JPS63170212A - Production of hyper-fine powder of metal boride - Google Patents

Production of hyper-fine powder of metal boride

Info

Publication number
JPS63170212A
JPS63170212A JP110287A JP110287A JPS63170212A JP S63170212 A JPS63170212 A JP S63170212A JP 110287 A JP110287 A JP 110287A JP 110287 A JP110287 A JP 110287A JP S63170212 A JPS63170212 A JP S63170212A
Authority
JP
Japan
Prior art keywords
boride
metal
fine powder
metal boride
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP110287A
Other languages
Japanese (ja)
Other versions
JPH0639326B2 (en
Inventor
Satoru Ono
悟 大野
Masahiro Uda
雅広 宇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP110287A priority Critical patent/JPH0639326B2/en
Publication of JPS63170212A publication Critical patent/JPS63170212A/en
Publication of JPH0639326B2 publication Critical patent/JPH0639326B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain a hyper-fine powder of metallic boride having high purity with a simple device, by allowing a boride of a specified metal of a mixture of the metal and boron to heat, melt, evaporize and condense with a heat plasma generated in an atmosphere contg. hydrogen. CONSTITUTION:Groups Ia, IIa, IIIa, IVa, Va and VIa metal boride in the periodical table or the mixture of these metals and the boron 3 is put on a melting table 5 provided in a closed container 1, and then is melted and evaporized by the heat plasma 2 generating in the atmosphere of the hydrogen or the gaseous mixture of the hydrogen and an inert gas. Then the vapor of the metallic boride is cooled and condensed to the hyper-fine powder by the gas of the atmosphere introduced from the introducing opening 4. Then the super fine powder of the metallic boride (e.g. titanium boride) is obtained by transporting the above-mentioned powder to a collector 7 via a cooler 6 with the gas stream of the atmosphere and collecting. The hyper-fine powder is preferably used for a catalyst or an electronic material, etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は粒径1μm以下の金属硼化物の超微粉の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing ultrafine metal boride powder having a particle size of 1 μm or less.

金属硼化物は、極めて融点および硬度が高く、しかも化
学的にも安定であることなどから、超耐熱材料、耐摩耗
材料、複合材料などに利用されるとともに、その優れた
物性から新機能を有する電子材料、触媒材料、超電導材
料などとして注目されている。
Metal borides have extremely high melting points and hardness, and are also chemically stable, so they are used in ultra-heat-resistant materials, wear-resistant materials, composite materials, etc., and their excellent physical properties provide new functions. It is attracting attention as an electronic material, catalytic material, superconducting material, etc.

金属硼化物をこのような用途に適用する場合の加工方法
としては、主として粉末冶金的手段、すなわち焼結法が
用いられるが、高性能な焼結体を得るためには、高純度
でかつ焼結性の優れた微細な金属硼化物粉であることが
要°求される。
When applying metal borides to such uses, powder metallurgy means, namely sintering methods, are mainly used, but in order to obtain high-performance sintered bodies, high purity and sintering methods are used. It is required to be a fine metal boride powder with excellent cohesiveness.

従来技術 従来、粒径1μm以下の金属硼化物超微粉を製造する方
法としては、(1)金属硼化物塊の機械的粉砕、(2)
金属塩化物と塩化硼素との混合気体の水素還元合成など
がある。ここで、前者の機械的粉砕法では、粒径1μm
以下の金属硼化物超微粉を得ることが極めて困難である
。また、後者の水素還元合成法では反応効率を向上させ
ることが困難であるとともに、反応副生成物による超微
粉の汚染、すなわち高純度の超微粉が得難いことや、公
害の予想される排ガス(主とじてMCIガス)の処理等
、その製造工程・装置は極めて複雑なものとなっている
Prior Art Conventionally, methods for producing ultrafine metal boride powder with a particle size of 1 μm or less include (1) mechanical crushing of metal boride lumps; (2)
Examples include hydrogen reduction synthesis of a gas mixture of metal chlorides and boron chloride. Here, in the former mechanical pulverization method, the particle size is 1 μm.
It is extremely difficult to obtain the following ultrafine metal boride powder. In addition, in the latter hydrogen reduction synthesis method, it is difficult to improve the reaction efficiency, the ultrafine powder is contaminated by reaction by-products, that is, it is difficult to obtain ultrafine powder of high purity, and the exhaust gas (mainly The manufacturing process and equipment, including processing of MCI gas), are extremely complex.

発明の目的 本発明は、これらの欠点を解決すべくなされたものであ
り、その目的は簡馬な装置・製造工程で、かつ無公害的
に粒径1μm以下の金属硼化物超微粉を製造する方法を
提供するにある。
Purpose of the Invention The present invention was made to solve these drawbacks, and its purpose is to produce ultrafine metal boride powder with a particle size of 1 μm or less using simple equipment and manufacturing processes and in a non-polluting manner. We are here to provide you with a method.

発明の構成 本発明者らは、前記目的を達成すべく研究の結果、水素
または水素と不活性ガスとの混合ガス中で発生した熱プ
ラズマにより、金属硼化物塊あるいは所定の化学量論的
混合比を有する該金属と硼素との混合物を加熱e溶融す
ることにより、該金属の硼化物が効率良く蒸発するとと
もに、この蒸発した金属硼化物蒸気が該雰囲気中で凝縮
して金属硼化物超微粒子となることを見出した。この知
見に基づいて本発明を完成したものである。
Structure of the Invention As a result of research to achieve the above object, the present inventors have discovered that metal boride lumps or a predetermined stoichiometric mixture can be formed using thermal plasma generated in hydrogen or a mixed gas of hydrogen and an inert gas. By heating and melting a mixture of the metal and boron having the same ratio, the boride of the metal is efficiently evaporated, and the evaporated metal boride vapor is condensed in the atmosphere to form ultrafine metal boride particles. I found that. The present invention was completed based on this knowledge.

本発明は、水素あるいは水素とアルゴン、ヘリウム等の
不活性ガスとの混合ガス中で発生した熱プラズマ(アー
ク、プラズマジェットあるいは高周波プラズマ等)によ
り、金属硼化物あるいは該金属と硼素とを所定の化学量
論比に混合した混合物を加熱・溶融し、この際に発生す
る金属硼化物蒸気を該雰囲気中で凝縮させて金属硼化物
超微粉を製造する方法である。
The present invention is a method of forming a metal boride or a metal and boron using a thermal plasma (arc, plasma jet, high frequency plasma, etc.) generated in hydrogen or a mixed gas of hydrogen and an inert gas such as argon or helium. In this method, a mixture mixed in a stoichiometric ratio is heated and melted, and the metal boride vapor generated at this time is condensed in the atmosphere to produce ultrafine metal boride powder.

本発明における金属硼化物超微粒子の生成機構の詳細は
明らかではないが、本発明者らが先に見出した水素プラ
ズマによる金属超微粒子の生成現象と同様に(特許第1
146170号)、アークプラズマ内で活性化された水
素(原子状あるいはイオン状水素)と溶融金属硼化物と
の反応過程において、該溶融金属」化物が強制的に蒸発
し、その蒸気が凝縮することにより金属硼化物超微粒子
を形成したものと考えられる。
Although the details of the generation mechanism of ultrafine metal boride particles in the present invention are not clear, it is similar to the phenomenon of generation of ultrafine metal particles by hydrogen plasma discovered by the present inventors (Patent No. 1).
146170), in the reaction process between activated hydrogen (atomic or ionic hydrogen) in an arc plasma and molten metal boride, the molten metal boride is forcibly evaporated and the vapor condenses. It is thought that ultrafine metal boride particles were formed by this process.

本発明における出発原料としては、塊状の金属硼化物を
そのまま用いてもよいが、金属と硼素との化学量論的混
合物(一般に、粉末を混合して調整する)を熱プラズマ
で直接加熱・溶融してもよい(この加熱・溶融により該
金属硼化物が合成される)。
As a starting material in the present invention, bulk metal boride may be used as it is, but a stoichiometric mixture of metal and boron (generally prepared by mixing powders) is directly heated and melted with thermal plasma. (The metal boride is synthesized by this heating and melting.)

熱プラズマを発生する雰囲気としては、水素あるいは水
素と不活性ガスとの混合ガスが使用されるが、超微粒子
の発生速度の観点より、純水素あるいは少なくとも20
% (体積比)以上の水素を含む水素と不活性ガスとの
混合ガス雰囲気とすることが望ましい。また、この雰囲
気の圧力は、熱プラズマを安定に発生・維持しうる範囲
(通常、約50 Thrr〜5atm)であれば任意で
あるが、超微粒子の発生効率や操業性、超微粒子の搬送
・捕集性などの点から大気圧近傍の′圧力が望ましい。
Hydrogen or a mixed gas of hydrogen and an inert gas is used as the atmosphere for generating thermal plasma, but from the viewpoint of the generation rate of ultrafine particles, pure hydrogen or at least 20% hydrogen is used.
% (volume ratio) or more of hydrogen and an inert gas mixture atmosphere. The pressure of this atmosphere is arbitrary as long as it is within a range that can stably generate and maintain thermal plasma (usually about 50 Thrr to 5 atm), but it depends on the generation efficiency of ultrafine particles, operability, transport and A pressure close to atmospheric pressure is desirable from the viewpoint of collection performance.

該金属硼化物を加熱Φ溶融、金属硼化物超微粒子を発生
させるための熱プラズマとしては、直流または交流アー
ク、移行式または非移行式プラズマジェットあるいは高
周波誘導プラズマが利用できるが、熱効率の点より直流
アークあるいは移行式プラズマジェットを使用すること
が望ましい。
Direct current or alternating current arc, transitional or non-transitional plasma jet, or high-frequency induction plasma can be used as the thermal plasma for heating the metal boride to melt it and generate ultrafine metal boride particles, but from the viewpoint of thermal efficiency, Preferably, a direct current arc or transferred plasma jet is used.

本発明において作成しつる金属硼化物超微粉は、該熱プ
ラズマの加熱・溶融に際して容易に分解しない程度に高
融点(大略2000℃以上)の金属硼化物であり、周期
表のla、la、1l(a、■a、 vaおよびva族
に属する金属1例えば、アルカリ金属、アルカリ土類金
属、希土類金属、Ti、 Zr、 )(f、 V、 N
b%Ta、Cr、Mo、Wなどの硼化物が挙げられる。
The vine metal boride ultrafine powder produced in the present invention is a metal boride having a high melting point (approximately 2000°C or higher) to the extent that it does not decompose easily when heated and melted by the thermal plasma, and is a metal boride that has a high melting point (approximately 2000°C or higher), and is classified as la, la, 1l in the periodic table. (a, ■a, metals belonging to the va and va groups 1, such as alkali metals, alkaline earth metals, rare earth metals, Ti, Zr, ) (f, V, N
b% Borides such as Ta, Cr, Mo, and W are mentioned.

本発明の方法における金属硼化物超微粉を製造するため
の装置としては、第1図に示したような、本発明者らが
先に考案した金属超微粒子の製造装置(特許第1226
806号)が挙げられる。図中、1は密−容器、2は熱
プラズマ、3は溶融金属硼化物、4は雰囲気ガスの導入
口、5は溶解台、6は冷却器、7は超微粉捕集器である
The apparatus for producing ultrafine metal boride powder in the method of the present invention is as shown in FIG.
No. 806). In the figure, 1 is a closed container, 2 is a thermal plasma, 3 is a molten metal boride, 4 is an atmospheric gas inlet, 5 is a melting table, 6 is a cooler, and 7 is an ultrafine powder collector.

溶融金属硼化物から発生した金属硼化物蒸気は、雰囲気
ガスによって直ちに冷却・凝縮されて超微粒子となり、
該金属硼化物超微粒子は雰囲気ガス導入口4から冷却器
6を経て超微粒子捕集器7へ向かう雰囲気ガス流によっ
て捕集器7に搬送され、捕集される。
The metal boride vapor generated from the molten metal boride is immediately cooled and condensed by the atmospheric gas and becomes ultrafine particles.
The metal boride ultrafine particles are conveyed to the collector 7 by an atmospheric gas flow from the atmospheric gas inlet 4 through the cooler 6 toward the ultrafine particle collector 7, where they are collected.

実施例 1 第1図に示す装置を使用し、プラズマ先生方ヱ 法としては直流アーク(横1性、電流:150A)粉末
X線回折図形を第3図に示す。チタン硼化物の超微粒子
は六角板状1球形等の晶癖を有するが、いずれもその粒
径は0.3μm以下の超fA粒子となっている。また、
第3図のX線回折図形より、この超微粒子は六方晶形の
Ti B、であることが判明した。
Example 1 Using the apparatus shown in FIG. 1, the powder X-ray diffraction pattern of a direct current arc (transverse monomerity, current: 150 A) as a plasma method is shown in FIG. The ultrafine particles of titanium boride have crystal habits such as a hexagonal plate shape and a monospherical shape, but all of them are ultra-fA particles with a particle size of 0.3 μm or less. Also,
From the X-ray diffraction pattern shown in FIG. 3, it was found that the ultrafine particles were hexagonal TiB.

実施例 2 実施例1と同一の装置を使用し、50係us−Ar雰囲
気中において硼化ジルコニウムczrBs)ヲ直流アー
ク(tj流:150A)により加熱・溶融し、ジルコニ
ウム硼化物の超微粉を得た。   4゜得られた超微粉
の電子顕微鏡写真を第4図に、粉末X線回折図形を第5
図に示す。ジルコニウム硼化物の超微粒子は、主として
球形の粒子であり、その粒径はいずれも0,2μm以下
の超微粒子であった。また、第5図の粉末X線回折図形
より、このジルコニウム硼化物は六方晶形に属する硼化
ジルコニウム(ZrBm)であることが判明した。
Example 2 Using the same equipment as in Example 1, zirconium boride (czrBs) was heated and melted by a direct current arc (tj current: 150 A) in a 50 modulus us-Ar atmosphere to obtain ultrafine powder of zirconium boride. Ta. 4゜The electron micrograph of the obtained ultrafine powder is shown in Figure 4, and the powder X-ray diffraction pattern is shown in Figure 5.
As shown in the figure. The ultrafine particles of zirconium boride were mainly spherical particles, and all of the ultrafine particles had a particle size of 0.2 μm or less. Further, from the powder X-ray diffraction pattern shown in FIG. 5, it was found that this zirconium boride was zirconium boride (ZrBm) belonging to a hexagonal crystal structure.

発明の効果 このように、本発明の方法によれば、簡易な装置により
、容易かつ無公害的に高純度な金属硼化物の超微粉を製
造することができる。また、このようにして得られた金
属硼化物超微粉は、金属硼化物の焼結温度・圧力等の条
件を著しく緩和できるという効果を有するばかりではな
く、触媒や電子材料、超電導材料として新しい機能を開
発することができるという優れた効果も発現し得られる
という特徴を有する。
Effects of the Invention As described above, according to the method of the present invention, ultrafine metal boride powder of high purity can be easily and pollution-free produced using a simple device. In addition, the ultrafine metal boride powder obtained in this way not only has the effect of significantly relaxing the conditions such as sintering temperature and pressure of metal boride, but also has new functions as a catalyst, electronic material, and superconducting material. It also has the characteristic of being able to express and obtain excellent effects such as the ability to develop.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属硼化物超微粉を製造する装置の超微粒子の
電子顕微鏡写真、第3図および第5図は金属硼化物超微
粉のX線回折図形を示す。 1:密閉容器     2:熱プラズマ3:溶融金R硼
化物  4:雰囲気ガス導入口5:溶解台      
6:冷却器 7;超微粉捕集器 特杵出願人 科学技術庁金属材料技術研究所長−中 川
 龍 − 菫10 @trm 第5閏 vJ4 @ 第51!1
FIG. 1 shows an electron micrograph of ultrafine particles of an apparatus for producing ultrafine metal boride powder, and FIGS. 3 and 5 show X-ray diffraction patterns of ultrafine metal boride powder. 1: Closed container 2: Thermal plasma 3: Molten gold R boride 4: Atmospheric gas inlet 5: Melting table
6: Cooler 7; Ultrafine powder collector special pestle Applicant: Science and Technology Agency Director of Metal Materials Technology Research Institute - Ryu Nakagawa - Sumire 10 @trm 5th leap vJ4 @ 51st!1

Claims (1)

【特許請求の範囲】[Claims] 水素または水素と不活性ガスとの混合ガス雰囲気中で発
生した熱プラズマにより、周期表 I a、IIa、IIIa、
IVa、VaおよびVIa族金属の硼化物あるいは該金属と
硼素との混合物を加熱・溶融することにより該金属硼化
物を蒸発・凝縮させることを特徴とする該金属の硼化物
超微粉の製造法。
The periodic table Ia, IIa, IIIa,
A method for producing ultrafine powder of a boride of a group IVa, Va, or VIa metal, which comprises heating and melting a boride of a group IVa, Va, or VIa metal or a mixture of the metal and boron to evaporate and condense the metal boride.
JP110287A 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder Expired - Lifetime JPH0639326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP110287A JPH0639326B2 (en) 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP110287A JPH0639326B2 (en) 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder

Publications (2)

Publication Number Publication Date
JPS63170212A true JPS63170212A (en) 1988-07-14
JPH0639326B2 JPH0639326B2 (en) 1994-05-25

Family

ID=11492120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP110287A Expired - Lifetime JPH0639326B2 (en) 1987-01-08 1987-01-08 Method for producing ultrafine metal boride powder

Country Status (1)

Country Link
JP (1) JPH0639326B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055280A (en) * 1987-09-18 1991-10-08 National Research Institute For Metals Process for producing transition metal boride fibers
JP2003261323A (en) * 2001-12-19 2003-09-16 Sumitomo Metal Mining Co Ltd Metallic compound fine powder and production method therefor
US7438880B2 (en) 2006-12-20 2008-10-21 Ppg Industries Ohio, Inc. Production of high purity ultrafine metal carbide particles
US7635458B1 (en) 2006-08-30 2009-12-22 Ppg Industries Ohio, Inc. Production of ultrafine boron carbide particles utilizing liquid feed materials
US7776303B2 (en) 2006-08-30 2010-08-17 Ppg Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
CN112891967A (en) * 2021-01-25 2021-06-04 钟笔 Ultrafine powder particle aggregation cooling pipe type structure and ultrafine powder particle forming method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005028463A1 (en) * 2005-06-17 2006-12-28 Basf Ag Process for the preparation of nanoparticulate lanthanoid / boron compounds of nanoparticulate lanthanide / boron compounds containing solid mixtures
US20110180750A1 (en) * 2008-10-27 2011-07-28 Basf Se Method for preparing a suspension of nanoparticulate metal borides
FR2960303B1 (en) * 2010-05-18 2013-04-05 Onectra NEUTRON DETECTION APPARATUS AND METHOD OF DEPOSITING A SOLID BORON LAYER FOR SUCH AN APPARATUS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055280A (en) * 1987-09-18 1991-10-08 National Research Institute For Metals Process for producing transition metal boride fibers
JP2003261323A (en) * 2001-12-19 2003-09-16 Sumitomo Metal Mining Co Ltd Metallic compound fine powder and production method therefor
US7635458B1 (en) 2006-08-30 2009-12-22 Ppg Industries Ohio, Inc. Production of ultrafine boron carbide particles utilizing liquid feed materials
US7776303B2 (en) 2006-08-30 2010-08-17 Ppg Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
US7438880B2 (en) 2006-12-20 2008-10-21 Ppg Industries Ohio, Inc. Production of high purity ultrafine metal carbide particles
CN112891967A (en) * 2021-01-25 2021-06-04 钟笔 Ultrafine powder particle aggregation cooling pipe type structure and ultrafine powder particle forming method

Also Published As

Publication number Publication date
JPH0639326B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
Bardakhanov et al. Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator
Kim et al. Nanofabrication by thermal plasma jets: From nanoparticles to low-dimensional nanomaterials
US4642207A (en) Process for producing ultrafine particles of ceramics
Zhang et al. Single-step pathway for the synthesis of tungsten nanosized powders by RF induction thermal plasma
Hu et al. Low‐Temperature Synthesis of Nanocrystalline Titanium Nitride via a Benzene–Thermal Route
US3848068A (en) Method for producing metal compounds
JPH0433490B2 (en)
WO2011071225A1 (en) Production method for high purity copper powder using a thermal plasma
JP2002201014A (en) Method for producing carbon nanotube
JPS6193828A (en) Preparation of ultra-fine particle mixture
US8609060B1 (en) Method of producing carbon coated nano- and micron-scale particles
JPS63170212A (en) Production of hyper-fine powder of metal boride
JPH0327601B2 (en)
CN107473237A (en) A kind of preparation method of binary tungsten boride superhard material
Kim et al. Thermal plasma synthesis of ceramic nanomaterials
Smovzh et al. Formation mechanism of MgO hollow nanospheres via calcination of C-MgO composite produced by electric arc spraying
US4889665A (en) Process for producing ultrafine particles of ceramics
JPH01306510A (en) Improvement for manufacturing super fine particle powder
JPH06321511A (en) Ultrafine aluminum nitride particle, its production and ultrafine particulate sintered compact
JP2005154834A (en) Ruthenium ultrafine powder and its production method
RU2672422C1 (en) Method of obtaining nanocrystalline titanium powder-molybdenum carbide powder
Altınok Thermal plasma synthesis of boron carbide
JP2792255B2 (en) Composite ultrafine powder and manufacturing method
JPH04350106A (en) Alloy hiper fine particle and production thereof
JPS61153208A (en) Manufacture of hyperfine metallic powder with metal having high melting point as medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term