JPH01306510A - Improvement for manufacturing super fine particle powder - Google Patents

Improvement for manufacturing super fine particle powder

Info

Publication number
JPH01306510A
JPH01306510A JP13433688A JP13433688A JPH01306510A JP H01306510 A JPH01306510 A JP H01306510A JP 13433688 A JP13433688 A JP 13433688A JP 13433688 A JP13433688 A JP 13433688A JP H01306510 A JPH01306510 A JP H01306510A
Authority
JP
Japan
Prior art keywords
plasma
cooling
tube
gas
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13433688A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Yamada
幸良 山田
Tadashi Fuyuki
冬木 正
Eisuke Kuroda
黒田 英輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisshin Seifun Group Inc
Original Assignee
Nisshin Seifun Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Seifun Group Inc filed Critical Nisshin Seifun Group Inc
Priority to JP13433688A priority Critical patent/JPH01306510A/en
Publication of JPH01306510A publication Critical patent/JPH01306510A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture super fine particle powder having uniform and small grain size by rapidly cooling by using liquefied gas after vaporizing a solid material by using high temp. plasma. CONSTITUTION:In the plasma torch A, gas of Ar, etc., from supply sources 7-9 is supplied into a silica tube 1 from injection holes 4-6 and made to high temp. plasma with a coil 2 for oscillating high frequency. To this high temp. plasma, the solid material powder of metal, etc., from a raw material powder supply device E is instroduced into a silica double tube B through carrier gas 11 and vaporized. The vapor of this solid material is rapidly cooled and solidified with a cooling double tube C passing through the liquefied gas at gap between inner tube 14 and outer tube 15. As the liquefied gas, one or more kinds of liquid He, H2, Ar, N2, O2, air CO2 are used. The super fine powder formed with this is recovered with the product recovering part F providing a filter 18 from a chamber D for executing water cooling.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高温プラズマを用いて固体物質を超微粒子化
する場合に、生成した超微粒子を急速に冷却して大径の
粒子への成長を抑制し、もって粒度の均一な超微粒子を
製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for rapidly cooling the generated ultrafine particles to grow them into large-diameter particles when solid substances are made into ultrafine particles using high-temperature plasma. The present invention relates to a method for producing ultrafine particles with uniform particle size by suppressing .

更に具体的には、高温プラズマを用いて固体物質を超微
粒子化する場合に、成長した超微粒子を液化ガスを用い
る急速冷却に付して大径の粒子への成長を抑制し、もっ
て粒度の均一な超微粒子を製造する方法に関する。
More specifically, when solid materials are made into ultrafine particles using high-temperature plasma, the grown ultrafine particles are rapidly cooled using liquefied gas to suppress their growth into large-diameter particles, thereby reducing the particle size. The present invention relates to a method for producing uniform ultrafine particles.

〔従来のW術〕[Traditional W technique]

従来塊状物質を機械的粉砕手段によって微粒化する場合
に得られる微粉末の粉砕限界粒子径は1〜0.1μm付
近とされ、それよりも細かい粒子の生成は困難と考えら
れて来た。しかしながら、機械的粉砕手段以外の種々の
微粉末の製造法の開発が進むに及んで、従来の粉体材料
よりも更に細かい超微粒子と呼ばれる領域の粒子、すな
わち平均粒径で0.3μm以下の粒子が新しい機能材料
として注目を集めるようになった。
Conventionally, the pulverization limit particle diameter of fine powder obtained when agglomerated materials are pulverized by mechanical pulverization means is around 1 to 0.1 μm, and it has been thought that it is difficult to produce particles finer than that. However, as the development of various methods for producing fine powder other than mechanical pulverization means progresses, particles in the region called ultrafine particles, which are even finer than conventional powder materials, i.e., particles with an average particle size of 0.3 μm or less, are being developed. Particles are now attracting attention as new functional materials.

これらの新たに開発された方法には、熱分解法、電気分
解法、ガス還元法、沈澱法などの化学的方法の他に、プ
ラズマを用いて固体物質を蒸発気化させ、冷却によって
凝縮させて超微粒子を製造する物理的な方法があり、殊
に後者の方法は得られる微粒子の粒径が小さく、また粒
径が比較的そろっており、不純物の混入も少ないことで
その有用性が期待される方法である。
These newly developed methods include chemical methods such as pyrolysis, electrolysis, gas reduction, and precipitation, as well as methods that use plasma to evaporate solid substances and condense them by cooling. There are physical methods for producing ultrafine particles, and the latter method in particular is expected to be useful because the particle sizes obtained are small, the particle sizes are relatively uniform, and there is little contamination with impurities. This is a method to

このプラズマを利用する方法には、ガス流中でアーク放
電を行って高温プラズマを発生させ被微粉化固体材料を
蒸発させ、引続く反応(反応を伴う場合のみ)および冷
却によって超微粉末粒子を得る方法や、ガス流を高周波
電極に通じて高周波によって高温プラズマを発生させ、
このプラズマ中に被微粉化固体材料を導入してこれを蒸
発させ、引続く反応(反応を伴う場合のみ)および冷却
によって超微粉末粒子を得る方法などがある。
This plasma-based method involves arc discharge in a gas stream to generate a high-temperature plasma that evaporates the solid material to be pulverized, followed by reaction (only if reaction is involved) and cooling to produce ultrafine powder particles. How to obtain high-temperature plasma by passing gas flow through high-frequency electrodes and generating high-temperature plasma using high-frequency waves.
There is a method of introducing a solid material to be pulverized into this plasma, evaporating it, and obtaining ultrafine powder particles by subsequent reaction (only when reaction is involved) and cooling.

これらの方法のいずれも、高温プラズマの超高温度を利
用して固体材料を蒸発させ、引続く冷却によって固体蒸
気を固化させ超微粒子を得るという原理に基づくもので
ある。
All of these methods are based on the principle of evaporating a solid material using the ultra-high temperature of high-temperature plasma, and solidifying the solid vapor through subsequent cooling to obtain ultrafine particles.

そしてこの冷却には冷却水を用い反応器および引続く微
粉末の捕集器を冷却することが行われている。
For this cooling, cooling water is used to cool the reactor and subsequent fine powder collector.

さらに、粒径のコントロールにクエンチング効果を利用
する着想も既知である(吉田豊信「気相反応による超微
粒子の製造」昭61.日本工業新聞社 プラズマ化学セ
ミナー講義録、明石Plasuma Chew、  1
 (1981) 113)が、ここに示されている思想
は反応体の量を抑制してクエンチング効果を達成しよう
とするいわゆるリアクテイブクエンチングの考え方であ
って、微粉末粒子の製法一般には適用し得ないものであ
るのみならず、冷却剤を用いて強制冷却しようとするも
のではない。
Furthermore, the idea of using the quenching effect to control particle size is also known (Toyonobu Yoshida, "Manufacture of ultrafine particles by gas phase reaction", 1986. Nihon Kogyo Shimbun, Plasma Chemistry Seminar Lecture Record, Akashi Plasuma Chew, 1).
(1981) 113), but the idea presented here is the idea of so-called reactive quenching, which attempts to achieve a quenching effect by suppressing the amount of reactants, and is not applicable to general methods of manufacturing fine powder particles. Not only is this impossible, but it also does not attempt to forcefully cool the system using a coolant.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

高温プラズマを用いて超微粒子を製造する方法は、従来
の機械的粉砕法ではなし得なかった粒子径のきわめて小
さい微粒子を製造しうるものであり、従来の化学的方法
によるものとは異なった高純度でしかも粒子表面のなめ
らかな主として球形形状の粒子を得るものではあるが、
その粒径には大きなばらつきがあり、この粒径の大きさ
を均一にする技術手段の開発が望まれていた。
The method of producing ultrafine particles using high-temperature plasma enables the production of extremely small particles, which cannot be achieved with conventional mechanical crushing methods, and it is possible to produce ultrafine particles with extremely small particle diameters that cannot be achieved using conventional mechanical pulverization methods. Although it is possible to obtain mainly spherical particles with high purity and a smooth particle surface,
There is a large variation in the particle size, and it has been desired to develop a technical means to make the particle size uniform.

〔問題点を解決するための手段〕[Means for solving problems]

上記した高温プラズマを用いて超微粒子を製造するに際
しての超微粒子の粒子の大きさのばらつきは、高温プラ
ズマによって発生した固体物質の蒸気の凝縮の時間にば
らつきがあること、従って成る粒子については蒸気から
粒子が成長することなく急速に凝縮するが、成る粒子に
ついては凝縮までに比較的長時間を要し、そのために粒
子の成長が起るところに上記の超微粒子の大きさのばら
つきの原因があるのではないかとの考えの許に、本発明
者らは従来法の水による冷却にかえ種々の冷却方法を試
み、上記の考え方が正しいことを実証するとともに、粒
子の大きさのばらつきのきわめて少ない超微粒子の製造
方法を完成させたのである。
The variation in the particle size of ultrafine particles when producing ultrafine particles using the above-mentioned high-temperature plasma is due to the variation in the time for condensation of the vapor of the solid material generated by the high-temperature plasma, and therefore the particles made of the vapor Particles condense quickly without growing, but particles that consist of particles take a relatively long time to condense, which is why the above-mentioned variation in the size of ultrafine particles occurs at the point where particle growth occurs. Based on the idea that this may be the case, the present inventors tried various cooling methods instead of the conventional method of cooling with water, and demonstrated that the above idea was correct, and also found that the variation in particle size was extremely small. They completed a method for producing ultrafine particles in small quantities.

すなわち、本発明者らは、高温プラズマを用いて固体物
質を蒸発させ、これを冷却して超微粒子化する場合に、
冷却を液化ガスを用いて行う場合には、冷却をきわめて
すみやかに行うことができ、そのために析出する超微粒
子の個々の粒子については粒子の成長がないままに冷却
され、固化と析出が起り、得られる超微粒子の大きさに
はばらつきのないこと、および得られる超微粒子の平均
粒径が水による冷却によるものに比較して小さいことを
見出して本発明を完成したのである。
That is, the present inventors found that when a solid substance is evaporated using high-temperature plasma and then cooled to form ultrafine particles,
When cooling is carried out using liquefied gas, cooling can be carried out extremely quickly, so that the individual particles of the ultrafine particles that precipitate are cooled without any particle growth, and solidification and precipitation occur. The present invention was completed by discovering that there is no variation in the size of the ultrafine particles obtained, and that the average particle diameter of the ultrafine particles obtained is smaller than that obtained by cooling with water.

すなわち、本発明は、高温プラズマを用いて固体物質を
超微粒子化するに際して、生成した超微粒子を液化ガス
による直接熱交換または間接熱交換によって急速に冷却
して大径の粒子への生成を抑制し、もって粒度の均一な
、かつ粒子径の小さい超微粉粒子を製造する方法にかか
るものである。
That is, the present invention suppresses the formation of large-diameter particles by rapidly cooling the generated ultrafine particles by direct heat exchange or indirect heat exchange with liquefied gas when turning solid substances into ultrafine particles using high-temperature plasma. However, the present invention relates to a method for producing ultrafine particles having a uniform particle size and a small particle size.

本発明における高温プラズマを用いて固体物質を超微粒
子化する方法自体は公知のものを採用することがで、き
る。すなわち、高温プラズマの発生方法としては、アー
ク放電によるプラズマジェットの発生、アーク放電によ
るアーク溶解とそれに伴うプラズマの発生などのアーク
放電電極を用いるアーク放電によるプラズマ発生法、高
周波電極中にガスを流してこのガスを高温プラズマ化す
る方法などがあり、この高温プラズマを用いる固体物質
の超微粉化には具体的には、アークプラズマにより活性
化した水素を溶融金属などと反応させこれを蒸発させる
方法や、高周波の印加によって高温プラズマ化された気
体流中に固体粉を導入してこれを気化蒸発させる方法が
あり、そしてこれらの方法によって発生したプラズマを
用いて固体物質を蒸発させ、固化して超微粉末を製造す
るに際して上記した本方法が使用可能となる。
In the present invention, a known method can be used to turn a solid substance into ultrafine particles using high-temperature plasma. In other words, methods for generating high-temperature plasma include generation of a plasma jet by arc discharge, plasma generation by arc discharge using an arc discharge electrode such as arc melting by arc discharge and generation of plasma, and plasma generation by flowing gas through a high-frequency electrode. There are methods such as turning the lever gas into high-temperature plasma.Specifically, to ultra-finely powder a solid material using this high-temperature plasma, there is a method in which hydrogen activated by arc plasma reacts with molten metal etc. and evaporates it. Another method is to vaporize solid powder by introducing it into a gas stream that has been turned into high-temperature plasma by applying high-frequency waves.The plasma generated by these methods is then used to evaporate and solidify the solid material. This method described above can be used to produce ultrafine powder.

本方法では、プラズマ焔を安定に保持させながら、プラ
ズマ焔の周囲に直接に液化ガスを導入して生成した固体
物質の蒸気を急冷するか、またはプラズマ焔を取り巻く
反応室および引き続く微粒子捕集器を液化ガスによって
間接的に冷却することにより、生成した固体物質の蒸気
を急冷して行なわれるのである。
In this method, while maintaining the plasma flame stably, liquefied gas is directly introduced around the plasma flame to rapidly cool the generated solid material vapor, or a reaction chamber surrounding the plasma flame and a subsequent particulate collector are used. This is done by quenching the vapor of the solid material produced by indirectly cooling it with liquefied gas.

このような液化ガスによる急冷は、これまでに全く知ら
れておらず、また誰もが試みようとすらしなかったもの
である。すなわち、高温プラズマを用いる固体物質の超
微粒子化には、安定なプラズマ焔の存在が必須であり、
プラズマ焔の温度を低下させその安定性を阻害する可能
性のある液化ガスによる冷却の発想はとうていなし得ら
れなかったところである。
Such rapid cooling using liquefied gas was completely unknown until now, and no one had even attempted it. In other words, the existence of a stable plasma flame is essential for ultrafine particle formation of solid materials using high-temperature plasma.
The idea of cooling with liquefied gas, which could lower the temperature of the plasma flame and impede its stability, has long been an idea.

本発明者らはかかる技術常識に反してプラズマ焔の安定
性を阻害しない範囲において上記した態様で液化ガスを
冷却剤として固体物質の蒸気を冷却する場合には、きわ
めて粒子径が均一でしかも微粒の超微粒子が得られるこ
とを見出だしたのである。
Contrary to such common general knowledge, the present inventors believe that when cooling the vapor of a solid substance using liquefied gas as a coolant in the above-described manner within a range that does not impede the stability of plasma flame, the particle size is extremely uniform and the particles are fine. They discovered that it is possible to obtain ultrafine particles of

本方法で用いる液化ガスとしては、液体ヘリウム、液体
アルゴンなどの希ガスの液化物、液体窒素、液体酸素、
液体空気などの液化空気成分、液化炭酸ガス、液体水素
などが挙げられる。
The liquefied gases used in this method include liquefied rare gases such as liquid helium and liquid argon, liquid nitrogen, liquid oxygen,
Examples include liquefied air components such as liquid air, liquefied carbon dioxide, and liquid hydrogen.

これらの液化ガスを本願方法における間接冷却媒体とし
て用いる場合には、使用ずみの気化されたガスは高温プ
ラズマを発生させるためのガス流として使用することが
できる。すなわち、液体窒素、液体アルゴンなどを使用
する場合には、発生したガスをプラズマトーチに戻して
これに高周波電圧を印加することによりプラズマ焔を発
生せしめることができ、また液体水素を用いる場合には
、発生した水素ガスを水素−アークプラズマを生成させ
るために使用することも可能である。
When these liquefied gases are used as indirect cooling media in the present method, the spent vaporized gas can be used as a gas stream to generate a high temperature plasma. That is, when using liquid nitrogen, liquid argon, etc., a plasma flame can be generated by returning the generated gas to the plasma torch and applying a high frequency voltage to it, and when using liquid hydrogen, a plasma flame can be generated. It is also possible to use the generated hydrogen gas to generate a hydrogen-arc plasma.

この方法によって粒子径が85nm〜650nmの範囲
のいわゆる超微粒子粉末がきわめて粒子径のばらつきの
ないものとして製造できる。
By this method, so-called ultrafine powder having a particle size in the range of 85 nm to 650 nm can be produced with extremely uniform particle size.

この方法で製造することのできる超微粒子粉末にはA(
lx Zn%5iSFes Ni%Cus kgs C
o、Au。
The ultrafine powder that can be produced by this method includes A(
lx Zn%5iSFes Ni%Cus kgs C
o, Au.

PL%W%Cu−Ni合金、Fe−Co合金、Fe−N
 i合金、Fe−Ni−Co合金、Cu−Zn合金、A
Q金合金ような金属粉末、およびA12,0.、SiO
2、Y2O1、ZrO2、Fig2、Si3NイAff
N%SiC,TiC,WC,W2C,W2Si3、W2
Nのようなセラミックス粉末が含まれる。
PL%W%Cu-Ni alloy, Fe-Co alloy, Fe-N
i alloy, Fe-Ni-Co alloy, Cu-Zn alloy, A
Metal powders such as Q gold alloys, and A12,0. , SiO
2, Y2O1, ZrO2, Fig2, Si3N iAff
N%SiC, TiC, WC, W2C, W2Si3, W2
Contains ceramic powders such as N.

次に本発明を具体例によって更に詳細に説明する。Next, the present invention will be explained in more detail using specific examples.

実施例 l 金属アルミニウム粉末(平均粒径9.6μm)をアルゴ
ン気流を高周波加熱して得た高温プラズマ焔中に供給し
てアルミニウムの超微粒子を製造しlこ。
Example 1 Ultrafine particles of aluminum were produced by supplying metallic aluminum powder (average particle size 9.6 μm) into a high-temperature plasma flame obtained by high-frequency heating of an argon stream.

使用した装置は第1図に示されたとおりの構成を有する
ものである。
The apparatus used had the configuration shown in FIG.

すなわち、本装置は、第1図でAで示されるプラズマト
ーチ、Bで示される石英二重管、Cで示される冷却二重
管、Dで示されるチャンバー、Eで示される原料粉末供
給装置、およびFで示される製品回収部より成る。
That is, this apparatus includes a plasma torch indicated by A in FIG. 1, a quartz double tube indicated by B, a cooling double tube indicated by C, a chamber indicated by D, a raw material powder supply device indicated by E, It consists of a product collection department indicated by F and F.

プラズマトーチAは内径44mm、長さ150mmの石
英管lを主体とし、外側に高周波発振用のコイル2が取
りつけられ、その外側には更に冷却用の外套管3が設け
られている。プラズマトーチの上部には噴出方向が接線
方向、軸方向および半径方向のガスの噴出口4.5.6
が設けられ、この噴出口にガスの供給源7.8.9から
アルゴンガスがあるいは酸素、窒素等のガスが供給され
る。この噴出ガスは印加された高周波電源によってプラ
ズマ化されプラズマトーチ内でプラズマ焔を形成する。
The plasma torch A is mainly composed of a quartz tube 1 with an inner diameter of 44 mm and a length of 150 mm, a coil 2 for high frequency oscillation is attached to the outside, and a jacket tube 3 for cooling is further provided on the outside. At the top of the plasma torch, there are gas jets with tangential, axial and radial jet directions 4.5.6
is provided, and a gas such as argon gas, oxygen, nitrogen, etc. is supplied to this outlet from a gas supply source 7.8.9. This ejected gas is turned into plasma by the applied high frequency power and forms a plasma flame within the plasma torch.

プラズマトーチの下部には原料粉末供給口lOが設けら
れ、原料粉末供給装置Eから供給される原料粉末はキャ
リヤーガス11に搬送されてプラズマ焔中に導入される
A raw material powder supply port 1O is provided at the bottom of the plasma torch, and the raw material powder supplied from the raw material powder supply device E is carried by the carrier gas 11 and introduced into the plasma flame.

石英二重管Bは内径120m+R,長さ200)の石英
管12と、その外側の冷却用の外套管13から成る。
The quartz double tube B consists of a quartz tube 12 with an inner diameter of 120 m+R and a length of 200 mm, and a cooling jacket tube 13 outside the quartz tube 12.

外套管13は例えばアクリル樹脂製の管であってもよい
The mantle tube 13 may be, for example, a tube made of acrylic resin.

冷却二重管Cは内径120mm、長さ100mmの内管
14とその外側の冷却用の外套管15とからなる。
The double cooling tube C consists of an inner tube 14 with an inner diameter of 120 mm and a length of 100 mm and an outer tube 15 for cooling outside the inner tube 14.

内管14および外套管15は極低温に曝されるのでステ
ンレス鋼(例えばSOS 316)のような材料で構成
される。
Inner tube 14 and outer tube 15 are constructed of a material such as stainless steel (eg SOS 316) since they are exposed to cryogenic temperatures.

チャンバーDは内径440mm、長さ1800+amの
管16とその外側の冷却用の外套管17とから成る。
Chamber D consists of a tube 16 with an inner diameter of 440 mm and a length of 1800+ am, and an outer jacket tube 17 for cooling.

このチャンバーDの内管、外套管はともに金属製の管、
例えばステンレス鋼管であってもよい。
The inner tube and outer tube of this chamber D are both metal tubes,
For example, it may be a stainless steel tube.

製品回収部FはチャンバーDの下部に着脱可能なように
取付けられ、フィルター18を内部に装着しうるように
なっている。そしてフィルターの内側は減圧ラインJ9
に連通している。
The product recovery section F is detachably attached to the lower part of the chamber D, and a filter 18 can be attached therein. And inside the filter is the decompression line J9
is connected to.

上記のような構成の装置のガス噴出口4.5.6にアル
ゴンガスが2012/minの流量で流され、コイル2
に4 MHzの高周波電流が印加されアルゴンの高温プ
ラズマ焔が発生する。原料の金属アルミニウム粉末(平
均粒径9.6μm)は原料粉末供給口10からキャリヤ
ーガスと共に609/minの供給量で高温プラズマ中
に供給され、気化したアルミニウムは引続く冷却二重管
CおよびチャンバーDで冷却され、凝縮して生成した超
微粒子のアルミニウム粉末はフィルター18上に集めら
れる。
Argon gas is flowed through the gas outlet 4.5.6 of the device configured as above at a flow rate of 2012/min, and the coil 2
A high-frequency current of 4 MHz is applied to generate a high-temperature plasma flame of argon. The raw material metal aluminum powder (average particle size 9.6 μm) is supplied into the high-temperature plasma together with a carrier gas from the raw material powder supply port 10 at a rate of 609/min, and the vaporized aluminum is passed through the subsequent cooling double tube C and the chamber. The ultrafine aluminum powder produced by cooling and condensation is collected on the filter 18.

今この超微粒子の製造条件において、プラズマトーチA
1石英二重管B1冷却二重管CおよびチャンバーDの冷
却を20°Cの水を冷却媒体として用いてアルミニウム
超微粒子を製造したところ、光子相関法粒度測定装置B
1−90(日機装(株)製)による粒度測定結果で粒子
径が170から2017nmの範囲のアルミニウム粒子
が得られた。
Now, under these ultrafine particle manufacturing conditions, plasma torch A
1 Quartz double tube B1 Cooling double tube C and chamber D were cooled using 20°C water as a cooling medium to produce ultrafine aluminum particles.
As a result of particle size measurement using 1-90 (manufactured by Nikkiso Co., Ltd.), aluminum particles having particle diameters in the range of 170 to 2017 nm were obtained.

これに対して、プラズマトーチA1石英二重管Bおよび
チャンバーDの冷却は上記と同じ20°Cの水を冷却媒
体として用いて行なうが、冷却二重管Cの冷却を液体窒
素を用いて冷却してアルミニウム超微粒子を製造したと
ころ、粒子径か85〜650nmの範囲のアルミニウム
超微粒子が得られた。すなわち、冷却媒体に液化窒素を
用いることによって従来法である水冷法によるものに比
較して粒子径が小さくかつ粒子径の分布中が1/4程度
まで狭くなったアルミニウム超微粒子の得られることが
明らかとなった。
On the other hand, the plasma torch A1, quartz double tube B, and chamber D are cooled using the same 20°C water as the cooling medium, but the cooling double tube C is cooled using liquid nitrogen. When ultrafine aluminum particles were produced, ultrafine aluminum particles having a particle diameter in the range of 85 to 650 nm were obtained. That is, by using liquefied nitrogen as a cooling medium, it is possible to obtain ultrafine aluminum particles with a smaller particle size and a particle size distribution narrowed to about 1/4 compared to the conventional water cooling method. It became clear.

実施例 2 実施例1に記載した装置を用いて同様の操作条件によっ
て酸化イツトリウムの超微粉末を製造した。この場合に
用いた高温プラズマは、アルゴンと酸素の混合気体流を
高周波加熱によってプラズマ化したものであった。また
供給される金属イットリウ・ム粉末はアルゴンガスで搬
送して酸素ガス雰囲気下の高温プラズマに導入しtこ 
Example 2 Ultrafine powder of yttrium oxide was produced using the apparatus described in Example 1 under similar operating conditions. The high-temperature plasma used in this case was one in which a mixed gas flow of argon and oxygen was turned into plasma by high-frequency heating. In addition, the supplied metallic yttrium powder is transported with argon gas and introduced into a high-temperature plasma in an oxygen gas atmosphere.
.

このようにして、プラズマ焔中に供給される金属イツト
リウムは酸素と反応して酸化イツトリウムに変化し、酸
化イツトリウムの蒸気となるが、引続く冷却部において
この蒸気は凝縮して酸化イツトリウムの超微粒子となる
In this way, the metallic yttrium supplied into the plasma flame reacts with oxygen and changes into yttrium oxide, becoming yttrium oxide vapor. In the subsequent cooling section, this vapor condenses into ultrafine particles of yttrium oxide. becomes.

上記した操作をプラズマトーチA1石英二重管B1冷却
二重管CおよびチャンバーDの冷却を20°Cの水を冷
却媒体として用いて行ない、酸化イツトリウム超微粒子
を製造したところ、得られた超微粒子の粒度は172〜
22O44nと粒径分布の範囲の巾の広いものであった
The above operations were performed to cool the plasma torch A1 quartz double tube B1 cooling double tube C and chamber D using 20°C water as a cooling medium to produce ultrafine yttrium oxide particles. The particle size is 172~
The particle size distribution had a wide range of 22O44n.

これに対してプラズマトーチA1石英二重管Bおよびチ
ャンバーDの冷却は上記と同じ20°Cの水を冷却媒体
として用いて行なうが、冷却二重管の冷却は液体窒素を
用いて冷却して酸化イツトリウム超微粒子を製造したと
ころ、得られた超微粒子の粒度は153〜905nmと
粒径が小さくかつ粒径分布の巾の狭いものであった。
On the other hand, plasma torch A1, quartz double tube B, and chamber D are cooled using the same 20°C water as the cooling medium, but the cooling double tube is cooled using liquid nitrogen. When ultrafine yttrium oxide particles were produced, the particle size of the obtained ultrafine particles was as small as 153 to 905 nm, and the particle size distribution was narrow.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法で使用する高温プラズマを用い
る超微粒子粉末の製造装置の一例を示す。 A・・・プラズマトーチ、B・・・石英二重管、C・・
・冷却二重管、D・・・チャンバー、E・・・原料粉末
供給装置、F・・・製品回収部、l・・・石英管、2・
・・高周波発振用のコイル、3・・・冷却用外套管、4
.5.6・・・ガス噴出口、7.8.9・・・ガス供給
源、10・・・原料粉末供給口、ll・・・キャリヤー
ガス供給源、12・・・石英管、13・・・外套管、1
4・・・冷却管内管、15・・・外套管、16・・・チ
ャンバー内管、17・・・外套管、18・・・フィルタ
ー、19・・・減圧ライン。
FIG. 1 shows an example of an apparatus for producing ultrafine powder using high temperature plasma used in the method of the present invention. A... Plasma torch, B... Quartz double tube, C...
・Cooling double tube, D...Chamber, E...Raw material powder supply device, F...Product recovery section, l...Quartz tube, 2.
... Coil for high frequency oscillation, 3 ... Cooling mantle, 4
.. 5.6... Gas outlet, 7.8.9... Gas supply source, 10... Raw material powder supply port, ll... Carrier gas supply source, 12... Quartz tube, 13...・Mantle tube, 1
4... Cooling tube inner tube, 15... Outer tube, 16... Chamber inner tube, 17... Outer tube, 18... Filter, 19... Decompression line.

Claims (1)

【特許請求の範囲】 1)高温プラズマを用いて固体物質を蒸発させ、これを
冷却して超微粒子化するに際して、冷却を液化ガスを用
いて行うことを特徴とする超微粒子粉末の製造方法。 2)冷却が液化ガスによる直接冷却または間接冷却によ
って行われるものである請求項1に記載の方法。 3)液化ガスが液体ヘリウム、液体水素、液体アルゴン
、液体窒素、液体酸素、液体空気、液体炭酸ガスまたは
これらの2つもしくはそれ以上を組合わせたものである
請求項1に記載の方法。
[Claims] 1) A method for producing ultrafine powder, characterized in that when a solid substance is evaporated using high-temperature plasma and then cooled to form ultrafine particles, the cooling is performed using liquefied gas. 2) The method according to claim 1, wherein the cooling is performed by direct cooling or indirect cooling with liquefied gas. 3) The method according to claim 1, wherein the liquefied gas is liquid helium, liquid hydrogen, liquid argon, liquid nitrogen, liquid oxygen, liquid air, liquid carbon dioxide, or a combination of two or more of these.
JP13433688A 1988-06-02 1988-06-02 Improvement for manufacturing super fine particle powder Pending JPH01306510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13433688A JPH01306510A (en) 1988-06-02 1988-06-02 Improvement for manufacturing super fine particle powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13433688A JPH01306510A (en) 1988-06-02 1988-06-02 Improvement for manufacturing super fine particle powder

Publications (1)

Publication Number Publication Date
JPH01306510A true JPH01306510A (en) 1989-12-11

Family

ID=15125963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13433688A Pending JPH01306510A (en) 1988-06-02 1988-06-02 Improvement for manufacturing super fine particle powder

Country Status (1)

Country Link
JP (1) JPH01306510A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001007363A1 (en) * 1999-07-22 2001-02-01 Atofina Research Production of silica particles
JP2008514806A (en) * 2004-08-28 2008-05-08 ナノ プラズマ センター カンパニー リミテッド Paramagnetic nanopowder, method for producing paramagnetic nanopowder, and composition containing paramagnetic nanopowder
JP2008138284A (en) * 2006-11-02 2008-06-19 Nisshin Seifun Group Inc Ultrafine alloy particle and its manufacturing method
CN100444995C (en) * 2004-07-22 2008-12-24 北京颐鑫安科技发展有限公司 Process for producing superfine aluminium powder and nano grade aluminium powder
US20110209578A1 (en) * 2010-02-26 2011-09-01 Kuniaki Ara Nanoparticle manufacturing device and nanoparticle manufacturing method and method of manufacturing nanoparticle-dispersed liquid alkali metal
JP2011179023A (en) * 2010-02-26 2011-09-15 Japan Atomic Energy Agency Nanoparticle manufacturing device and nanoparticle manufacturing method
JP2013034984A (en) * 2011-08-04 2013-02-21 Kwang Sung Back Multiple separator-filter, manufacturing method of the same, and antioxidation water by using the same
CN103008673A (en) * 2012-11-07 2013-04-03 宁波广博纳米新材料股份有限公司 Method for preparing sulfur-bearing nickel powder by evaporation condensation method
JP2013068585A (en) * 2011-09-20 2013-04-18 Ls Nova Co Ltd Removal of contaminated radioactive substance
WO2014203590A1 (en) * 2013-06-21 2014-12-24 日清エンジニアリング株式会社 Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340583A (en) * 1976-09-17 1978-04-13 Sapporo Breweries Ltd Inspecting apparatus for bottle.s bottom
JPS60826A (en) * 1983-06-18 1985-01-05 Canon Inc Method and apparatus for manufacturing ultrafine particle
JPS61261406A (en) * 1985-05-14 1986-11-19 Keiichiro Shoji Production of raw material powder for powder metallurgy

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5340583A (en) * 1976-09-17 1978-04-13 Sapporo Breweries Ltd Inspecting apparatus for bottle.s bottom
JPS60826A (en) * 1983-06-18 1985-01-05 Canon Inc Method and apparatus for manufacturing ultrafine particle
JPS61261406A (en) * 1985-05-14 1986-11-19 Keiichiro Shoji Production of raw material powder for powder metallurgy

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495114B1 (en) 1999-07-22 2002-12-17 Fina Research, S.A. Production of silica particles
WO2001007363A1 (en) * 1999-07-22 2001-02-01 Atofina Research Production of silica particles
CN100444995C (en) * 2004-07-22 2008-12-24 北京颐鑫安科技发展有限公司 Process for producing superfine aluminium powder and nano grade aluminium powder
JP2008514806A (en) * 2004-08-28 2008-05-08 ナノ プラズマ センター カンパニー リミテッド Paramagnetic nanopowder, method for producing paramagnetic nanopowder, and composition containing paramagnetic nanopowder
US8491696B2 (en) 2006-11-02 2013-07-23 Nisshin Seifun Group, Inc. Ultrafine alloy particles, and process for producing the same
JP2008138284A (en) * 2006-11-02 2008-06-19 Nisshin Seifun Group Inc Ultrafine alloy particle and its manufacturing method
TWI474882B (en) * 2006-11-02 2015-03-01 Nisshin Seifun Group Inc Ultrafine alloy particles, and process for producing the same
KR101445389B1 (en) * 2006-11-02 2014-09-26 가부시키가이샤 닛신 세이훈 구루프혼샤 Ultrafine alloy particles, and process for producing the same
JP2011179023A (en) * 2010-02-26 2011-09-15 Japan Atomic Energy Agency Nanoparticle manufacturing device and nanoparticle manufacturing method
US20110209578A1 (en) * 2010-02-26 2011-09-01 Kuniaki Ara Nanoparticle manufacturing device and nanoparticle manufacturing method and method of manufacturing nanoparticle-dispersed liquid alkali metal
JP2013034984A (en) * 2011-08-04 2013-02-21 Kwang Sung Back Multiple separator-filter, manufacturing method of the same, and antioxidation water by using the same
US9255016B2 (en) 2011-08-04 2016-02-09 Ls Nova Co., Ltd. Multiple separation filter and antioxidizing water produced using the same
JP2013068585A (en) * 2011-09-20 2013-04-18 Ls Nova Co Ltd Removal of contaminated radioactive substance
CN103008673A (en) * 2012-11-07 2013-04-03 宁波广博纳米新材料股份有限公司 Method for preparing sulfur-bearing nickel powder by evaporation condensation method
WO2014203590A1 (en) * 2013-06-21 2014-12-24 日清エンジニアリング株式会社 Process for producing fine cuprous oxide particles, fine cuprous oxide particles, and process for producing conductor film

Similar Documents

Publication Publication Date Title
JP5133065B2 (en) Inductive plasma synthesis of nanopowder
JP3541939B2 (en) Method for producing fine and ultrafine powder and transfer arc plasma system
JP2737736B2 (en) Method for producing carbon single-walled nanotube
JP2980987B2 (en) Method and apparatus for producing nanostructured materials
Yoshie et al. Novel method for C60 synthesis: A thermal plasma at atmospheric pressure
JPS60175537A (en) Preparation of ultra-fine ceramic particles
JP4534016B2 (en) Method for producing high purity boron nitride nanotubes
US20070221635A1 (en) Plasma synthesis of nanopowders
JPH01306510A (en) Improvement for manufacturing super fine particle powder
Boulos New frontiers in thermal plasmas from space to nanomaterials
JP4921806B2 (en) Tungsten ultrafine powder and method for producing the same
CN102847953A (en) Method for preparing spherical nano tungsten powder
JP2009287106A (en) Method for producing titanium spherical powder, and titanium spherical powder
Kim et al. Thermal plasma synthesis of ceramic nanomaterials
Akashi Progress in thermal plasma deposition of alloys and ceramic fine particles
WO1993002787A1 (en) Process for the production of ultra-fine powdered materials
CN108059164A (en) Spherical TiC powder prepared by the plasma preparation method and this method of a kind of spherical shape TiC powder
JPS63170212A (en) Production of hyper-fine powder of metal boride
JP4057948B2 (en) Method for producing nano-WC powder by atmospheric pressure gas phase reaction
JPH01115810A (en) Production of ultrafine powder of high-purity tungsten carbide of cubic system
JPS63266001A (en) Production of composite spherical powder
Zhu et al. Rapid preparation of tritium breeder material Li2TiO3 pebbles by thermal plasma
JPH04350106A (en) Alloy hiper fine particle and production thereof
JP2009078949A (en) Manufacturing method and manufacturing apparatus for sio powder
JPS5941772B2 (en) Ultrafine powder synthesis furnace