JP7345729B2 - Method for producing transition metal composite hydroxide - Google Patents

Method for producing transition metal composite hydroxide Download PDF

Info

Publication number
JP7345729B2
JP7345729B2 JP2019113187A JP2019113187A JP7345729B2 JP 7345729 B2 JP7345729 B2 JP 7345729B2 JP 2019113187 A JP2019113187 A JP 2019113187A JP 2019113187 A JP2019113187 A JP 2019113187A JP 7345729 B2 JP7345729 B2 JP 7345729B2
Authority
JP
Japan
Prior art keywords
transition metal
composite hydroxide
solution
metal composite
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019113187A
Other languages
Japanese (ja)
Other versions
JP2020205204A (en
Inventor
篤 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019113187A priority Critical patent/JP7345729B2/en
Publication of JP2020205204A publication Critical patent/JP2020205204A/en
Application granted granted Critical
Publication of JP7345729B2 publication Critical patent/JP7345729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用正極活物質の前駆体として用いられる、遷移金属複合水酸化物の製造方法に関する。 The present invention relates to a method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for a lithium ion secondary battery.

近年、スマートフォンやタブレットPCなどの小型情報端末の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。
このような二次電池としてリチウムイオン二次電池がある。リチウムイオン二次電池は、正極、負極、電解液、セパレーター等で構成され、正極および負極に充放電時にリチウムを脱離および挿入することの可能な活物質が用いられている。
In recent years, with the spread of small information terminals such as smartphones and tablet PCs, there is a strong desire to develop small and lightweight secondary batteries with high energy density. Furthermore, there is a strong desire to develop high-output secondary batteries for electric vehicles such as hybrid vehicles.
A lithium ion secondary battery is an example of such a secondary battery. A lithium ion secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, a separator, etc., and uses an active material in the positive and negative electrodes that can desorb and insert lithium during charging and discharging.

このリチウムイオン二次電池については、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウム金属複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。 Research and development are currently being actively conducted on lithium ion secondary batteries, and among them, lithium ion secondary batteries that use layered or spinel-type lithium metal composite oxide as the positive electrode material are 4V Because it is possible to obtain extremely high voltage, it is being put into practical use as a battery with high energy density.

これまで主に提案されている材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などを挙げることができる。
このうちリチウムニッケルコバルトマンガン複合酸化物は、サイクル特性が良く、低抵抗で高出力が取り出せる材料として注目されている。
The main materials that have been proposed so far include lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ), which uses nickel, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ), which uses nickel, which is cheaper than cobalt. Examples include cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese composite oxide using manganese (LiMn 2 O 4 ), and the like.
Among these, lithium nickel cobalt manganese composite oxide is attracting attention as a material that has good cycle characteristics and can produce high output with low resistance.

ところで、上記に挙げた良い性能を得るためには、均一な粒径を有する複合酸化物が適している。これは、粒度分布が広い複合酸化物を使用すると、電極内で個々の粒子に掛かる電圧が不均一となることで、サイクル劣化が生じやすくなるなどの不具合が生じるためである。したがって、粒度分布の均一な複合酸化物を製造することが必要であり、そのためには粒度分布の均一な複合水酸化物を用い、製造条件を最適化することが重要である。
また、出力には粒子の比表面積も大きく影響することから、所望する比表面積にするためには粒子径を制御することが重要である。
Incidentally, in order to obtain the above-mentioned good performance, a composite oxide having a uniform particle size is suitable. This is because when a composite oxide with a wide particle size distribution is used, the voltage applied to each particle within the electrode becomes non-uniform, causing problems such as cycle deterioration. Therefore, it is necessary to produce a composite oxide with a uniform particle size distribution, and for this purpose, it is important to use a composite hydroxide with a uniform particle size distribution and to optimize the manufacturing conditions.
Furthermore, since the specific surface area of the particles has a large effect on the output, it is important to control the particle diameter in order to obtain the desired specific surface area.

たとえば特許文献1では、複合水酸化物粒子の製造段階において、主として核生成反応が生じる工程(核生成工程)と、主として粒子成長反応が生じる工程(粒子成長工程)とを明確に分離する製造方法が記載されている。このような方法によれば、微粒子や粗大粒子の発生を防止することができるため、適度な粒径を有し、かつ、粒度分布が狭いニッケルコバルトマンガン複合水酸化物粒子を得ることができることが開示されている。 For example, Patent Document 1 discloses a manufacturing method that clearly separates a step in which a nucleation reaction mainly occurs (nucleation step) and a step in which a particle growth reaction mainly occurs (particle growth step) in the manufacturing stage of composite hydroxide particles. is listed. According to such a method, since the generation of fine particles and coarse particles can be prevented, it is possible to obtain nickel cobalt manganese composite hydroxide particles having an appropriate particle size and a narrow particle size distribution. Disclosed.

しかしながら、特許文献1で示されるように、その工程を分離する際には、供給管内に逆流したアルカリ塩溶液とニッケルコバルトマンガン混合水溶液が反応して供給管内で水酸化物が析出し、供給管の先を詰まらせ、操業を停止する事態が発生するという問題や、pHを下げるために添加する硫酸の濃度が高い場合、短時間で下げることができるが、硫酸が入りすぎて所定のpHより低くなり、一部核が再溶解する問題や、中和熱により反応温度が高くなり、設定したpHが高振れするなど、物性制御が困難となる問題があり、一方、薄い硫酸を使用すると中和熱は抑えられるもののpHを下げる時間がかかる上、液量が多くなり、アンモニア濃度の低下やさらには希釈設備も必要となるため高コストとなる問題があった。 However, as shown in Patent Document 1, when the process is separated, the alkali salt solution flowing back into the supply pipe and the nickel cobalt manganese mixed aqueous solution react and hydroxide is precipitated within the supply pipe. If the concentration of sulfuric acid added to lower the pH is high, it can be lowered in a short time, but if too much sulfuric acid is added and the pH is lower than the specified value. On the other hand, when dilute sulfuric acid is used, it becomes difficult to control the physical properties, such as some of the nuclei redissolving due to the neutralization heat, and the reaction temperature becoming high due to the heat of neutralization, causing high fluctuations in the set pH. Although the heat generation can be suppressed, there are problems in that it takes time to lower the pH, the amount of liquid increases, the ammonia concentration decreases, and furthermore, dilution equipment is required, resulting in high costs.

特開2011-116580号公報Japanese Patent Application Publication No. 2011-116580

本発明は掛かる問題点に鑑み、粒度分布が均一であり、所望する粒径のニッケルコバルトマンガン複合水酸化物を得る工業的に安定的な操業が可能である製造方法を提供するものである。 In view of these problems, the present invention provides a production method that enables industrially stable operation to obtain a nickel-cobalt-manganese composite hydroxide having a uniform particle size distribution and a desired particle size.

本発明に係る遷移金属複合水酸化物の製造方法の態様は、粒度分布が狭く単分散性であることを特徴とし、平均粒径が3~7μm、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下であるニッケルコバルトマンガン複合水酸化物粒子を得るために、核生成工程と粒子成長工程の切り替えの際に行うpH調整を、ニッケル、コバルト、マンガン混合水溶液で行うことで、供給停止によるノズル詰まりを防止し、硫酸添加による核の再溶解や中和熱による温度上昇を無くし、安定的な操業を可能とすることを特徴とするものである。 The embodiment of the method for producing a transition metal composite hydroxide according to the present invention is characterized by a narrow particle size distribution and monodispersity, with an average particle size of 3 to 7 μm, which is an indicator of the spread of the particle size distribution [( In order to obtain nickel-cobalt-manganese composite hydroxide particles with D90-D10)/D50] of 0.55 or less, the pH adjustment performed when switching between the nucleation step and the particle growth step is performed by mixing nickel, cobalt, and manganese. By using an aqueous solution, it is possible to prevent nozzle clogging due to supply stoppage, eliminate redissolution of nuclei due to addition of sulfuric acid, and temperature rise due to heat of neutralization, and enable stable operation.

このような本発明の第1の発明は、リチウムイオン二次電池用正極活物質の前駆体として用いられる、少なくとも核生成工程と粒子成長工程とを備えた、中和晶析による遷移金属複合水酸化物の製造方法であって、
前記核生成工程は、酸素濃度が18%以上の大気雰囲気下で、pH調整剤の添加により液温25℃基準におけるpHを12.0以上、14.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物溶液を、連続的に供給、混合して反応液を形成することで、前記反応液中に微細な遷移金属複合水酸化物粒子を核として生成させた核生成後液を形成する工程であり、
前記粒子成長工程は、前記pH調整剤の添加により液温25℃基準におけるpHを9.0以上、12.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物の溶液を、連続的に供給、混合して前記核生成後液中の遷移金属の複合水酸化物粒子の核の周囲に、前記遷移金属の複合水酸化物を析出せしめて形成した粒子を成長させる工程であり、
前記核生成工程から前記粒子成長工程に移行する際のpH調整は、前記核生成後液に、前記大気雰囲気下で、且つ、前記pH調整剤を用いずに、前記遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物の溶液の供給を継続しつつ行なうことで、液温25℃基準におけるpHを9.0以上、12.0以下の一定値に調整して行うことを特徴とする、遷移金属複合水酸化物の製造方法である。
The first aspect of the present invention is to provide a transition metal composite water produced by neutralization crystallization and comprising at least a nucleation step and a particle growth step, which is used as a precursor of a positive electrode active material for a lithium ion secondary battery. A method for producing an oxide, the method comprising:
The nucleation step is carried out in an atmospheric atmosphere with an oxygen concentration of 18% or more, while maintaining the pH at a constant value of 12.0 or more and 14.0 or less at a liquid temperature of 25° C. by adding a pH adjuster. By continuously supplying and mixing a metal compound solution and a compound solution that forms a complex ion with the transition metal to form a reaction solution, fine transition metal composite hydroxide particles are added to the reaction solution. It is a process of forming a post-nucleation liquid produced as a nucleus,
In the particle growth step, the transition metal compound solution is mixed with the transition metal while maintaining the pH at a constant value of 9.0 or more and 12.0 or less based on the liquid temperature of 25° C. by adding the pH adjuster. A solution of a compound that forms ions is continuously supplied and mixed to precipitate the transition metal composite hydroxide around the core of the transition metal composite hydroxide particles in the post-nucleation solution. It is a process of growing the formed particles,
The pH adjustment during the transition from the nucleation step to the particle growth step includes adding the transition metal compound solution to the post-nucleation solution in the atmospheric atmosphere and without using the pH adjuster; The method is characterized in that by continuously supplying a solution of a compound that forms a complex ion with the transition metal, the pH is adjusted to a constant value of 9.0 or more and 12.0 or less based on a liquid temperature of 25°C. This is a method for producing a transition metal composite hydroxide.

本発明の第2の発明は、第1の発明における遷移金属化合物が、遷移金属硫酸塩、遷移金属塩化物、遷移金属硝酸塩のいずれか、または少なくとも2種以上の混合物であることを特徴とする遷移金属複合水酸化物の製造方法である。 A second invention of the present invention is characterized in that the transition metal compound in the first invention is any one of a transition metal sulfate, a transition metal chloride, a transition metal nitrate, or a mixture of at least two of them. This is a method for producing a transition metal composite hydroxide.

本発明の第3の発明は、第1の発明におけるpH調整剤が、アルカリ金属水酸化物溶液であることを特徴とする遷移金属複合水酸化物の製造方法である。
A third invention of the present invention is a method for producing a transition metal composite hydroxide, characterized in that the pH adjuster in the first invention is an alkali metal hydroxide solution.

本発明の第4の発明は、第1から第3の発明における遷移金属と錯イオンを形成する化合物の溶液が、アンモニア水であることを特徴とする遷移金属複合水酸化物の製造方法である。 A fourth invention of the present invention is a method for producing a transition metal composite hydroxide, characterized in that the solution of the compound forming a complex ion with a transition metal according to the first to third inventions is aqueous ammonia. .

本発明の第5の発明は、第1から第4の発明における遷移金属複合水酸化物が、3~7μmの平均粒径を有し、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下であることを特徴とする遷移金属複合水酸化物の製造方法である。 A fifth invention of the present invention is that the transition metal composite hydroxide according to the first to fourth inventions has an average particle size of 3 to 7 μm, and is an indicator of the spread of particle size distribution [(D90-D10 )/D50] is 0.55 or less.

本発明の第6の発明は、第1から第5の発明における遷移金属複合水酸化物が、Ni、Co、Mn、添加元素Mの原子量比Ni:Co:Mn:Mが1-x-y-z:x:y:z(0.1≦x≦0.4、0.1≦y≦0.5、0≦z≦0.1、0.3≦1-x-y-z≦0.7、MはAl、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上)で表される一般式:NiCoMn(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)のニッケルコバルトマンガン複合水酸化物であることを特徴とする遷移金属複合水酸化物の製造方法である。 The sixth invention of the present invention is characterized in that the transition metal composite hydroxide according to the first to fifth inventions has an atomic weight ratio of Ni:Co:Mn:M of Ni, Co, Mn, and the additive element M of 1-xy. -z:x:y:z(0.1≦x≦0.4, 0.1≦y≦0.5, 0≦z≦0.1, 0.3≦1-x-y-z≦0 .7, M is one or more selected from Al, Mg, Ca, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W) General formula: Ni x Co y Mn z ( OH) Nickel cobalt manganese of 2+α (0.3≦x≦0.7, 0.1≦y≦0.4, 0.1≦z≦0.5, x+y+z=1, 0≦α≦0.5) This is a method for producing a transition metal composite hydroxide, which is characterized in that it is a composite hydroxide.

本発明により、粒度分布が狭く単分散性である、所望する粒径を有するニッケルコバルトマンガン複合水酸化物を工業的に安定的な操業により得ることができる。
また、本発明に係るニッケルコバルトマンガン複合水酸化物由来の非水系二次電池用正極活物質を用いた二次電池は、高容量で高出力の優れた電気特性を有することから、最近の携帯電話やノート型パソコンなどの携帯電子機器、パワーツールおよびハイブリッド車もしくは電気自動車などの電源装置に搭載されている小型二次電池に対する高出力かつ良サイクル特性などといった要求を満足することが可能となり、工業上極めて有用な効果を奏するものである。
According to the present invention, a nickel-cobalt-manganese composite hydroxide having a desired particle size, which is narrow and monodisperse in particle size distribution, can be obtained through industrially stable operations.
In addition, the secondary battery using the positive electrode active material for non-aqueous secondary batteries derived from the nickel-cobalt-manganese composite hydroxide according to the present invention has excellent electrical properties such as high capacity and high output, so it has become popular in recent mobile phones. It is now possible to meet the requirements for high output and good cycle characteristics for small secondary batteries installed in power supplies such as mobile electronic devices such as telephones and notebook computers, power tools, and hybrid or electric vehicles. This has extremely useful effects industrially.

本発明者は、粒度分布の狭い複合水酸化物粒子を安定的に得られる方法について詳細に検討し、その結果、所望するニッケルコバルトマンガン複合水酸化物粒子を得るために、核生成工程と粒子成長工程の切り替えの際に行うpH調整を、専用のpH調整剤を用いることなく、ニッケル、コバルト、マンガン混合水溶液で行うことでも各工程で使用する液量が同じであれば、得られる水酸化物の物性が変わらないことを見出し、硫酸による核の再溶解や中和熱による「設定したpH値」からのずれを無くし、供給停止によるノズル詰まりを防止して安定的な操業を可能とすることにより本発明の完成に至った。
以下、本発明について詳細に説明する。
The present inventor conducted a detailed study on a method for stably obtaining composite hydroxide particles with a narrow particle size distribution, and as a result, in order to obtain the desired nickel cobalt manganese composite hydroxide particles, the nucleation process and particle Even if the pH adjustment performed when changing the growth process is performed using a mixed aqueous solution of nickel, cobalt, and manganese without using a dedicated pH adjuster, if the amount of liquid used in each process is the same, the resulting hydroxide It was discovered that the physical properties of a substance do not change, eliminating deviations from the ``set pH value'' due to redissolution of nuclei by sulfuric acid and heat of neutralization, and enabling stable operation by preventing nozzle clogging due to supply stoppage. This led to the completion of the present invention.
The present invention will be explained in detail below.

本発明の遷移金属複合水酸化物は、一般式NiCoMn(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)で表されるニッケルコバルトマンガン複合水酸化物であって、平均粒径が3~7μmであり、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下であり粒度分布が狭く単分散性であることを特徴とする。
本発明は、以上のような知見に基づき完成されたものである。
以下、本発明に係る遷移金属複合水酸化物の製造方法についてさらに詳細に説明する。
The transition metal composite hydroxide of the present invention has the general formula Ni x Co y Mnz (OH) 2+α (0.3≦x≦0.7, 0.1≦y≦0.4, 0.1≦z≦ 0.5, x+y+z=1, 0≦α≦0.5), and has an average particle size of 3 to 7 μm, which is an indicator of the spread of particle size distribution. [(D90-D10)/D50] is 0.55 or less, and the particle size distribution is narrow and monodisperse.
The present invention was completed based on the above findings.
Hereinafter, the method for producing a transition metal composite hydroxide according to the present invention will be explained in more detail.

(第1工程)
まず、易水溶性の遷移金属塩として、ニッケル塩、コバルト塩、マンガン塩(いずれも硫酸塩が望ましい)を所定の割合で水に溶解させ、ニッケル、コバルト、マンガン混合水溶液を作製する。
その混合水溶液と、アンモニア水などのアンモニウムイオン供給体を含む水溶液を、撹拌させている晶析反応槽内へ定量的に連続供給し、かつpH調整剤としてアルカリ金属水酸化物水溶液やアルカリ土類金属水酸化物水溶液、例えば水酸化ナトリウム水溶液を同時に供給する。ここで一定のpH値になるようにアルカリ金属水酸化物水溶液の液量を調節することで、反応槽内にて上記金属水酸化物の微小な核を選択的に生成させる。
(1st step)
First, as readily water-soluble transition metal salts, nickel salt, cobalt salt, and manganese salt (all preferably sulfates) are dissolved in water at a predetermined ratio to prepare a mixed aqueous solution of nickel, cobalt, and manganese.
The mixed aqueous solution and an aqueous solution containing an ammonium ion donor such as aqueous ammonia are quantitatively and continuously fed into a crystallization reaction tank under stirring, and an aqueous alkali metal hydroxide solution or alkaline earth is used as a pH adjuster. An aqueous metal hydroxide solution, for example an aqueous sodium hydroxide solution, is fed at the same time. By adjusting the amount of the alkali metal hydroxide aqueous solution so as to have a constant pH value, fine nuclei of the metal hydroxide are selectively generated in the reaction tank.

ここで反応槽内のpHは、液温25℃を基準として測定するpH値として12.0以上の一定値pになるように調節する。このpH12.0未満では核成長が同時に起こり、核の総数が不足して粒径が粗大化してしまうためである。また、その上限は14.0以下が望ましく、pH14.0を超えても得られる効果にあまり差が見られなくなるためである。
さらに、反応槽内のpHを一定値p(pH値:12.0~14.0)に制御、維持することで、反応槽内での均一な核生成を行うことができる。その制御幅は、0.1~0.2程度にpHの揺らぎを抑えると良い。
Here, the pH in the reaction tank is adjusted to a constant value p 0 of 12.0 or more as a pH value measured with a liquid temperature of 25° C. as a reference. This is because if the pH is less than 12.0, nuclear growth occurs simultaneously, resulting in an insufficient total number of nuclei and a coarse particle size. Further, the upper limit thereof is desirably 14.0 or less, because even if the pH exceeds 14.0, there will not be much difference in the effect obtained.
Furthermore, by controlling and maintaining the pH in the reaction tank at a constant value p 0 (pH value: 12.0 to 14.0), uniform nucleation can be performed in the reaction tank. The control range is preferably about 0.1 to 0.2 to suppress pH fluctuations.

また、反応槽内の液中アンモニア濃度は3~25g/Lの範囲内の一定値に保持する。
一定以上のアンモニア濃度が無ければ金属イオンの溶解度を一定に保持することができないため、ゲル状の核が生成されてしまう。ただし、25g/L以上の濃度では溶解度が上がりすぎ、溶液中に残存する金属イオン量が増えて、組成ずれが起こる。
Further, the ammonia concentration in the liquid in the reaction tank is maintained at a constant value within the range of 3 to 25 g/L.
Unless the ammonia concentration exceeds a certain level, the solubility of metal ions cannot be maintained constant, resulting in the formation of gel-like nuclei. However, at a concentration of 25 g/L or more, the solubility increases too much, the amount of metal ions remaining in the solution increases, and a composition shift occurs.

反応槽内の温度は35℃以上、60℃以下に設定することが望ましい。
35℃未満では温度が低くて供給する金属イオンの溶解度が充分に得られず、また60℃を越えるとアンモニアの揮発が促進されることにより錯形成するためのアンモニアが不足し、金属イオンの溶解度が減少する。
The temperature inside the reaction tank is desirably set to 35°C or higher and 60°C or lower.
If the temperature is lower than 35°C, the solubility of the metal ions supplied will not be sufficient due to the low temperature, and if the temperature exceeds 60°C, the volatilization of ammonia will be promoted, resulting in a lack of ammonia for complex formation, and the solubility of the metal ions will decrease. decreases.

反応槽内空間の酸素濃度はエアを吹き込む等により18%以上の大気雰囲気に制御し、反応槽内溶液中の溶存酸素濃度を4mg/L以上で晶析反応を行うことが望ましい。
この第1工程のpH値と制御時間については、目的とする複合水酸化物の平均粒径によって任意に設定することができる。
所定量のニッケル、コバルト、マンガン混合水溶液を添加が終了した後にNaOHの供給のみを停止する。
It is desirable to control the oxygen concentration in the reaction tank interior space to an atmospheric atmosphere of 18% or more by blowing air, etc., and to perform the crystallization reaction with the dissolved oxygen concentration in the solution in the reaction tank at 4 mg/L or more.
The pH value and control time of this first step can be arbitrarily set depending on the average particle size of the target composite hydroxide.
After the addition of a predetermined amount of nickel, cobalt, and manganese mixed aqueous solution is completed, only the supply of NaOH is stopped.

(第2工程)
この工程では、第1工程のあとの粒子成長段階として反応槽内を、液温25℃を基準として測定するpH値として10.5~12.0に制御することを主な特徴とする。核生成後にこのpH値へ再設定することで、第1工程で作った核の成長のみを優先的に起こさせ、新たな核生成を抑制することによって粒子の粒度分布を均一にすることができる。
(Second process)
The main feature of this step is to control the inside of the reaction tank to a pH value of 10.5 to 12.0 as measured with a liquid temperature of 25° C. as a particle growth stage after the first step. By resetting the pH value to this value after nucleation, only the growth of the nuclei created in the first step can occur preferentially, and by suppressing new nucleation, the particle size distribution of particles can be made uniform. .

pH値が12.0より高い場合では、核発生が起こり均一な粒子とならない。
またpH値が10.5未満では、金属硫酸塩を原料として使用した場合に粒子中に残るS(イオウ)分が多くなるため望ましくない。
このpH値を変更する際には、前工程がpH12.0以上の状態であるから、酸の添加、通常は硫酸で行うところをニッケル、コバルト、マンガン混合水溶液の供給を継続することで行い、第1から第2工程へは、連続的に移行するものである。
When the pH value is higher than 12.0, nucleation occurs and uniform particles are not formed.
Further, if the pH value is less than 10.5, it is not desirable because when a metal sulfate is used as a raw material, a large amount of S (sulfur) remains in the particles.
When changing this pH value, since the previous step has a pH of 12.0 or higher, adding an acid, which is normally done with sulfuric acid, is done by continuing to supply a mixed aqueous solution of nickel, cobalt, and manganese. There is a continuous transition from the first to the second step.

なお、所望する水酸化物粒子の特性にあわせて第2工程初期の0~30分程度の間を任意に大気雰囲気で成長させた後、窒素雰囲気に切り替えて成長反応を継続させる。この雰囲気切り替えの際には原液の送液を停止する必要があるため、純水を通液して配管及び先端ノズルを水洗し、ノズル詰まりを防止する。 Note that, depending on the desired characteristics of the hydroxide particles, growth is performed in an air atmosphere for about 0 to 30 minutes at the beginning of the second step, and then the growth reaction is continued by switching to a nitrogen atmosphere. When changing the atmosphere, it is necessary to stop feeding the stock solution, so pure water is passed through to wash the piping and tip nozzle to prevent nozzle clogging.

最終的に所定量の原液を通液して成長反応が終了した際には、純水を通液して配管及び先端ノズルを水洗し、ノズル詰まりを防止する。 Finally, when a predetermined amount of the stock solution is passed through and the growth reaction is completed, pure water is passed through to wash the piping and tip nozzle to prevent nozzle clogging.

以下、実施例を用いて本発明を詳述する。 Hereinafter, the present invention will be explained in detail using Examples.

(晶析工程)
・第1工程
まず、反応槽(600リットル)内に水を140リットルまで入れ、タービンタイプの撹拌羽根を使用して回転数を260rpmで撹拌しながら、温度調節制御を昇温側にして槽内温度を40℃に設定し、制御した。加えてエアを20~40L/分にて吹き込み、大気雰囲気を保った状態で、25%水酸化ナトリウム水溶液と25%アンモニア水を所定量加えて液のpHを、液温25℃を基準として測定するpH値として12.6に調整し、液中アンモニア濃度を10g/Lに調節した。
(Crystallization process)
・First step: First, fill up to 140 liters of water in a reaction tank (600 liters), and while stirring at a rotation speed of 260 rpm using a turbine-type stirring blade, set the temperature control to the temperature increasing side. The temperature was set and controlled at 40°C. In addition, air was blown at 20 to 40 L/min to maintain an atmospheric atmosphere, and a predetermined amount of 25% sodium hydroxide aqueous solution and 25% ammonia water was added, and the pH of the liquid was measured based on the liquid temperature of 25°C. The pH value was adjusted to 12.6, and the ammonia concentration in the liquid was adjusted to 10 g/L.

ここに、硫酸ニッケル、硫酸コバルト、硫酸マンガン、(金属元素モル比でNi:Co:Mn=38:32:30)を水に溶かして得た2mol/Lの水溶液(以下原液と称する)と、25%アンモニア水を一定の添加速度で加えていき、pH値を12.6(核生成pH)になるよう25%水酸化ナトリウム水溶液を添加して制御しながら2リットルを通液した。 Here, a 2 mol/L aqueous solution (hereinafter referred to as stock solution) obtained by dissolving nickel sulfate, cobalt sulfate, manganese sulfate, (metal element molar ratio Ni:Co:Mn=38:32:30) in water, 25% aqueous ammonia was added at a constant addition rate, and 2 liters of the solution was passed while controlling the pH by adding a 25% aqueous sodium hydroxide solution to adjust the pH to 12.6 (nucleation pH).

・第2工程
その後、NaOHのみ供給を停止し、pHが液温25℃を基準として測定するpH値として11.6(粒子成長pH)になるよう制御pHを設定し、pH11.6になった時点でNaOHの供給を再開し、pH値を11.6に制御したまま、20リットルの原液を通液して晶析を実施した。
・Second step: After that, the supply of only NaOH was stopped, and the control pH was set to 11.6 (particle growth pH) as the pH value measured based on the liquid temperature of 25°C, and the pH became 11.6. At this point, the supply of NaOH was restarted, and while the pH value was controlled at 11.6, 20 liters of the stock solution was passed through the reactor to perform crystallization.

その後、配管内に残留する原液を洗浄するため、純水を約5リットル通水してからNaOHとアンモニアの供給を停止した。途中の槽内温度の変化は無く、40℃に保たれていた。
ついで、窒素ガスを流通させて反応槽内空間の酸素濃度を1%以下、反応槽内溶液中の溶存酸素濃度を0.5mg/L以下にしたのち、原液、アンモニア、NaOHの供給を再開し、pH値を11.6に制御して約4時間、原液量で270リットルを通液した後に配管内に残留した原液を洗浄するため、純水を約5リットル通水してから、アンモニアの供給を停止し、さらにpH値を1.2上昇させて12.8とし、スラリー液中に含まれるNiをほぼ全量析出させた。得られた生成物を水洗、濾過、乾燥させた。
Thereafter, in order to clean the stock solution remaining in the pipe, about 5 liters of pure water was passed through the pipe, and then the supply of NaOH and ammonia was stopped. There was no change in the temperature inside the tank during the process, and it was maintained at 40°C.
Next, after circulating nitrogen gas to reduce the oxygen concentration in the reaction tank interior space to 1% or less and the dissolved oxygen concentration in the solution in the reaction tank to 0.5 mg/L or less, the supply of the stock solution, ammonia, and NaOH was restarted. After controlling the pH value to 11.6 and passing 270 liters of undiluted solution for about 4 hours, about 5 liters of pure water was passed through to wash the undiluted solution remaining in the pipe, and then ammonia was removed. The supply was stopped, and the pH value was further increased by 1.2 to 12.8, so that almost all of the Ni contained in the slurry liquid was precipitated. The obtained product was washed with water, filtered and dried.

以上に述べた方法により、Ni0.38Co0.32Mn0.30(OH)2+α(0≦α≦0.5)で表される複合水酸化物を得た。
得られた複合水酸化物の平均粒径は5.1μm、タップ密度は1.20g/ccであった。
By the method described above, a composite hydroxide represented by Ni 0.38 Co 0.32 Mn 0.30 (OH) 2+α (0≦α≦0.5) was obtained.
The average particle size of the obtained composite hydroxide was 5.1 μm, and the tap density was 1.20 g/cc.

(比較例1)
実施例1と同様にして第1工程の核生成工程を実施後、原液配管内液の押し出しのため純水約1リットルを通液した。その後、第2工程の粒子成長工程で制御するpH11.6にするため、64%硫酸を添加した結果、pHがオーバーシュートにより11.4まで低下し、槽内温度が5℃ほど上昇した。そこから晶析を再開し、原液20リットルを通液する間に2℃程度低下したものの設定温度の40℃まで低下せず、見かけ上、制御pHは一定だが実pHは0.1程度変動した。窒素雰囲気に置換後は設定温度まで下がり、晶析を再開し、実施例1と同様の操作で水酸化物を得た。
得られた水酸化物の平均粒径は5.6μm、タップ密度は1.26g/ccであった。
(Comparative example 1)
After carrying out the first nucleation step in the same manner as in Example 1, about 1 liter of pure water was passed through to push out the liquid in the pipe. Thereafter, 64% sulfuric acid was added to adjust the pH to 11.6, which is controlled in the second particle growth step. As a result, the pH decreased to 11.4 due to overshoot, and the temperature inside the tank increased by about 5°C. From there, crystallization was restarted, and while 20 liters of stock solution was passed through, the temperature dropped by about 2°C, but the temperature did not drop to the set temperature of 40°C, and although the controlled pH appeared to be constant, the actual pH fluctuated by about 0.1. . After replacing the atmosphere with nitrogen, the temperature was lowered to the set temperature, crystallization was restarted, and a hydroxide was obtained in the same manner as in Example 1.
The average particle size of the obtained hydroxide was 5.6 μm, and the tap density was 1.26 g/cc.

(比較例2)
比較例1と同様にして第2工程の粒子成長工程で制御するpHに調整するため、64%硫酸を添加した結果、槽内温度が5℃ほど上昇した。そこで、その槽内温度を下げるため、反応槽の温度調節制御を冷却側に切り替え、設定温度になるまでジャケット内に水を通液した結果、オーバーシュートにより設定温度より3℃ほど低くなった。再び温度調節制御を昇温側に切り替え、オーバーシュートを加味しながら調整し、設定温度の40℃になるまで約20分を要した。原液配管内を洗浄していなければノズルが詰まる要因となっていた。そこから晶析を再開し、原液20リットルを通液した。その後、窒素雰囲気に置換後晶析を再開し、実施例1と同様の操作で水酸化物を得た。
得られた水酸化物の平均粒径は5.3μm、タップ密度は1.20g/ccであった。
(Comparative example 2)
As in Comparative Example 1, 64% sulfuric acid was added to adjust the pH to be controlled in the second particle growth step, and as a result, the temperature inside the tank rose by about 5°C. Therefore, in order to lower the temperature inside the tank, the temperature control of the reaction tank was switched to the cooling side, and water was passed through the jacket until the set temperature was reached. As a result, the temperature became about 3°C lower than the set temperature due to overshoot. The temperature control was switched to the temperature increasing side again, and adjustments were made while taking into account overshoot, and it took about 20 minutes to reach the set temperature of 40°C. If the inside of the raw solution piping had not been cleaned, it would have caused the nozzle to become clogged. From there, crystallization was restarted, and 20 liters of the stock solution was passed through. Thereafter, after replacing the atmosphere with nitrogen, crystallization was restarted, and a hydroxide was obtained in the same manner as in Example 1.
The average particle size of the obtained hydroxide was 5.3 μm, and the tap density was 1.20 g/cc.

第1工程から第2工程への切り換え時のpH調整を、原液で行わずに、専用の酸、比較例では硫酸を用いて行った。その結果、槽内温度が上昇して設定温度をオーバーシュートする現象が見られた。
比較例1では槽内温度の設定温度への是正ができずに槽内温度が設定温度より高い状態となり、その結果として制御pHの変動が起こり、得られた水酸化物には、平均粒径が実施例1より粗大となり、またタップ密度の上昇が見られた。
また比較例2での槽内温度の上昇が見られ、その是正に少なくない時間を要する結果となっている。さらに、得られた水酸化物は、タップ密度は実施例1から変化していないが、比較例1と同様に粗大化の傾向を示していた。
pH adjustment at the time of switching from the first step to the second step was performed using a dedicated acid, sulfuric acid in the comparative example, instead of using the stock solution. As a result, a phenomenon was observed in which the temperature inside the tank increased and overshooted the set temperature.
In Comparative Example 1, the temperature inside the tank could not be corrected to the set temperature, and the temperature inside the tank became higher than the set temperature. As a result, the control pH fluctuated, and the obtained hydroxide had an average particle size. was coarser than in Example 1, and an increase in tap density was observed.
Furthermore, an increase in the temperature inside the tank was observed in Comparative Example 2, resulting in a considerable amount of time being required to correct the temperature. Furthermore, although the tap density of the obtained hydroxide did not change from Example 1, it showed a tendency toward coarsening as in Comparative Example 1.

Claims (6)

リチウムイオン二次電池用正極活物質の前駆体として用いられる、少なくとも核生成工程と粒子成長工程とを備えた、中和晶析による遷移金属複合水酸化物の製造方法であって、
前記核生成工程は、酸素濃度が18%以上の大気雰囲気下で、pH調整剤の添加により液温25℃基準におけるpHを12.0以上、14.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物溶液を、連続的に供給、混合して反応液を形成することで、前記反応液中に微細な遷移金属複合水酸化物粒子を核として生成させた核生成後液を形成する工程であり、
前記粒子成長工程は、前記pH調整剤の添加により液温25℃基準におけるpHを9.0以上、12.0以下の一定値に維持しつつ、遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物の溶液を、連続的に供給、混合して前記核生成後液中の遷移金属の複合水酸化物粒子の核の周囲に、前記遷移金属の複合水酸化物を析出せしめて形成した粒子を成長させる工程であり、
前記核生成工程から前記粒子成長工程に移行する際のpH調整は、前記核生成後液に、前記大気雰囲気下で、且つ、前記pH調整剤を用いずに、前記遷移金属の化合物溶液と、前記遷移金属と錯イオンを形成する化合物の溶液の供給を継続しつつ行なうことで、液温25℃基準におけるpHを9.0以上、12.0以下の一定値に調整して行うことを特徴とする、遷移金属複合水酸化物の製造方法。
A method for producing a transition metal composite hydroxide by neutralization crystallization, which is used as a precursor of a positive electrode active material for a lithium ion secondary battery, and includes at least a nucleation step and a particle growth step, the method comprising:
The nucleation step is carried out in an atmospheric atmosphere with an oxygen concentration of 18% or more, while maintaining the pH at a constant value of 12.0 or more and 14.0 or less at a liquid temperature of 25° C. by adding a pH adjuster. By continuously supplying and mixing a metal compound solution and a compound solution that forms a complex ion with the transition metal to form a reaction solution, fine transition metal composite hydroxide particles are added to the reaction solution. It is a process of forming a post-nucleation liquid produced as a nucleus,
In the particle growth step, the transition metal compound solution is mixed with the transition metal while maintaining the pH at a constant value of 9.0 or more and 12.0 or less based on the liquid temperature of 25° C. by adding the pH adjuster. A solution of a compound that forms ions is continuously supplied and mixed to precipitate the transition metal composite hydroxide around the core of the transition metal composite hydroxide particles in the post-nucleation solution. It is a process of growing the formed particles,
The pH adjustment during the transition from the nucleation step to the particle growth step includes adding the transition metal compound solution to the post-nucleation solution in the atmospheric atmosphere and without using the pH adjuster; The method is characterized in that by continuously supplying a solution of a compound that forms a complex ion with the transition metal, the pH is adjusted to a constant value of 9.0 or more and 12.0 or less based on a liquid temperature of 25°C. A method for producing a transition metal composite hydroxide.
前記遷移金属化合物が、遷移金属硫酸塩、遷移金属塩化物、遷移金属硝酸塩のいずれか、または少なくとも2種以上の混合物であることを特徴とする請求項1に記載の遷移金属複合水酸化物の製造方法。 2. The transition metal composite hydroxide according to claim 1, wherein the transition metal compound is any one of a transition metal sulfate, a transition metal chloride, a transition metal nitrate, or a mixture of at least two of them. Production method. 前記pH調整剤が、アルカリ金属水酸化物溶液であることを特徴とする請求項1に記載の遷移金属複合水酸化物の製造方法。 The method for producing a transition metal composite hydroxide according to claim 1, wherein the pH adjuster is an alkali metal hydroxide solution. 前記遷移金属と錯イオンを形成する化合物の溶液が、アンモニア水であることを特徴とする請求項1~3のいずれか1項に記載の遷移金属複合水酸化物の製造方法。 The method for producing a transition metal composite hydroxide according to any one of claims 1 to 3, wherein the solution of the compound that forms a complex ion with the transition metal is aqueous ammonia. 前記遷移金属複合水酸化物が、3~7μmの平均粒径を有し、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.55以下であることを特徴とする請求項1~4のいずれか1項に記載の遷移金属複合水酸化物の製造方法。 The transition metal composite hydroxide has an average particle size of 3 to 7 μm, and [(D90-D10)/D50], which is an index indicating the spread of particle size distribution, is 0.55 or less. A method for producing a transition metal composite hydroxide according to any one of claims 1 to 4. 前記遷移金属複合水酸化物が、Ni、Co、Mn、添加元素Mの原子量比Ni:Co:Mn:Mが1-x-y-z:x:y:z(0.1≦x≦0.4、0.1≦y≦0.5、0≦z≦0.1、0.3≦1-x-y-z≦0.7、MはAl、Mg、Ca、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta、Wから選択される1種以上)で表される一般式:NiCoMn(OH)2+α(0.3≦x≦0.7、0.1≦y≦0.4、 0.1≦z≦0.5、x+y+z=1、0≦α≦0.5)のニッケルコバルトマンガン複合水酸化物であることを特徴とする、請求項1~5のいずれか1項に記載の遷移金属複合水酸化物の製造方法。 The transition metal composite hydroxide has an atomic weight ratio of Ni, Co, Mn, and the additive element M of Ni:Co:Mn:M of 1-xyz:x:y:z (0.1≦x≦0 .4, 0.1≦y≦0.5, 0≦z≦0.1, 0.3≦1-xy-z≦0.7, M is Al, Mg, Ca, Ti, V, Cr , Zr, Nb, Mo, Hf, Ta, W) general formula: Ni x Co y Mn z (OH) 2+α (0.3≦x≦0.7, 0. 1≦y≦0.4, 0.1≦z≦0.5, x+y+z=1, 0≦α≦0.5). 5. The method for producing a transition metal composite hydroxide according to any one of 5.
JP2019113187A 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide Active JP7345729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113187A JP7345729B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113187A JP7345729B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Publications (2)

Publication Number Publication Date
JP2020205204A JP2020205204A (en) 2020-12-24
JP7345729B2 true JP7345729B2 (en) 2023-09-19

Family

ID=73838678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113187A Active JP7345729B2 (en) 2019-06-18 2019-06-18 Method for producing transition metal composite hydroxide

Country Status (1)

Country Link
JP (1) JP7345729B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252964A (en) 2011-06-06 2012-12-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nickel-cobalt-manganese complex hydroxide and method for manufacturing the same
WO2017057311A1 (en) 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
JP2017154915A (en) 2016-02-29 2017-09-07 住友金属鉱山株式会社 Nickel composite hydroxide and production method of the same, positive electrode active substance for non-aqueous electrolyte secondary battery and production method of the substance, and non-aqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012252964A (en) 2011-06-06 2012-12-20 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nickel-cobalt-manganese complex hydroxide and method for manufacturing the same
WO2017057311A1 (en) 2015-09-30 2017-04-06 住友金属鉱山株式会社 Nickel manganese containing-composite hydroxide and method for producing same
JP2017154915A (en) 2016-02-29 2017-09-07 住友金属鉱山株式会社 Nickel composite hydroxide and production method of the same, positive electrode active substance for non-aqueous electrolyte secondary battery and production method of the substance, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2020205204A (en) 2020-12-24

Similar Documents

Publication Publication Date Title
JP5626382B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
CN107004852B (en) Positive electrode active material for lithium battery having porous structure and method for producing same
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
JP5614334B2 (en) Nickel-cobalt composite hydroxide, method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery obtained using the composite hydroxide
US10236504B2 (en) Nickel-cobalt-manganese composite hydroxide, and production method therefor
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
US9941515B2 (en) Nickel-cobalt-manganese composite hydroxide and method for producing same
KR101217453B1 (en) Method of producing Ni- composite metal hydroxide, Ni-composite metal hydroxide obtained thereby
JP2016069209A (en) Nickel-cobalt-manganese compound and manufacturing method therefor
CN106745335A (en) A kind of preparation method from growth crystal seed regulation and control nickle cobalt lithium manganate growth
KR101883406B1 (en) Positive active material precursor and manufacturing method thereof, positive active material and manufacturing method thereof, lithium rechargeable battery including the same positive active material
JP7255386B2 (en) Method for producing transition metal composite hydroxide
JP2015038878A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2019116411A (en) Manufacturing method of nickel-containing hydroxide
JP7345729B2 (en) Method for producing transition metal composite hydroxide
JP5943051B2 (en) Method for producing nickel cobalt composite hydroxide
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles
JP7336647B2 (en) Method for producing transition metal composite hydroxide
JP7371354B2 (en) Method for producing nickel composite hydroxide
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
CN114291855B (en) Preparation method of full-concentration gradient positive electrode material precursor, full-concentration gradient positive electrode material and preparation method thereof
JP2020093967A (en) Production method of transition metal complex hydroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230820

R150 Certificate of patent or registration of utility model

Ref document number: 7345729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150