high temperature region ph of the center of the plasma frame without fail.

(発明の効果) 本発明法は、粉末原料がWならばW超微粒子を,WO3
らばWO3・W混在超微粒子を100%の生成率で極めて容易
に連続生産し得るので、WもしくWO3超微粒子の需要に
対し工業的生産規模,即ち大量かつ廉価で応ずることが
可能となり、本発明法が齎す効果は甚大である。
The present invention method (Effect of the invention), the powder raw material W if W ultrafine particles, since it can be very easily continuously produced in WO 3 if WO 3 · W mixed ultrafine particles 100% production rate, W also Thus, it is possible to respond to the demand for WO 3 ultrafine particles on an industrial production scale, that is, in large quantities and at low cost, and the effect of the present invention is enormous.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明法の一実施例概要を示す正面図、第2図
(a)〜(c)はそれぞれ高温プラズマを発生し得る従
来法による装置例の正面図ないし断面正面図である。
FIG. 1 is a front view showing an outline of one embodiment of the method of the present invention, and FIGS. 2 (a) to 2 (c) are front views or cross-sectional front views of an apparatus according to a conventional method capable of generating high-temperature plasma.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】100%窒素ガス,もしくは主成分が窒素ガ
スでアルゴンを添加したコアガスならびに雰囲気ガスを
用い、微減圧雰囲気中に高温プラズマを発生せしめ、当
該プラズマフレーム中へタングステン,もしくは酸化タ
ングステンの粉末原料を上記ガスと同質のキヤリヤガス
にのせて連続供給することにより、上記粉末原料から超
微粒子を生成せしめ、上記微減圧雰囲気を維持するため
に吸引される雰囲気ガス流中に浮遊する超微粒子を連続
的に捕集・回収するようにしたことを特徴とするタング
ステンもしくは酸化タングステン超微粒子の製造方法。
A high-temperature plasma is generated in a slightly reduced-pressure atmosphere using a core gas and an atmosphere gas containing 100% nitrogen gas or nitrogen as a main component and argon added, and tungsten or tungsten oxide is introduced into the plasma frame. By continuously supplying the powder raw material on a carrier gas of the same quality as the above gas, ultrafine particles are generated from the powder raw material, and the ultrafine particles floating in the atmosphere gas flow sucked to maintain the slightly reduced pressure atmosphere are removed. A method for producing ultrafine tungsten or tungsten oxide particles, wherein the fine particles are continuously collected and collected.
【請求項2】微減圧が少なくとも700torr以下である請
求項1記載のタングステンもしくは酸化タングステン超
微粒子の製造方法。
2. The method for producing ultrafine tungsten or tungsten oxide particles according to claim 1, wherein the slightly reduced pressure is at least 700 torr or less.
【請求項3】粉末原料がタングステンである場合にはタ
ングステン超微粒子が生成される請求項1記載のタング
ステンもしくは酸化タングステン超微粒子の製造方法。
3. The method for producing ultrafine tungsten or tungsten oxide particles according to claim 1, wherein ultrafine tungsten particles are produced when the powder raw material is tungsten.
【請求項4】粉末原料が酸化タングステンである場合に
は酸化タングステン・タングステン混在超微粒子が生成
される請求項1記載のタングステンもしくは酸化タング
ステン超微粒子の製造方法。
4. The method for producing tungsten or tungsten oxide ultrafine particles according to claim 1, wherein when the powder raw material is tungsten oxide, tungsten oxide / tungsten mixed ultrafine particles are generated.
JP63154868A 1988-06-24 1988-06-24 Method for producing ultrafine tungsten or tungsten oxide particles Expired - Fee Related JP2662986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63154868A JP2662986B2 (en) 1988-06-24 1988-06-24 Method for producing ultrafine tungsten or tungsten oxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63154868A JP2662986B2 (en) 1988-06-24 1988-06-24 Method for producing ultrafine tungsten or tungsten oxide particles

Publications (2)

Publication Number Publication Date
JPH026339A JPH026339A (en) 1990-01-10
JP2662986B2 true JP2662986B2 (en) 1997-10-15

Family

ID=15593679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63154868A Expired - Fee Related JP2662986B2 (en) 1988-06-24 1988-06-24 Method for producing ultrafine tungsten or tungsten oxide particles

Country Status (1)

Country Link
JP (1) JP2662986B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782173B1 (en) 2009-07-07 2017-10-23 바스프 에스이 Potassium cesium tungsten bronze particles
EP2186560B1 (en) * 2007-09-05 2023-01-04 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder and method for manufacturing the same

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411497B2 (en) * 1998-03-25 2003-06-03 科学技術振興事業団 W ultrafine particles, method for producing the same, and W nanocrystal thin film
IL147049A0 (en) * 2001-12-12 2002-08-14 Do Coop Techmologies Ltd Thermal process involving cold rf irradiated liquid as core method for producing nano-size particles
JP4626284B2 (en) * 2003-12-05 2011-02-02 住友金属鉱山株式会社 Method for producing tungsten oxide fine particles for forming solar shield, and tungsten oxide fine particles for forming solar shield
JP4949657B2 (en) * 2004-11-09 2012-06-13 大研化学工業株式会社 High wear-resistant zirconia microspheres and production method thereof
JP4921806B2 (en) * 2006-02-13 2012-04-25 住友金属鉱山株式会社 Tungsten ultrafine powder and method for producing the same
WO2008117655A1 (en) * 2007-03-23 2008-10-02 Kabushiki Kaisha Toshiba Method for producing tungsten trioxide powder for photocatalyst, tungsten trioxide powder for photocatalyst, and photocatalyst product
WO2008140784A1 (en) 2007-05-11 2008-11-20 Sdc Materials, Inc. Nano-skeletal catalyst
WO2009031316A1 (en) * 2007-09-05 2009-03-12 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder, and visible-light-responsive photocatalyst material, photocatalytic coating material, and photocatalytic product each containing the same
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8168711B2 (en) * 2007-11-05 2012-05-01 BASF SE Ludwigshafen Heat shielding additives
JP5115209B2 (en) * 2008-01-21 2013-01-09 東ソー株式会社 Method for producing ceramic beads having a smooth surface
JP5957175B2 (en) * 2008-03-04 2016-07-27 株式会社東芝 Antibacterial membrane and antibacterial member
JP5343697B2 (en) * 2009-05-15 2013-11-13 住友金属鉱山株式会社 Method for producing composite tungsten oxide ultrafine particles
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9090475B1 (en) 2009-12-15 2015-07-28 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for silicon SiO2
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
MX2014001718A (en) 2011-08-19 2014-03-26 Sdcmaterials Inc Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions.
TWI480229B (en) * 2012-03-26 2015-04-11 Toshiba Kk A battery electrode material, a battery electrode paste, a method for manufacturing an electrode material for a battery, a dye-sensitized solar cell, and a battery
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
CA2926135A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Compositions of lean nox trap
KR20160074566A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP6342251B2 (en) * 2014-07-25 2018-06-13 国立大学法人北海道大学 Method for producing tungsten oxide and metal tungsten fine particles and fine particles obtained thereby

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2186560B1 (en) * 2007-09-05 2023-01-04 Kabushiki Kaisha Toshiba Visible-light-responsive photocatalyst powder and method for manufacturing the same
KR101782173B1 (en) 2009-07-07 2017-10-23 바스프 에스이 Potassium cesium tungsten bronze particles

Also Published As

Publication number Publication date
JPH026339A (en) 1990-01-10

Similar Documents

Publication Publication Date Title
JP2662986B2 (en) Method for producing ultrafine tungsten or tungsten oxide particles
US6689192B1 (en) Method for producing metallic nanoparticles
US8062406B2 (en) Process for producing metallic ultrafine powder
TW200829351A (en) Ultrafine alloy particles, and process for producing the same
US7125537B2 (en) Method for manufacturing nanopowders of oxide through DC plasma thermal reaction
JP6590203B2 (en) Fine particle production apparatus and fine particle production method
US5194128A (en) Method for manufacturing ultrafine particles
KR101143890B1 (en) Preparation method of copper nano powder using transfeered arc or non-transferred arc plasma system
KR101290659B1 (en) Preparation method of silicon oxide powder using thermal plasma, and the silicon oxide powder thereby
JPH11350010A (en) Production of metal powder
JP2004124257A (en) Metal copper particulate, and production method therefor
KR100984414B1 (en) Method for preparing carbon coated metal nanopowder and carbon coated metal nanopowder manufactured using same
JP2017170402A (en) Fine particle producing apparatus and producing method
KR101537216B1 (en) A making process of silicon powder Using Plasma Arc Discharge
CN112204159B (en) Method for selectively oxidizing metal of alloy
JP5008377B2 (en) Method for producing true spherical tin fine powder
KR101621235B1 (en) Preparation method of cubic boron nitride nanopowder by thermal plasma, and the cubic boron nitride nanopowder thereby
JPH0625717A (en) Method and device for producing globular grain by high-frequency plasma
JPS6139372B2 (en)
WO2021100320A1 (en) Microparticles
JPH05116925A (en) Device for producing fullerenes
JP2017155279A (en) Method for producing metal fine particle
JP5354398B2 (en) True spherical fine powder
JP2019136679A (en) Composite particle production apparatus and production method
JP4657474B2 (en) Raw material for carbon cluster production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees