JPS6140723B2 - - Google Patents

Info

Publication number
JPS6140723B2
JPS6140723B2 JP53085650A JP8565078A JPS6140723B2 JP S6140723 B2 JPS6140723 B2 JP S6140723B2 JP 53085650 A JP53085650 A JP 53085650A JP 8565078 A JP8565078 A JP 8565078A JP S6140723 B2 JPS6140723 B2 JP S6140723B2
Authority
JP
Japan
Prior art keywords
mixture
weight
powder
plasma
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53085650A
Other languages
Japanese (ja)
Other versions
JPS5419459A (en
Inventor
Borufugangu Jimu
Hansuuteo Shutaine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ECG Immobilier SA
Original Assignee
Castolin SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Castolin SA filed Critical Castolin SA
Publication of JPS5419459A publication Critical patent/JPS5419459A/en
Publication of JPS6140723B2 publication Critical patent/JPS6140723B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/058Mixtures of metal powder with non-metallic powder by reaction sintering (i.e. gasless reaction starting from a mixture of solid metal compounds)
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は支持体表面上に高温で材料を噴射する
ことにより支持体上に保護コーテイングを形成で
きる粉末状材料の製法に関する。 この支持体上に火炎溶射又はプラズマトーチ溶
射により高温度で粉末状材料を投射することによ
り支持体上に保護コーテイングを製造することは
周知であり、広く用いられている技術である。 このコーテイングの性質は非常に変るかもしれ
ない。特に、金属(すなわち、元素金属又は合
金);金属酸化物;アルミニウム、タングステ
ン、バナジウム、チタン、モリブデンのような金
属の炭化物、窒化物、ホウ化物、ケイ化物及びカ
ルボニトリドのような硬質耐火性化合物、又はこ
の種のいくつかの材料の混合物が使用される。 用いた材料の性質の組合せによつて最適の性質
を有するコーテイングが得られるように粉末状材
料として、少くとも2種の材料の混合物を用いる
ことが特に有用であり、この組合せはコーテイン
グ層形成の間にこれらの成分間の物理的混合及び
(又は)化学反応から生ずる。 例えば、合金を生ずるような少なくとも2種の
金属の混合物;サーメツトを生ずるような少くと
も1種の金属又は合金と少くとも1種のセラミツ
クス材料との混合物;非常に高い摩耗抵抗を有す
るコーテイング層を形成できる「硬質合金」を生
ずるような少くとも1種の金属又は合金と炭化
物、窒化物、ホウ化物、カルボニトリドのような
硬質耐火性化合物との混合物を使用しても良く、
また混合酸化物が生ずるような少くとも2種の酸
化物の混合物を使用しても良い。 上記種類の粉末状混合物を高温度で投射するこ
とにより保護コーテイングを製造する公知技術の
実施では、混合物は、この混合物の成分の粉末粒
子が相互に分離している混合物として、又は樹脂
又はラツカーのような適当な物質により多数の
個々の粒子を互いに結合させることにより得た粒
子凝集物として使用される。 そのような混合物は、混合物を使用するときに
これらの粉末状混合物の貯蔵容器中で、又は火炎
溶射又はプラズマトーチのフイード容器中で偏折
又は分離が生ずる不利益を有する。そのような偏
折は混合物を構成する異なる材料の粒子の密度及
び(又は)結晶粒度の差異により生ずる。これま
で用いられた技術による凝集物の形成は、そのよ
うな凝集物が、これらの凝集物の相互の摩擦のた
めばかりでなく、また混合物を支持体上に高温投
射する間に結合剤として用いた材料が燃焼する結
果それらを構成する粒子に破砕及び遊離する傾向
があるので、この問題の一部の解決が提供される
にすぎない。その結果、得られるコーテイング層
が均一でなく、また所望の最適の性質を有さな
い。 本発明の目的は殊にこれらの不利益を克服し、
同時にこの粉末状材料を高温で支持体の表面上に
投射するときに偏折しない粒子又は粒子凝集物か
らなる粉末状材料を得ることができる製法を提供
することである。 この目的のために本発明は、成分混合物を調製
し、得られた混合物を造粒し、引き続きの細粒を
熱処理する工程を含む、スプレーによる物品の表
面への被膜形成に好適な粉末状材料の製造方法で
あつて、細粒をプラズマジエツトの間を通過させ
て熱処理し、その細粒を1200〜2000℃に加熱する
ことを特徴とする方法を提供する。 熱処理の温度は粉末状の出発材料の性質の関数
として選ばれる。例えば、これらの材料が少なく
とも大部分金属酸化物あるいは炭化物、窒化物、
ホウ化物又はカルボニトリドのような硬質耐火性
材料からなる場合に熱処理は好ましくは1200〜
2000℃の温度で行なわれる。熱処理は不活性雰囲
気中、あるいは酸化反応、還元反応、又は水素化
物、炭化物又は窒化物のような化合物の形成が生
ずる反応のような出発材料を含む少くとも一化学
反応に関与する気体雰囲気中で行なつても良い。 熱処理は大気圧に相当する圧、より大きい圧、
又はより低い圧の下で行なつても良い。 この発明において出発材料の加熱は、プラズマ
ジエツト中を通過させて行なう。 本方法を行なうのに使用しても良い装置には、
例えば出発材料を粉末状態で装入する装置、この
装置は必要ならこれらの材料を混合する装置を具
備する、これらの材料を処理温度に加熱し維持す
る装置、熱処理後に粉末状材料を冷却する装置、
冷却後にこれらの材料を捕集する装置及び閉鎖装
置の雰囲気を構成するガスを導入し排気し、及び
前記閉鎖装置内の圧を調整する装置を設けた閉鎖
装置が含まれる。 出発材料として殊に次表に示す金属化合物を使
用しても良い。
The present invention relates to a method for producing a powdered material capable of forming a protective coating on a support by jetting the material onto the surface of the support at an elevated temperature. It is a well-known and widely used technique to produce protective coatings on a substrate by projecting a powdered material onto the substrate at high temperature by flame spraying or plasma torch spraying. The nature of this coating may vary greatly. In particular, metals (i.e. elemental metals or alloys); metal oxides; hard refractory compounds such as carbides, nitrides, borides, silicides and carbonitrides of metals such as aluminium, tungsten, vanadium, titanium, molybdenum; Or a mixture of several materials of this kind is used. It is particularly useful to use a mixture of at least two materials as powdered materials, so that the combination of properties of the materials used provides a coating with optimal properties; resulting from physical mixing and/or chemical reactions between these components. For example, mixtures of at least two metals to form alloys; mixtures of at least one metal or alloy and at least one ceramic material to form cermets; coating layers with very high abrasion resistance. Mixtures of at least one metal or alloy with hard refractory compounds such as carbides, nitrides, borides, carbonitrides may be used which result in "hard alloys" that can be formed;
It is also possible to use a mixture of at least two oxides, such that a mixed oxide is formed. In the implementation of the known technology for producing protective coatings by projecting powder mixtures of the above type at high temperatures, the mixture is produced either as a mixture in which the powder particles of the components of this mixture are separated from each other or as a mixture of resins or lacquers. It is used as a particle agglomerate obtained by bonding a large number of individual particles together with a suitable substance such as. Such mixtures have the disadvantage that when the mixtures are used, deflection or separation occurs in the storage containers of these powdered mixtures or in the feed containers of flame spraying or plasma torches. Such polarization is caused by differences in the density and/or grain size of the particles of the different materials that make up the mixture. The formation of agglomerates by the techniques used hitherto is due to the fact that such agglomerates are not only due to mutual friction of these agglomerates, but also because of their use as a binder during hot projection of the mixture onto a support. This provides only a partial solution to this problem, as the burning of the materials in the combustion chamber tends to fracture and liberate them into their constituent particles. As a result, the resulting coating layer is not uniform and does not have the desired optimal properties. The object of the invention is, inter alia, to overcome these disadvantages and to
At the same time, it is an object of the present invention to provide a production process which makes it possible to obtain a powdered material consisting of particles or particle agglomerates that do not deflect when this powdered material is projected onto the surface of a support at high temperatures. To this end, the present invention provides a powdered material suitable for the formation of a coating on the surface of an article by spraying, comprising the steps of preparing a mixture of ingredients, granulating the resulting mixture and subsequently heat treating the granules. Provided is a method for producing granules, characterized in that the granules are heat-treated by passing through a plasma jet and the granules are heated to 1200 to 2000°C. The temperature of the heat treatment is chosen as a function of the nature of the powdered starting material. For example, if these materials are at least predominantly metal oxides or carbides, nitrides,
When made of hard refractory materials such as borides or carbonitrides, the heat treatment is preferably from 1200 to
It is carried out at a temperature of 2000℃. The heat treatment is carried out in an inert atmosphere or in a gaseous atmosphere that participates in at least one chemical reaction involving the starting materials, such as an oxidation reaction, a reduction reaction, or a reaction resulting in the formation of compounds such as hydrides, carbides or nitrides. You can do it. Heat treatment is performed at pressures equivalent to atmospheric pressure, greater pressures,
Alternatively, it may be carried out under lower pressure. In this invention, the starting material is heated by passing it through a plasma jet. Equipment that may be used to perform this method includes:
For example, a device for charging the starting materials in powder form, which device is equipped if necessary with a device for mixing these materials, a device for heating and maintaining these materials at the processing temperature, and a device for cooling the powdered materials after heat treatment. ,
Included are devices for collecting these materials after cooling and closure devices with devices for introducing and evacuating gases constituting the atmosphere of the closure device and regulating the pressure within said closure device. As starting materials it is particularly possible to use the metal compounds shown in the table below.

【表】【table】

【表】 高温度で支持体表面上に噴射により硬質耐火性
コーテイングを形成できる粉末状材料を得るため
に殊に上表に示す化合物少くとも1種と、次の金
属:銅、ニツケル、鉄、コバルト、又はアルミニ
ウムから選んだ粉末状の金属少くとも1種との混
合物を使用しても良く、金属の目的は結合剤又は
コーテイング中のマトリツクス材料として作用さ
せることである。 化学反応の性質については、これを広範に変更
できる。反応は殊に出発材料相互及び(又は)出
発材料と気体雰囲気との反応による新化合物の形
成あるいは少くとも2種の出発材料を含有する固
溶体からなる新しい相の形成を生じても良く、反
応は完全でも一部であつても良い。 後者の場合に得られる粉末状材料はおそらくこ
れらの材料をコーテイングの形成に使用するとき
に熱処理の間に開始された反応のより完全な段階
又は全段階まで反応が経続するであろう。 例 1 200℃に加熱し、慣用の有機結合剤(フエノー
ル樹脂を基礎にした)により相互に結合させたア
ルミニウムの粒子とニツケルの粒子との凝集物か
ら形成したアルミニウム及びニツケルの粉末状混
合物を、そのものは公知の方法で製造する。混合
物の全体の重量組成はAl 20%及びNi80%であ
る。40〜80ミクロンの結晶粒度を有する凝集物の
みが保持されるように混合物をふるい分けた後、
混合物を酸化プラズマ中1400℃において熱処理す
る。同様に40〜80ミクロンの結晶粒度を有する球
状粒子から形成された粉末がそのようにして得ら
れ、それぞれの粒子が互いに部分融解により付着
しているアルミナとニツケルとのサーメツトから
なる粒子及び一部酸化されたアルミニウムの粒子
からなる凝集物形状のアルミニウム並びにニツケ
ルの粒子からなる。 この粉末は、例えばプラズマトーチを含む装置
を用いて支持体上に高温で粉末を噴射することに
より金属支持支持体の表面上に非常に摩耗抵抗性
のサーメツト保護コーテイングを形成するのに適
する。そのように得られるサーメツト層の組成は
非常に均一である。 例 2 ニツケル・クロム合金(ニツケル80重量%及び
クロム20重量%を含有する)と炭化ニオブ(炭化
ニオブの含量15重量%)の粉末状混合物を、その
ものは公知の方法で調製する。その混合物は普通
の有機結合剤(フエノール樹脂を基にした)によ
り互いに結合したこの合金の粒子と炭化ニオブの
粒子との凝集物からなり、それぞれの凝集物は混
合物全体の組成に近い平均組成を有する。 次いで前記凝集物が、囲まれた夾入ニオブカル
ボニトリドを含有するニツケル・クロム合金のマ
トリツクスからなる球状粒子に転化するようにこ
の混合物を窒素プラズマ中で処理する。 そのように得られる粉末は、この粉末を高温で
支持体上に噴射することにより金属支持体の表面
上に非常に高い摩耗抵抗を有する保護コテイング
を形成することができる。 例 3 各凝集物が、7ミクロン程度の最大結晶粒度を
有する銅の粒子及び酸化アルミニウムAl2O3の粒
子から形成され、ほぼ等割合で混合され、有機ラ
ツカーを基にした結合剤により互いに結合されて
いる30〜60ミクロンの結晶粒度を有する凝集物か
ら形成された粉末状混合物を、そのものは公知の
方法で、この結合剤の存在下に250℃で銅粉及び
酸化アルミニウム粉末の等部混合物を加熱し、そ
のように形成した凝集物生成物をふるい分けるこ
とにより製造する。 そのように得られた混合物を欠いで還元プラズ
マ中で熱処理に付し前記凝集物をアルミナの表面
層に囲まれたAl2O3−銅サーメツト核からなる球
状粒子に転化させる。 例 4 粉末状生成物を、そのものは公知の方法で、重
量で次の組成:TiO240%;Al2O340%;及び
SiO220%を有する酸化物の粉末状混合物から製
造する。粉末状生成物は平均組成が出発混合物と
同一である個々の凝集物からなり、各凝集物は慣
用有機結合剤により互いに結合された複数の酸化
物粒子からなる。 そのようにして得られる生成物を次いで酸化性
プラズマ中で熱処理し、前記凝集物を出発混合物
全体の組成と同様の均一組成を有する混合酸化物
からなる球状粒子に転化させる。 この発明において、プラズマジエツトの間を通
過させて熱処理する。上記例1〜4の各プラズマ
処理の供給ガスの組成と温度は次のとおりである
(但し、体積は標準状態に換算)。 例1(酸化性プラズマ) Ar:5000/hr O2:20〜30/hr 13000〜15000℃ 例2(窒素プラズマ) N2:5000/hr H2:100/hr 約1500℃ 例3(還元性プラズマ) 水の熱分解より生じた単原子の水素および酸素 (50000℃を超える温度) 例4(酸化性プラズマ) 例1と同じ このようにして得られる粉末は、高温で支持体
上に粉末を噴射することにより金属支持体の表面
上に保護コーテイングを形成することができ、そ
のコーテイングはこの支持体に対する非常に良好
な密着及び高い摩耗抵抗を有する。
Table: In order to obtain a powder material which can be sprayed at high temperatures to form a hard refractory coating on the surface of a support, at least one of the compounds listed in the above table may be used, in particular at least one of the following metals: copper, nickel, iron, A mixture with at least one powdered metal selected from cobalt or aluminum may be used, the purpose of which is to act as a binder or matrix material in the coating. The nature of the chemical reaction can vary widely. The reaction may in particular result in the formation of new compounds by reaction of the starting materials with each other and/or with the gaseous atmosphere or the formation of a new phase consisting of a solid solution containing at least two starting materials; It can be complete or partial. The powdered materials obtained in the latter case will probably continue to react to a more complete stage or to the full stage of the reaction initiated during the heat treatment when these materials are used to form coatings. Example 1 A powdered mixture of aluminum and nickel formed from an agglomerate of aluminum particles and nickel particles heated to 200°C and bonded to each other by a conventional organic binder (based on phenolic resin) The material itself is manufactured by a known method. The overall weight composition of the mixture is 20% Al and 80% Ni. After sieving the mixture so that only agglomerates with a grain size of 40-80 microns are retained.
The mixture is heat treated at 1400° C. in an oxidizing plasma. A powder formed from spherical particles having a grain size of 40 to 80 microns is thus obtained, each particle consisting of a cermet of alumina and nickel, partially and partially attached to each other by partial melting. It consists of aluminum and nickel particles in the form of agglomerates consisting of oxidized aluminum particles. This powder is suitable for forming highly abrasion resistant cermet protective coatings on the surface of metal support substrates by jetting the powder onto the support at elevated temperatures using equipment including, for example, a plasma torch. The composition of the cermet layer so obtained is very uniform. Example 2 A powdered mixture of a nickel-chromium alloy (containing 80% by weight of nickel and 20% by weight of chromium) and niobium carbide (niobium carbide content of 15% by weight) is prepared in a manner known per se. The mixture consists of agglomerates of particles of this alloy and particles of niobium carbide bound together by common organic binders (based on phenolic resins), each agglomerate having an average composition close to that of the whole mixture. have The mixture is then treated in a nitrogen plasma so that the agglomerates are converted into spherical particles consisting of a matrix of nickel-chromium alloy containing enclosed niobium carbonitride. The powder so obtained can form a protective coating with very high abrasion resistance on the surface of a metal support by jetting this powder onto the support at high temperatures. Example 3 Each agglomerate is formed from particles of copper and particles of aluminum oxide Al 2 O 3 with a maximum grain size of the order of 7 microns, mixed in approximately equal proportions and bonded to each other by an organic lacquer-based binder. A powder mixture formed from agglomerates with a grain size of 30 to 60 microns is prepared by mixing equal parts of copper powder and aluminum oxide powder at 250 °C in the presence of this binder, in a manner known per se. and sieving the agglomerate product so formed. The mixture so obtained is then subjected to a heat treatment in a reduced plasma to convert the agglomerates into spherical particles consisting of Al 2 O 3 -copper cermet cores surrounded by a surface layer of alumina. Example 4 A powdered product was prepared in a manner known per se with the following composition by weight: TiO 2 40%; Al 2 O 3 40%; and
Produced from a powder mixture of oxides with 20% SiO2 . The powdered product consists of individual agglomerates whose average composition is the same as the starting mixture, each agglomerate consisting of a plurality of oxide particles bound together by conventional organic binders. The product thus obtained is then heat treated in an oxidizing plasma, converting the agglomerates into spherical particles of mixed oxide having a homogeneous composition similar to that of the entire starting mixture. In this invention, heat treatment is performed by passing the material through a plasma jet. The composition and temperature of the supply gas for each plasma treatment in Examples 1 to 4 above are as follows (however, the volumes are converted to standard conditions). Example 1 (Oxidizing plasma) Ar: 5000/hr O 2 : 20-30/hr 13000-15000℃ Example 2 (Nitrogen plasma) N 2 : 5000/hr H 2 : 100/hr Approximately 1500℃ Example 3 (Reducing Plasma) Monatomic hydrogen and oxygen produced from the thermal decomposition of water (temperatures above 50,000°C) Example 4 (Oxidizing plasma) Same as Example 1 The powder thus obtained can be prepared by depositing the powder on a support at high temperatures. By spraying, a protective coating can be formed on the surface of the metal support, which coating has very good adhesion to the support and high abrasion resistance.

Claims (1)

【特許請求の範囲】 1 成分混合物を調整し、得られた混合物を造粒
し、引き続いて造粒により得られた細粒を熱処理
する工程を含む、スプレーによる物品表面への被
膜形成に好適な粉末状材料の製造方法において、
細粒をプラズマジエツトの間を通過させて熱処理
し、その細粒を1200〜2000℃に加熱することを特
徴とする粉末状材料の製法。 2 出発混合物がAl 20%Ni80%の重量比のアル
ミニウム粉末とニツケル粉末との混合物であり、
この混合物の凝集から得られた細粒が40〜80ミク
ロンの粒状度を持ち、かつその細粒を酸化プラズ
マの中で1400℃に加熱して熱処理して、部分融解
によつて互いに接着しているニツケル粒子、アル
ミニウム、アルミナのサーメツトの球状粒子に変
える、特許請求の範囲第1項記載の方法。 3 出発混合物が、ニツケル80重量%とクロム20
重量%とのニツケル−クロム合金粉末80重量%お
よび炭化ニオブ15重量%の混合物であり、この混
合物の凝集から得られた細粒を窒素含有プラズマ
中で熱処理する、特許請求の範囲第1項記載の方
法。 4 出発混合物が、最大粒径7ミクロンの酸化ア
ルミニウム粉末と銅粉末との等比率の混合物であ
り、この混合物の凝集から得られた細粒が30〜60
ミクロンの粒状度を持ちかつその細粒を還元プラ
ズマ中で熱処理して、アルミナ表面層で囲まれた
アルミナ−銅サーメツト核からなる球状粒子に変
える、特許請求の範囲第1項記載の方法。 5 出発混合物がTiO240重量%、Al2O340重量%
およびSiO220重量の混合物であり、この混合物
の凝集から得られた細粒を酸化プラズマ中で熱処
理して、出発混合物の全体組成と等しい均一な組
成を有する混合酸化物から成る球状粒子に変え
る、特許請求の範囲第1項記載の方法。
[Claims] 1. A method suitable for forming a film on the surface of an article by spraying, including the steps of adjusting a component mixture, granulating the resulting mixture, and subsequently heat-treating the fine particles obtained by the granulation. In the method for producing powdered material,
A method for producing a powdery material, which comprises heat-treating fine grains by passing them through a plasma jet and heating the fine grains to 1,200 to 2,000°C. 2. The starting mixture is a mixture of aluminum powder and nickel powder in a weight ratio of Al 20% Ni 80%,
The granules obtained from the agglomeration of this mixture have a granularity of 40 to 80 microns, and the granules are heat treated by heating to 1400°C in an oxidizing plasma to adhere to each other by partial melting. 2. The method according to claim 1, wherein nickel particles, aluminum or alumina cermet particles are converted into spherical particles. 3 The starting mixture contains 80% nickel and 20% chromium by weight.
% by weight of nickel-chromium alloy powder and 15% by weight of niobium carbide, the granules obtained from agglomeration of this mixture being heat treated in a nitrogen-containing plasma. the method of. 4 The starting mixture is a mixture of aluminum oxide powder and copper powder with a maximum particle size of 7 microns in equal proportions, and the fine particles obtained from the agglomeration of this mixture are 30 to 60 microns.
2. The method of claim 1, wherein the granules have a micron granularity and are heat treated in a reducing plasma to form spherical particles consisting of an alumina-copper cermet core surrounded by an alumina surface layer. 5 The starting mixture contains 40% by weight of TiO 2 and 40% by weight of Al 2 O 3
and SiO 2 by weight, and the granules obtained from the agglomeration of this mixture are heat treated in an oxidizing plasma to convert them into spherical particles consisting of mixed oxides with a homogeneous composition equal to the overall composition of the starting mixture. , the method according to claim 1.
JP8565078A 1977-07-13 1978-07-13 Method of making powder material for forming protective coating on substrate Granted JPS5419459A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH865877A CH622452A5 (en) 1977-07-13 1977-07-13

Publications (2)

Publication Number Publication Date
JPS5419459A JPS5419459A (en) 1979-02-14
JPS6140723B2 true JPS6140723B2 (en) 1986-09-10

Family

ID=4343180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8565078A Granted JPS5419459A (en) 1977-07-13 1978-07-13 Method of making powder material for forming protective coating on substrate

Country Status (8)

Country Link
JP (1) JPS5419459A (en)
BE (1) BE868963A (en)
CH (1) CH622452A5 (en)
DE (1) DE2830376C2 (en)
FR (1) FR2397253A1 (en)
GB (1) GB2001947B (en)
SE (1) SE7807726L (en)
SU (1) SU1436861A3 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4421799A (en) * 1982-02-16 1983-12-20 Metco, Inc. Aluminum clad refractory oxide flame spraying powder
US4731110A (en) * 1987-03-16 1988-03-15 Gte Products Corp. Hydrometallurigcal process for producing finely divided spherical precious metal based powders
US4731111A (en) * 1987-03-16 1988-03-15 Gte Products Corporation Hydrometallurical process for producing finely divided spherical refractory metal based powders
US4723993A (en) * 1987-03-23 1988-02-09 Gte Products Corporation Hydrometallurgical process for producing finely divided spherical low melting temperature metal based powders
JPS63250401A (en) * 1987-04-08 1988-10-18 Sumitomo Metal Mining Co Ltd Production of spherical metal powder
JPS63266001A (en) * 1987-04-22 1988-11-02 Sumitomo Metal Mining Co Ltd Production of composite spherical powder
DE3730753A1 (en) * 1987-09-12 1989-03-23 Spraytec Oberflaechentech POWDER FOR PRODUCING HARD MATERIALS WITH SHORT REACTION HOURS, ESPECIALLY FOR FILLING HOLLOW WIRE FOR ARC SPRAYING
FI83935C (en) * 1989-05-24 1991-09-25 Outokumpu Oy Ways to process and produce materials
US5018573A (en) * 1989-12-18 1991-05-28 Carrier Corporation Method for manufacturing a high efficiency heat transfer surface and the surface so manufactured
DE10036264B4 (en) * 2000-07-26 2004-09-16 Daimlerchrysler Ag Process for producing a surface layer
ES2398681T3 (en) * 2005-11-23 2013-03-21 Mec Holding Gmbh Procedure for the manufacture of highly wear-resistant surfaces for the manufacture of a protective plate against wear by means of voltaic arc recharge welding
JP5875072B2 (en) * 2012-07-02 2016-03-02 関西電力株式会社 Thermal spray material sintered body and method for producing thermal spray material
FR3049819B1 (en) * 2016-04-07 2018-04-06 Universite De Limoges HORSE IRON COMPRISING AN ABRASION AND SHOCK-RESISTANT COATING
JP7336843B2 (en) * 2018-11-12 2023-09-01 株式会社フジミインコーポレーテッド Powder material for powder additive manufacturing and powder additive manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3254970A (en) * 1960-11-22 1966-06-07 Metco Inc Flame spray clad powder composed of a refractory material and nickel or cobalt
US3617358A (en) * 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
US3974245A (en) * 1973-12-17 1976-08-10 Gte Sylvania Incorporated Process for producing free flowing powder and product

Also Published As

Publication number Publication date
JPS5419459A (en) 1979-02-14
GB2001947A (en) 1979-02-14
FR2397253B1 (en) 1983-06-03
GB2001947B (en) 1982-03-17
SU1436861A3 (en) 1988-11-07
SE7807726L (en) 1979-01-14
CH622452A5 (en) 1981-04-15
DE2830376C2 (en) 1983-03-03
FR2397253A1 (en) 1979-02-09
BE868963A (en) 1978-11-03
DE2830376A1 (en) 1979-01-25

Similar Documents

Publication Publication Date Title
US5049450A (en) Aluminum and boron nitride thermal spray powder
US4673550A (en) TiB2 -based materials and process of producing the same
JPS6140723B2 (en)
US4687511A (en) Metal matrix composite powders and process for producing same
JP2009527640A (en) High density molybdenum metal powder and method for producing the same
JPS6119583B2 (en)
JPS60502246A (en) Composite improved silicon-aluminum-oxynitride cutting tool with coating
US4508788A (en) Plasma spray powder
JPH04231450A (en) Improved method for processing spray coating nickel alloy and molybdenum powder
JPH0387301A (en) Material processing and manufacture
JPS6245305B2 (en)
US2943951A (en) Flame spraying method and composition
JPH0327601B2 (en)
JPH05507768A (en) Method of forming surface film
JP2001503105A (en) Coated powder and method for producing the same
US4933241A (en) Processes for forming exoergic structures with the use of a plasma and for producing dense refractory bodies of arbitrary shape therefrom
JPS6033187B2 (en) Surface hardening treatment method
JPS6089557A (en) Powdered material for thermal spray and its manufacture
Dallaire et al. The influence of composition and process parameters on the microstructure of TiC-Fe multiphase and multilayer coatings
Merzhanov et al. Self-propagating high-temperature synthesis of carbides, nitrides, and borides
JPH0317899B2 (en)
CN111748760A (en) HfO2/HfB2Composite high-infrared-emissivity ceramic coating and preparation method thereof
JPS63185803A (en) Spherical compound metal oxide particle and production thereof
US3395030A (en) Carbide flame spray material
JPS58213618A (en) Production of powder of composite carbonitride solid solution