JP7255386B2 - Method for producing transition metal composite hydroxide - Google Patents

Method for producing transition metal composite hydroxide Download PDF

Info

Publication number
JP7255386B2
JP7255386B2 JP2019113188A JP2019113188A JP7255386B2 JP 7255386 B2 JP7255386 B2 JP 7255386B2 JP 2019113188 A JP2019113188 A JP 2019113188A JP 2019113188 A JP2019113188 A JP 2019113188A JP 7255386 B2 JP7255386 B2 JP 7255386B2
Authority
JP
Japan
Prior art keywords
transition metal
composite hydroxide
solution
nucleation
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019113188A
Other languages
Japanese (ja)
Other versions
JP2020205205A (en
Inventor
篤 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019113188A priority Critical patent/JP7255386B2/en
Publication of JP2020205205A publication Critical patent/JP2020205205A/en
Application granted granted Critical
Publication of JP7255386B2 publication Critical patent/JP7255386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用正極活物質の前駆体として用いられる、遷移金属複合水酸化物の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a transition metal composite hydroxide, which is used as a precursor of a positive electrode active material for lithium ion secondary batteries.

近年、スマートフォンやタブレットPCなどの小型情報端末の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。
このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、負極および正極と電解液等で構成され、負極および正極の活物質として、リチウムを脱離および挿入することの可能な材料が用いられている。
In recent years, with the spread of small information terminals such as smart phones and tablet PCs, there is a strong demand for the development of small, lightweight secondary batteries with high energy density. In addition, there is a strong demand for development of a high-output secondary battery as a battery for electric vehicles including hybrid vehicles.
As such a secondary battery, there is a lithium ion secondary battery. A lithium-ion secondary battery is composed of a negative electrode, a positive electrode, an electrolytic solution, and the like, and a material capable of desorbing and intercalating lithium is used as an active material for the negative electrode and the positive electrode.

このリチウムイオン二次電池については、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。 This lithium ion secondary battery is currently being actively researched and developed. Among them, a lithium ion secondary battery using a layered or spinel type lithium metal composite oxide as a positive electrode material Since a high-class voltage can be obtained, it is being put to practical use as a battery with high energy density.

これまで主に提案されている材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などを挙げることができる。
このうちリチウムニッケルコバルトマンガン複合酸化物は、サイクル特性が良く、低抵抗で高出力が取り出せる材料として注目されている。
Materials that have been mainly proposed so far include lithium-cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium-nickel composite oxide (LiNiO 2 ), which uses nickel, which is cheaper than cobalt, and lithium-nickel oxide. Cobalt-manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium-manganese composite oxide (LiMn 2 O 4 ) using manganese, and the like can be mentioned.
Of these, lithium-nickel-cobalt-manganese composite oxides are attracting attention as materials that have good cycle characteristics, low resistance, and high output.

ところで、上記に挙げた良い性能を得るためには、均一な粒径を有する複合酸化物が適している。これは、粒度分布が広い複合酸化物を使用すると、電極内で個々の粒子に掛かる電圧が不均一となることで、サイクル劣化が生じやすくなるなどの不具合が生じるためである。したがって、粒度分布の均一な複合酸化物を製造することが必要であり、そのためには粒度分布の均一な複合水酸化物を用い、製造条件を最適化することが重要である。
また、出力には粒子の比表面積も大きく影響することから、所望する比表面積にするためには粒子径を制御することが重要である。
By the way, in order to obtain the good performance mentioned above, a composite oxide having a uniform particle size is suitable. This is because when a composite oxide with a wide particle size distribution is used, the voltage applied to individual particles in the electrode becomes non-uniform, causing problems such as susceptibility to cycle deterioration. Therefore, it is necessary to produce a composite oxide with a uniform particle size distribution, and for this purpose, it is important to use a composite hydroxide with a uniform particle size distribution and optimize the production conditions.
In addition, since the specific surface area of the particles also greatly affects the output, it is important to control the particle size in order to obtain the desired specific surface area.

たとえば特許文献1では、複合水酸化物粒子の製造段階において、主として核生成反応が生じる工程(核生成工程)と、主として粒子成長反応が生じる工程(粒子成長工程)とを明確に分離する方法が記載されている。このような方法によれば、微粒子や粗大粒子の発生を防止することができるため、適度な粒径を有し、かつ、粒度分布が狭いニッケルコバルトマンガン複合水酸化物粒子を得ることができることが開示されている。 For example, Patent Document 1 discloses a method of clearly separating a step in which a nucleation reaction mainly occurs (nucleation step) and a step in which a particle growth reaction mainly occurs (particle growth step) in the production stage of composite hydroxide particles. Are listed. According to such a method, since generation of fine particles and coarse particles can be prevented, nickel-cobalt-manganese composite hydroxide particles having an appropriate particle size and a narrow particle size distribution can be obtained. disclosed.

しかしながら、特許文献1で示されるように、その工程を分離する際には、供給管内に逆流したアルカリ塩溶液とニッケルコバルトマンガン混合水溶液が反応して供給管内で水酸化物が析出し、供給管の先を詰まらせ、操業を停止する事態が発生するという問題や、pHを下げるために添加する硫酸の濃度が高い場合、短時間で下げることができるが、硫酸が入りすぎて所定のpHより低くなり、一部核が再溶解する問題や、中和熱により反応温度が高くなり、狙いpHが高振れするなど、物性制御が困難となる問題があり、一方、薄い硫酸を使用すると中和熱は抑えられるもののpHを下げる時間がかかる上、液量が多くなり、アンモニア濃度の低下やさらには希釈設備も必要となるため高コストとなる問題があった。 However, as shown in Patent Document 1, when the process is separated, the alkali salt solution and the nickel-cobalt-manganese mixed aqueous solution that flow back into the supply pipe react with each other to precipitate hydroxide in the supply pipe. If the concentration of sulfuric acid added to lower the pH is high, it can be lowered in a short time, but if too much sulfuric acid enters, the pH will be lower than the predetermined pH. There are problems such as the problem that some nuclei re-dissolve, and the heat of neutralization raises the reaction temperature, causing the target pH to fluctuate wildly, making it difficult to control physical properties. Although the heat can be suppressed, it takes time to lower the pH, the amount of liquid increases, the ammonia concentration decreases, and dilution equipment is also required, resulting in a problem of high cost.

さらには、核生成工程で所定のpHを維持するためにNaOHを添加すると中和反応に必要なNaOH量より余剰に入るため、硫酸の代わりに原液で粒子成長工程までpHを下げると余剰分で核生成が起こり、所望する核生成量より多くなってしまい、粒径制御が困難となってしまう問題も生じている。 Furthermore, if NaOH is added in order to maintain a predetermined pH in the nucleation step, the excess amount of NaOH is added to the amount of NaOH required for the neutralization reaction. There is also a problem that nucleation occurs and the amount of nucleation becomes larger than desired, making it difficult to control the particle size.

特開2011-116580号公報JP 2011-116580 A

本発明は掛かる問題点に鑑み、粒度分布が均一であり、所望する粒径のニッケルコバルトマンガン複合水酸化物を得る工業的に安定的な操業を可能である製造方法を提供するものである。 In view of the above problems, the present invention provides a production method capable of industrially stable operation for obtaining nickel-cobalt-manganese composite hydroxide having a uniform particle size distribution and a desired particle size.

本発明に係る遷移金属複合水酸化物の製造方法の態様は、粒度分布が狭く単分散性であることを特徴とし、平均粒径が3~7μm、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下であるニッケルコバルトマンガン複合水酸化物粒子を得るために、核生成工程で晶析反応槽に添加するニッケル、コバルト、マンガン混合水溶液(以下原液と称する)の液量から計算した中和に必要なNaOHをあらかじめ添加し、原液とアンモニア水を粒子成長工程の所定のpHになるまで成り行きで添加した後にNaOHの添加を再開し、核生成工程と粒子成長工程とを合計した所定の液量まで反応させて核生成工程と粒子成長工程を連続的に行うことで、原液でpH調整する際の余剰な核生成を防止し、原液供給停止によるノズル詰まりや硫酸添加による核の再溶解、中和熱による温度上昇を無くし、簡便で安定的な操業を可能とすることを特徴とするものである。 The embodiment of the method for producing a transition metal composite hydroxide according to the present invention is characterized by a narrow particle size distribution and monodispersity, and an average particle size of 3 to 7 μm, which is an index showing the spread of the particle size distribution [( In order to obtain nickel-cobalt-manganese composite hydroxide particles having a D90-D10)/D50] of 0.55 or less, a nickel-cobalt-manganese mixed aqueous solution (hereinafter referred to as a stock solution) is added to the crystallization reaction tank in the nucleation step. ) is added in advance as necessary for neutralization calculated from the liquid volume of ), and the undiluted solution and ammonia water are added in a random manner until the pH reaches a predetermined value in the particle growth process, and then the addition of NaOH is restarted to perform the nucleation process and the particles. By continuously performing the nucleation step and the particle growth step by reacting up to a predetermined amount of liquid totaling the growth step, excessive nucleation during pH adjustment with the undiluted solution is prevented, and nozzle clogging due to stoppage of undiluted solution supply is prevented. It is characterized by eliminating re-melting of nuclei due to addition of sulfuric acid and temperature rise due to heat of neutralization, and enabling simple and stable operation.

本発明の第1の発明は、リチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法であって、pH調整剤の添加により液温25℃基準におけるpHを12.0以上、14.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物溶液を、反応槽内に連続的に供給、混合して反応液を形成することで、前記反応液中に微細な遷移金属複合水酸化物粒子を核として液中に生成させた核生成後液を形成する核生成工程と、前記核生成後液を、液温25℃基準におけるpHを10.5以上、12.0以下の範囲における一定値に維持しつつ、前記遷移金属の化合物溶液と、遷移金属と錯イオンを形成する化合物溶液を、前記核生成後液に連続的に供給して前記核の周囲に前記遷移金属の複合水酸化物を析出せしめて形成した粒子を成長させる粒子成長工程を、少なくとも含む中和晶析であり、前記核生成工程において供給する前記遷移金属の化合物溶液中に含まれる個々の遷移金属イオンの物質量をX(M)、X(M)、X(M)、・・・、X(M)(k=1、2、・・・N)とし、前記遷移金属イオンが遷移金属水酸化物となった時の価数をZ(M)、Z(M)、Z(M)、・・・Z(M)とした時、X(M)×Z(M)+X(M)×Z(M)+X(M)×Z(M)+・・・X(M)×Z(M)(K=1、2、・・・N)に相当する物質量のアルカリ金属水酸化物を、前記遷移金属の化合物溶液と前記遷移金属と錯イオンを形成する化合物溶液を連続的に供給、混合して反応液を形成する際に、前記pH調整剤として予め反応槽内に投入しておき、前記遷移金属の化合物溶液と遷移金属と錯イオンを形成する化合物溶液の連続的な供給、混合により核生成後液のpHが低下してゆき、前記核生成後液のpHが前記粒子成長工程において維持すべき前記一定値に達した時点から、pH調整剤のアルカリ金属水溶液の供給を開始し、以後核成長工程の終了まで前記pHを10.5以上、12.0以下の範囲における一定値に維持することを特徴とするリチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法である。 A first invention of the present invention is a method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for lithium ion secondary batteries, wherein the addition of a pH adjuster increases the pH at a liquid temperature of 25 ° C. is maintained at a constant value of 12.0 or more and 14.0 or less, a transition metal compound solution and a compound solution that forms a complex ion with the transition metal are continuously supplied into the reaction vessel and mixed. A nucleation step of forming a post-nucleation liquid in which fine transition metal composite hydroxide particles are generated as nuclei in the reaction liquid by forming a reaction liquid, and the post-nucleation liquid is formed by: The transition metal compound solution and the compound solution forming a complex ion with the transition metal are combined with the above nucleation while maintaining the pH at a liquid temperature of 25° C. at a constant value in the range of 10.5 or more and 12.0 or less. The neutralization crystallization step includes at least a grain growth step of continuously supplying the latter solution to deposit the composite hydroxide of the transition metal around the nuclei to grow the grains formed, and the nucleation step. X(M 1 ), X(M 2 ), X(M 3 ), . . . , X(M K ) ( k = 1 , 2, . .. When Z (M K ), X (M 1 ) x Z (M 1 ) + X (M 2 ) x Z (M 2 ) + X (M 3 ) x Z (M 3 ) + ... X ( M K )×Z(M K ) (K=1, 2, . . . N) of an alkali metal hydroxide to form a complex ion with the transition metal compound solution and the transition metal. When the compound solution is continuously supplied and mixed to form a reaction solution, a compound that forms a complex ion with the transition metal compound solution and the transition metal is previously introduced into the reaction tank as the pH adjuster. The pH of the post-nucleation solution is lowered by the continuous supply and mixing of the solution, and from the time when the pH of the post-nucleation solution reaches the constant value to be maintained in the grain growth step, the pH adjuster is added. A positive electrode active material for a lithium ion secondary battery, characterized in that the supply of an aqueous alkali metal solution is started and thereafter the pH is maintained at a constant value in the range of 10.5 or more and 12.0 or less until the end of the nuclear growth step. It is a method for producing a transition metal composite hydroxide used as a precursor of.

本発明の第2の発明は、第1の発明における遷移金属の化合物が、遷移金属硫酸塩、遷移金属塩化物、遷移金属硝酸塩のいずれか、または少なくとも2種以上の混合物であることを特徴とする遷移金属複合水酸化物の製造方法である。 A second invention of the present invention is characterized in that the transition metal compound in the first invention is any one of transition metal sulfate, transition metal chloride, and transition metal nitrate, or a mixture of at least two or more. It is a method for producing a transition metal composite hydroxide.

本発明の第3の発明は、第1及び第2の発明における遷移金属と錯イオンを形成する化合物溶液が、アンモニア水であることを特徴とする遷移金属複合水酸化物の製造方法である。 A third invention of the present invention is a method for producing a transition metal composite hydroxide, wherein the compound solution forming a complex ion with the transition metal in the first and second inventions is aqueous ammonia.

本発明の第4の発明は、第1から第3の発明における遷移金属複合水酸化物が、3~7μmの平均粒径を有し、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下であることを特徴とする遷移金属複合水酸化物の製造方法である。 In a fourth invention of the present invention, the transition metal composite hydroxide in the first to third inventions has an average particle size of 3 to 7 μm, and is an index showing the spread of the particle size distribution [(D90-D10 )/D50] is 0.55 or less.

本発明の第5の発明は、第1から第4の発明における遷移金属複合水酸化物が、Ni、Co、Mn、添加元素Mの原子量比Ni:Co:Mn:Mが1-x-y-z:x:y:z(0.1≦x≦0.4、0.1≦y≦0.5、0≦z≦0.1、0.3≦1-x-y-z≦0.7、MはAl、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上)で表される一般式NixCoyMnz(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)のニッケルコバルトマンガン複合水酸化物であることを特徴とする遷移金属複合水酸化物の製造方法である。 A fifth aspect of the present invention is the transition metal composite hydroxide according to the first to fourth aspects, wherein the atomic weight ratio Ni:Co:Mn:M of Ni, Co, Mn, and the additional element M is 1-xy. -z: x: y: z (0.1 ≤ x ≤ 0.4, 0.1 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.1, 0.3 ≤ 1-xyz ≤ 0 .7, and M is one or more selected from Al, Mg, Ca, Ti, V, Cr, Zr, Nb , Mo, Hf, Ta , W ). ) nickel cobalt with 2+α (0.3≤x≤0.7, 0.1≤y≤0.4, 0.1≤z≤0.5, x+y+z=1, 0≤α≤0.5) A method for producing a transition metal composite hydroxide, characterized in that it is a manganese composite hydroxide.

本発明により、粒度分布が狭く単分散性である、所望する粒径を有するニッケルコバルトマンガン複合水酸化物を工業的に安定的な操業により得ることができる。
また、本発明に係るニッケルコバルトマンガン複合水酸化物由来の非水系二次電池用正極活物質を用いた二次電池は、高容量で高出力の優れた電気特性を有することから、最近の携帯電話やノート型パソコンなどの携帯電子機器、パワーツールおよびハイブリッド車もしくは電気自動車などの電源装置に搭載されている小型二次電池に対する高出力かつ良サイクル特性などといった要求を満足することが可能となり、工業上極めて有用な効果を奏するものである。
According to the present invention, a nickel-cobalt-manganese composite hydroxide having a narrow and monodisperse particle size distribution and a desired particle size can be obtained by industrially stable operation.
In addition, the secondary battery using the positive electrode active material for a non-aqueous secondary battery derived from the nickel-cobalt-manganese composite hydroxide according to the present invention has excellent electrical characteristics such as high capacity and high output. It is possible to satisfy the demands for high output and good cycle characteristics for small secondary batteries installed in power supply devices such as portable electronic devices such as telephones and notebook computers, power tools, and hybrid and electric vehicles. It has an industrially extremely useful effect.

本発明者は、粒度分布の狭い複合水酸化物粒子を安定的に得られる方法について詳細に検討し、その結果、所望するニッケルコバルトマンガン複合水酸化物粒子を得るために、核生成工程で晶析反応槽に添加する原液の液量から計算した中和に必要な量のNaOHを予め反応槽に添加しておいて、原液とアンモニア水の添加を行い、核生成工程を実施した後、原液とアンモニア水を粒子成長工程の所定のpHになるまで成り行きで添加した後に、pH調整剤のNaOHの添加を再開し、核生成工程と粒子成長工程とを合計した所定の液量まで反応させて核生成工程と粒子成長工程を連続的に行うことで晶析工程を簡便にでき、原液でpH調整する際の余剰NaOHによる核生成、硫酸による核の再溶解や中和熱による狙いpHのずれを無くし、原液の供給停止によるノズル詰まりを防止し、安定的な操業を可能とすることを見出し、本発明の完成に至った。
以下、本発明について詳細に説明する。
The present inventors have studied in detail a method for stably obtaining composite hydroxide particles with a narrow particle size distribution. The amount of NaOH required for neutralization calculated from the amount of the stock solution to be added to the precipitation reaction tank is added in advance to the reaction tank, the stock solution and ammonia water are added, and the nucleation step is performed. and ammonia water are added until the predetermined pH of the particle growth process is reached, then the addition of the pH adjuster NaOH is restarted, and the total amount of the nucleation process and the particle growth process is reacted up to a predetermined liquid amount. By continuously performing the nucleation step and the grain growth step, the crystallization step can be simplified, nucleation due to excess NaOH when adjusting the pH with the stock solution, re-dissolution of the nucleus with sulfuric acid, and deviation of the target pH due to the heat of neutralization. The present inventors have found that it is possible to prevent nozzle clogging due to stoppage of the supply of the stock solution and to enable stable operation, and have completed the present invention.
The present invention will be described in detail below.

本発明の遷移金属複合水酸化物は、一般式NixCoyMnz(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)で表されるニッケルコバルトマンガン複合水酸化物であって、平均粒径が3~7μmであり、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下であり粒度分布が狭く単分散性であることを特徴とする。
本発明は、以上のような知見に基づき完成されたものである。
以下、本発明に係る遷移金属複合水酸化物の製造方法についてさらに詳細に説明する。
The transition metal composite hydroxide of the present invention has the general formula Ni x Co y Mn z (OH) 2+α (0.3≦x≦0.7, 0.1≦y≦0.4, 0.1≦ A nickel-cobalt-manganese composite hydroxide represented by z ≤ 0.5, x + y + z = 1, 0 ≤ α ≤ 0.5), has an average particle size of 3 to 7 μm, and is an index showing the spread of the particle size distribution. [(D90-D10)/D50] is 0.55 or less, and the particle size distribution is narrow and monodisperse.
The present invention has been completed based on the above findings.
Hereinafter, the method for producing a transition metal composite hydroxide according to the present invention will be described in more detail.

(第1工程:核生成工程)
まず、易水溶性の遷移金属塩としてニッケル塩、コバルト塩、マンガン塩(いずれも硫酸塩が望ましい)を所定の割合で水に溶解してニッケル、コバルト、マンガン混合水溶液の原液を作製する。
その原液を晶析反応槽に、所定の液量の純水と、核生成で使用する原液量から計算により求めた中和に必要な量のpH調整剤の水酸化ナトリウム水溶液を装入後、アンモニア水などのアンモニウムイオン供給体を含む水溶液を、所定の濃度になるよう添加し、撹拌、混合させた所定pHを示す反応液を作製する。
(First step: nucleation step)
First, a nickel salt, a cobalt salt and a manganese salt (preferably sulfate salts) as water-soluble transition metal salts are dissolved in water at a predetermined ratio to prepare a stock solution of nickel, cobalt and manganese mixed aqueous solution.
After the stock solution is charged into a crystallization reaction tank, a predetermined amount of pure water and an aqueous sodium hydroxide solution containing a pH adjuster in an amount necessary for neutralization calculated from the amount of the stock solution used for nucleation, An aqueous solution containing an ammonium ion donor such as ammonia water is added to a predetermined concentration, stirred and mixed to prepare a reaction liquid exhibiting a predetermined pH.

ところで、中和に必要なpH調整剤の量は、以下のように計算して求める。
先ず、核生成工程において供給する遷移金属の化合物溶液中に含まれる個々の遷移金属イオンの物質量を、それぞれX(M)、X(M)、X(M)、・・・、X(M)(k=1、2、・・・N)とする。
次に、その遷移金属イオンが遷移金属水酸化物となった時の価数を、それぞれZ(M)、Z(M)、Z(M)、・・・Z(M)とする。
求めるpH調整剤の量Fは、下記(1)式で求められる。即ち、このFに相当する物質量がアルカリ金属水酸化物の必要量となる。
By the way, the amount of the pH adjuster required for neutralization is calculated as follows.
First, the material amounts of individual transition metal ions contained in the transition metal compound solution supplied in the nucleation step are respectively X(M 1 ), X(M 2 ), X(M 3 ), . . . Let X(M K ) (k=1, 2, . . . N).
Next, the valences when the transition metal ion becomes a transition metal hydroxide are Z(M 1 ), Z(M 2 ), Z(M 3 ), . . . Z(M K ), respectively. do.
The desired amount F of the pH adjuster is determined by the following formula (1). That is, the amount of substance corresponding to this F is the necessary amount of alkali metal hydroxide.

Figure 0007255386000001
Figure 0007255386000001

次いで、反応液中で遷移金属複合水酸化物の核を生成させて核生成後液を形成する。その際に、pH調整剤の水酸化ナトリウム水溶液の供給はせずに、晶析反応槽内へ原液とアンモニア水のみを、次工程の粒子成長工程における設定pH値になるまで定量的に連続供給し、そのpHになった時点から水酸化ナトリウム水溶液を供給し、所定のpHに維持し、粒子成長工程に移行する。 Next, nuclei of the transition metal composite hydroxide are generated in the reaction solution to form a post-nucleation solution. At that time, without supplying the aqueous solution of sodium hydroxide as a pH adjuster, only the undiluted solution and aqueous ammonia are quantitatively and continuously supplied into the crystallization reaction tank until the set pH value is reached in the next step of particle growth. Then, when the pH reaches that pH, an aqueous sodium hydroxide solution is supplied to maintain the predetermined pH, and the particle growth step is started.

ここで反応槽内のpHは、反応初期の状態では液温25℃を基準として測定するpH値として12.0以上になり、中和反応で原液が消費されるまでは核生成が起こり、その後pHが低下し始め、粒子成長工程のpH値に到達し、粒子成長工程が開始される。即ち核生成工程から粒子成長工程へと連続的に移行する。 Here, the pH in the reaction tank is 12.0 or more as a pH value measured based on the liquid temperature of 25° C. in the initial state of the reaction, and nucleation occurs until the stock solution is consumed in the neutralization reaction, and then The pH begins to fall, reaches the pH value of the grain growth process, and begins the grain growth process. That is, there is a continuous transition from the nucleation process to the grain growth process.

また、反応槽内の液中アンモニア濃度は3~25g/Lの範囲内の一定値に保持する。
一定以上のアンモニア濃度が無ければ金属イオンの溶解度を一定に保持することができないため、ゲル状の核が生成されてしまう。ただし、25g/L以上の濃度では溶解度が上がりすぎ、溶液中に残存する金属イオン量が増えて、組成ずれが起こる。
Further, the concentration of ammonia in the liquid in the reaction tank is maintained at a constant value within the range of 3 to 25 g/L.
Since the solubility of metal ions cannot be kept constant unless the concentration of ammonia is above a certain level, gel-like nuclei are generated. However, at a concentration of 25 g/L or more, the solubility increases too much, the amount of metal ions remaining in the solution increases, and composition deviation occurs.

反応槽内の温度は35℃以上、60℃以下に設定することが望ましい。
35℃未満では温度が低くて供給する金属イオンの溶解度が充分に得られず、また60℃を越えるとアンモニアの揮発が促進されることにより錯形成するためのアンモニアが不足し、金属イオンの溶解度が減少する。
It is desirable to set the temperature in the reaction vessel to 35° C. or higher and 60° C. or lower.
If the temperature is less than 35°C, the solubility of the supplied metal ions is not sufficiently obtained, and if the temperature exceeds 60°C, volatilization of ammonia is accelerated, resulting in insufficient ammonia for complex formation, resulting in insufficient solubility of the metal ions. decreases.

反応槽内空間の酸素濃度はエアを吹き込む等により18%以上の大気雰囲気に制御し、反応槽内溶液中の溶存酸素濃度を4mg/L以上で晶析反応を行うことが望ましい。
この第1工程のpH値と制御時間については、目的とする複合水酸化物の平均粒径によって任意に設定することができる。
It is desirable to control the oxygen concentration in the space inside the reaction vessel to 18% or more in the atmospheric atmosphere by blowing air or the like, and to carry out the crystallization reaction with the dissolved oxygen concentration in the solution inside the reaction vessel being 4 mg/L or more.
The pH value and control time in the first step can be arbitrarily set according to the target average particle size of the composite hydroxide.

(第2工程)
この工程では、第1工程のあとの粒子成長段階として反応槽内を、液温25℃を基準として測定するpH値として10.5~12.0に制御することを主な特徴とする。核生成時にこのpH値へ設定することで、第1工程で核生成に必要なNaOHが消費されるとpHが低下してくるため、継続して原液とアンモニア水を供給することで新たな核生成を抑制しつつ粒子成長工程に移行することができる。
(Second step)
This step is mainly characterized by controlling the pH value of the inside of the reaction tank to be 10.5 to 12.0 as measured based on the liquid temperature of 25° C. as the particle growth step after the first step. By setting this pH value at the time of nucleation, the pH decreases when NaOH necessary for nucleation is consumed in the first step, so by continuously supplying the stock solution and ammonia water, new nuclei It is possible to shift to the grain growth step while suppressing the generation.

pH値が12.0より高い場合では、核発生が起こり均一な粒子とならない。
またpH値が10.5未満では、金属硫酸塩を原料として使用した場合に粒子中に残るS(イオウ)分が多くなるため望ましくない。
このpH値を変更する際には、通常、硫酸で行うところを原液の供給を継続することで行い、第1から第2工程へは、連続的に移行するものである。
If the pH value is higher than 12.0, nucleation occurs and uniform particles are not obtained.
If the pH value is less than 10.5, the amount of S (sulfur) remaining in the particles increases when a metal sulfate is used as a raw material, which is not desirable.
When changing the pH value, instead of using sulfuric acid, it is performed by continuing the supply of the undiluted solution, and the first to second steps are continuously performed.

なお、所望する水酸化物粒子の特性にあわせて第2工程初期の0~30分程度の間を任意に大気雰囲気で成長させた後、窒素雰囲気に切り替えて成長反応を継続させる。この雰囲気切り替えの際には原液の送液を停止する必要があるため、純水を通液して配管及び先端ノズルを水洗し、ノズル詰まりを防止する。 In addition, according to the desired properties of the hydroxide particles, after growing in an air atmosphere for about 0 to 30 minutes at the beginning of the second step, the atmosphere is switched to a nitrogen atmosphere to continue the growth reaction. Since it is necessary to stop the feeding of the undiluted solution when the atmosphere is switched, pure water is passed through to wash the pipe and tip nozzle, thereby preventing clogging of the nozzle.

最終的に所定量の原液を通液して成長反応が終了した際には、純水を通液して配管及び先端ノズルを水洗し、ノズル詰まりを防止する。 Finally, when a predetermined amount of stock solution is passed through and the growth reaction is completed, pure water is passed through to wash the pipe and tip nozzle, thereby preventing clogging of the nozzle.

以下、実施例を用いて本発明を詳述する。 The present invention will be described in detail below using examples.

(晶析工程)
・第1工程
まず、反応槽(600リットル)内に水を140リットルまで入れ、タービンタイプの撹拌羽根を使用して回転数を260rpmで撹拌しながら、温度調節制御を昇温側にして槽内温度を40℃に設定し、制御した。加えてエアを20~40L/分にて吹き込み、大気雰囲気を保った状態で25%アンモニア水を所定量加えて、液のpHを、液温25℃を基準として測定するpH値として12.6に調整し、液中アンモニア濃度を10g/Lに調節した。
(Crystallization step)
・First step First, put water up to 140 liters in a reaction tank (600 liters), stir the rotation speed at 260 rpm using a turbine type stirring blade, and set the temperature control to the temperature rising side in the tank. The temperature was set and controlled at 40°C. In addition, air is blown at 20 to 40 L/min, and a predetermined amount of 25% ammonia water is added while maintaining the atmospheric atmosphere, and the pH of the liquid is measured at a liquid temperature of 25 ° C. as a reference, and the pH value is 12.6. and the ammonia concentration in the liquid was adjusted to 10 g/L.

ここに、硫酸ニッケル、硫酸コバルト、硫酸マンガン、(金属元素モル比でNi:Co:Mn=38:32:30)を水に溶かして得た2mol/Lの水溶液(以下原液と称する)2リットルを核生成用とし、その中和に必要な25%水酸化ナトリウム水溶液を計算して得た必要量、1.28リットルと共に添加、混合して核生成工程を実施して核生成後液を得た。 2 liters of a 2 mol/L aqueous solution (hereinafter referred to as a stock solution) obtained by dissolving nickel sulfate, cobalt sulfate, and manganese sulfate (Ni:Co:Mn=38:32:30 in terms of metal element molar ratio) in water. is used for nucleation, and the required amount obtained by calculating the 25% sodium hydroxide aqueous solution necessary for its neutralization is added and mixed together with 1.28 liters to perform the nucleation step to obtain a post-nucleation solution. rice field.

・第2工程
上記第1工程で得た核生成後液に原液と25%アンモニア水を一定の添加速度で加えていき、pHが液温25℃を基準として測定するpH値として11.6(粒子成長pH)になるよう制御pHを設定し、pH11.6になった時点でNaOHを供給し、pH値を11.6に制御したまま、22リットルの原液を通液して晶析を実施した。
・Second step The undiluted solution and 25% aqueous ammonia are added to the post-nucleation solution obtained in the first step at a constant addition rate, and the pH value is 11.6 ( The control pH is set so that it becomes the particle growth pH), NaOH is supplied when the pH reaches 11.6, and crystallization is performed by passing 22 liters of the stock solution while maintaining the pH value at 11.6. bottom.

その後、配管内に残留する原液を洗浄するため、純水を約5リットル通水してからNaOHとアンモニアの供給を停止した。途中の槽内温度の変化は無く、40℃に保たれていた。
ついで、窒素ガスを流通させて反応槽内空間の酸素濃度を1%以下、反応槽内溶液中の溶存酸素濃度を0.5mg/L以下にしたのち、原液、アンモニア、NaOHの供給を再開し、pH値を11.6に制御して約4時間、原液量で270リットルを通液した後に配管内に残留した原液を洗浄するため、純水を約5リットル通水してから、アンモニアの供給を停止し、さらにpH値を1.2上昇させて12.8とし、スラリー液中に含まれるNiをほぼ全量析出させた。得られた生成物を水洗、濾過、乾燥させた。
Thereafter, in order to wash the stock solution remaining in the pipe, about 5 liters of pure water was passed through the pipe, and then the supply of NaOH and ammonia was stopped. The temperature in the tank did not change during the process and was kept at 40°C.
Next, nitrogen gas was circulated to set the oxygen concentration in the space inside the reaction tank to 1% or less, and the dissolved oxygen concentration in the solution in the reaction tank to 0.5 mg/L or less, and then the stock solution, ammonia, and NaOH were supplied again. After controlling the pH value to 11.6 and passing 270 liters of the stock solution for about 4 hours, about 5 liters of pure water was passed through to clean the stock solution remaining in the pipe, and then the ammonia was removed. The supply was stopped, and the pH value was further increased by 1.2 to 12.8 to precipitate almost all of the Ni contained in the slurry liquid. The product obtained was washed with water, filtered and dried.

以上に述べた方法により、Ni0.38Co0.32Mn0.30(OH)2+α(0≦α≦0.5)で表される複合水酸化物を得た。
得られた複合水酸化物の平均粒径は5.2μm、タップ密度は1.22g/ccであった。
By the method described above, a composite hydroxide represented by Ni 0.38 Co 0.32 Mn 0.30 (OH) 2 +α (0≦α≦0.5) was obtained.
The resulting composite hydroxide had an average particle size of 5.2 μm and a tap density of 1.22 g/cc.

(比較例1)
実施例1と同様にして第1工程の核生成工程を実施後、原液配管内液の押し出しのため純水を約1リットル通液した。その後、第2工程の粒子成長工程で制御するpH11.6にするため、64%硫酸を添加した結果、pHがオーバーシュートにより11.4まで低下し、槽内温度が5℃ほど上昇した。そこから晶析を再開し、原液20リットルを通液する間に2℃程度低下したものの設定温度の40℃まで低下せず、見かけ上、制御pHは一定だが実pHは0.1程度変動した。窒素雰囲気に置換後は設定温度まで下がり、晶析を再開し、実施例1と同様の操作で水酸化物を得た。
得られた水酸化物の平均粒径は5.6μm、タップ密度は1.26g/ccであった。
(Comparative example 1)
After carrying out the nucleation step of the first step in the same manner as in Example 1, about 1 liter of pure water was passed to push out the liquid in the undiluted solution pipe. After that, 64% sulfuric acid was added in order to adjust the pH to 11.6, which was controlled in the grain growth step of the second step. From there, crystallization was resumed, and although the temperature dropped by about 2°C while 20 liters of the stock solution was passed through, it did not drop to the set temperature of 40°C. . After purging with a nitrogen atmosphere, the temperature was lowered to the set temperature, crystallization was restarted, and a hydroxide was obtained by the same operation as in Example 1.
The resulting hydroxide had an average particle size of 5.6 μm and a tap density of 1.26 g/cc.

(比較例2)
比較例1と同様にして第2工程の粒子成長工程で制御するpHに調整するため、64%硫酸を添加した結果、槽内温度が5℃ほど上昇した。そこで、その槽内温度を下げるため、反応槽の温度調節制御を冷却側に切り替え、設定温度になるまでジャケット内に水を通液した結果、オーバーシュートにより設定温度より3℃ほど低くなった。再び温度調節制御を昇温側に切り替え、オーバーシュートを加味しながら調整し、設定温度の40℃になるまで約20分を要した。原液配管内を洗浄していなければノズルが詰まる要因となっていた。そこから晶析を再開し、原液20リットルを通液した。その後、窒素雰囲気に置換後晶析を再開し、実施例1と同様の操作で水酸化物を得た。
得られた水酸化物の平均粒径は5.3μm、タップ密度は1.20g/ccであった。
(Comparative example 2)
In the same manner as in Comparative Example 1, 64% sulfuric acid was added in order to adjust the pH to be controlled in the grain growth step of the second step. Therefore, in order to lower the temperature in the tank, the temperature control of the reaction tank was switched to the cooling side, and water was passed through the jacket until the set temperature was reached. It took about 20 minutes to reach the set temperature of 40° C. by switching the temperature control control to the temperature rising side again and making adjustments while considering the overshoot. If the inside of the undiluted solution pipe is not cleaned, it becomes a factor of clogging the nozzle. Crystallization was restarted from there, and 20 liters of the stock solution was passed through. Thereafter, the atmosphere was replaced with a nitrogen atmosphere, crystallization was resumed, and the same operation as in Example 1 was performed to obtain a hydroxide.
The resulting hydroxide had an average particle size of 5.3 μm and a tap density of 1.20 g/cc.

Claims (5)

リチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法であって、
pH調整剤の添加により液温25℃基準におけるpHを12.0以上、14.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物溶液を、反応槽内に連続的に供給、混合して反応液を形成することで、前記反応液中に微細な遷移金属複合水酸化物粒子を核として液中に生成させた核生成後液を形成する核生成工程と、
前記核生成後液を、液温25℃基準におけるpHを10.5以上、12.0以下の範囲における一定値に維持しつつ、前記遷移金属の化合物溶液と、遷移金属と錯イオンを形成する化合物溶液を、前記核生成後液に連続的に供給して前記核の周囲に前記遷移金属の複合水酸化物を析出せしめて形成した粒子を成長させる粒子成長工程を、少なくとも含む中和晶析であり、
前記核生成工程において供給する前記遷移金属の化合物溶液中に含まれる個々の遷移金属イオンの物質量をX(M)、X(M)、X(M)、・・・、X(M)(k=1、2、・・・N)とし、前記遷移金属イオンが遷移金属水酸化物となった時の価数をZ(M)、Z(M)、Z(M)、・・・Z(M)とした時、X(M)×Z(M)+X(M)×Z(M)+X(M)×Z(M)+・・・X(M)×Z(M)(K=1、2、・・・N)に相当する物質量のアルカリ金属水酸化物を、前記遷移金属の化合物溶液と前記遷移金属と錯イオンを形成する化合物溶液を連続的に供給、混合して反応液を形成する際に、前記pH調整剤として予め反応槽内に投入しておき、
前記遷移金属の化合物溶液と遷移金属と錯イオンを形成する化合物溶液の連続的な供給、混合により核生成後液のpHが低下してゆき、前記核生成後液のpHが前記粒子成長工程において維持すべき前記一定値に達した時点から、pH調整剤のアルカリ金属水溶液の供給を開始し、以後核成長工程の終了まで前記pHを10.5以上、12.0以下の範囲における一定値に維持することを特徴とするリチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法。
A method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for lithium ion secondary batteries,
A transition metal compound solution and a compound solution that forms a complex ion with the transition metal are mixed while maintaining the pH at a constant value of 12.0 or more and 14.0 or less at a liquid temperature of 25° C. by adding a pH adjuster. A post-nucleation liquid is formed by continuously supplying and mixing into a reaction tank to form a reaction liquid, in which fine transition metal composite hydroxide particles are generated in the liquid as nuclei in the reaction liquid. a nucleation step to
While maintaining the pH of the post-nucleation solution at a constant value in the range of 10.5 or more and 12.0 or less at a liquid temperature of 25° C., forming complex ions with the transition metal compound solution and the transition metal. Neutralization crystallization including at least a particle growth step of continuously supplying a compound solution to the post-nucleation solution to deposit the composite hydroxide of the transition metal around the nucleus to grow particles formed. and
X(M 1 ), X(M 2 ), X(M 3 ), . . . , X( M K ) (k = 1, 2, ... N), and the valences when the transition metal ions become transition metal hydroxides are Z (M 1 ), Z (M 2 ), Z (M 3 ) , . _ _ _ _ .. X (M K ) × Z (M K ) (K = 1, 2, . . . N) of an alkali metal hydroxide in an amount equivalent to the transition metal compound solution and the transition metal complex. When the compound solution that forms ions is continuously supplied and mixed to form a reaction solution, the pH adjuster is previously introduced into the reaction vessel,
Continuous supply and mixing of the transition metal compound solution and the compound solution that forms a complex ion with the transition metal causes the pH of the post-nucleation solution to decrease, and the pH of the post-nucleation solution is lowered in the grain growth step. When the constant value to be maintained is reached, the supply of the alkali metal aqueous solution of the pH adjuster is started, and thereafter the pH is kept at a constant value in the range of 10.5 or more and 12.0 or less until the end of the nuclear growth step. A method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for a lithium ion secondary battery, characterized in that the transition metal composite hydroxide is maintained.
前記遷移金属の化合物が、遷移金属硫酸塩、遷移金属塩化物、遷移金属硝酸塩のいずれか、または少なくとも2種以上の混合物であることを特徴とする請求項1に記載の遷移金属複合水酸化物の製造方法。 2. The transition metal composite hydroxide according to claim 1, wherein the transition metal compound is any one of transition metal sulfate, transition metal chloride, and transition metal nitrate, or a mixture of at least two of them. manufacturing method. 前記遷移金属と錯イオンを形成する化合物溶液が、アンモニア水であることを特徴とする請求項1または2に記載の遷移金属複合水酸化物の製造方法。 3. The method for producing a transition metal composite hydroxide according to claim 1, wherein the compound solution forming a complex ion with the transition metal is aqueous ammonia. 前記遷移金属複合水酸化物が、3~7μmの平均粒径を有し、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下である請求項1~3のいずれか1項に記載の遷移金属複合水酸化物の製造方法。 Claims 1 to 3, wherein the transition metal composite hydroxide has an average particle size of 3 to 7 µm, and [(D90-D10)/D50], which is an index showing the spread of the particle size distribution, is 0.55 or less. A method for producing a transition metal composite hydroxide according to any one of the above. 前記遷移金属複合水酸化物が、Ni、Co、Mn、添加元素Mの原子量比Ni:Co:Mn:Mが1-x-y-z:x:y:z(0.1≦x≦0.4、0.1≦y≦0.5、0≦z≦0.1、0.3≦1-x-y-z≦0.7、MはAl、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上)で表される一般式NixCoyMnz(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)のニッケルコバルトマンガン複合水酸化物であることを特徴とする、請求項1~4のいずれか1項に記載の遷移金属複合水酸化物の製造方法。 The transition metal composite hydroxide contains Ni, Co, Mn, and the atomic weight ratio Ni:Co:Mn:M of the additive element M is 1-xyz:x:y:z (0.1 ≤ x ≤ 0 .4, 0.1≤y≤0.5, 0≤z≤0.1, 0.3≤1-xyz≤0.7, M is Al, Mg, Ca, Ti, V, Cr , Zr, Nb, Mo, Hf, Ta, and W) represented by the general formula Ni x Co y Mn z (OH) 2+α (0.3≦x≦0.7, 0 .1 ≤ y ≤ 0.4, 0.1 ≤ z ≤ 0.5, x + y + z = 1, 0 ≤ α ≤ 0.5). 5. The method for producing a transition metal composite hydroxide according to any one of -4.
JP2019113188A 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide Active JP7255386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113188A JP7255386B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113188A JP7255386B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Publications (2)

Publication Number Publication Date
JP2020205205A JP2020205205A (en) 2020-12-24
JP7255386B2 true JP7255386B2 (en) 2023-04-11

Family

ID=73838027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113188A Active JP7255386B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Country Status (1)

Country Link
JP (1) JP7255386B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804223B (en) * 2021-01-21 2023-11-10 中国石油化工股份有限公司 Continuous and stable preparation method of ternary precursor for lithium ion battery
CN117228746B (en) * 2023-11-10 2024-02-02 泾河新城陕煤技术研究院新能源材料有限公司 Preparation method of high sphericity manganese-rich precursor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057311A1 (en) 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
CN106745331A (en) 2016-11-24 2017-05-31 华友新能源科技(衢州)有限公司 A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide
JP2017210395A (en) 2016-05-27 2017-11-30 住友金属鉱山株式会社 Nickel composite hydroxide and manufacturing method therefor, cathode active material for nonaqueous electrolyte secondary cell and manufacturing method therefor and nonaqueous electrolyte secondary cell
JP2018032543A (en) 2016-08-25 2018-03-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057311A1 (en) 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
JP2017210395A (en) 2016-05-27 2017-11-30 住友金属鉱山株式会社 Nickel composite hydroxide and manufacturing method therefor, cathode active material for nonaqueous electrolyte secondary cell and manufacturing method therefor and nonaqueous electrolyte secondary cell
JP2018032543A (en) 2016-08-25 2018-03-01 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN106745331A (en) 2016-11-24 2017-05-31 华友新能源科技(衢州)有限公司 A kind of preparation method of low-sulfur small particle nickel cobalt manganese hydroxide

Also Published As

Publication number Publication date
JP2020205205A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP5626382B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
JP5614334B2 (en) Nickel-cobalt composite hydroxide, method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery obtained using the composite hydroxide
JP6265117B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
JP6044463B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
KR101217453B1 (en) Method of producing Ni- composite metal hydroxide, Ni-composite metal hydroxide obtained thereby
CN109311696B (en) Scalable precipitation synthesis method for battery materials with adjustable particle size distribution
JPH1027611A (en) Lithium-containing compound oxide for lithium ion secondary battery and its manufacture
KR101883406B1 (en) Positive active material precursor and manufacturing method thereof, positive active material and manufacturing method thereof, lithium rechargeable battery including the same positive active material
JP7255386B2 (en) Method for producing transition metal composite hydroxide
JP6954111B2 (en) Method for producing nickel-containing hydroxide
JP2015038878A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP5943051B2 (en) Method for producing nickel cobalt composite hydroxide
JP7345729B2 (en) Method for producing transition metal composite hydroxide
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP7336647B2 (en) Method for producing transition metal composite hydroxide
JP7371354B2 (en) Method for producing nickel composite hydroxide
JPH09270256A (en) Manufacture of cobalt-nickel hydroxide for lithium ion secondary battery
JP2020033213A (en) Method for producing copper hydroxide-coated nickel-cobalt composite hydroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150