JP7336647B2 - Method for producing transition metal composite hydroxide - Google Patents

Method for producing transition metal composite hydroxide Download PDF

Info

Publication number
JP7336647B2
JP7336647B2 JP2019067537A JP2019067537A JP7336647B2 JP 7336647 B2 JP7336647 B2 JP 7336647B2 JP 2019067537 A JP2019067537 A JP 2019067537A JP 2019067537 A JP2019067537 A JP 2019067537A JP 7336647 B2 JP7336647 B2 JP 7336647B2
Authority
JP
Japan
Prior art keywords
transition metal
composite hydroxide
aqueous solution
metal composite
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019067537A
Other languages
Japanese (ja)
Other versions
JP2020164372A (en
Inventor
平 相田
敏弘 加藤
晴斗 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2019067537A priority Critical patent/JP7336647B2/en
Publication of JP2020164372A publication Critical patent/JP2020164372A/en
Application granted granted Critical
Publication of JP7336647B2 publication Critical patent/JP7336647B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウムイオン二次電池用正極活物質の前駆体として用いられる遷移金属複合水酸化物の製造方法に関する。 TECHNICAL FIELD The present invention relates to a method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for lithium ion secondary batteries.

近年、スマートフォンやタブレットPCなどの小型情報端末の利用拡大に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車や電気自動車用の電池として、高出力の大型二次電池の開発が強く望まれている。 In recent years, with the increasing use of small information terminals such as smart phones and tablet PCs, there is a strong demand for the development of small, lightweight secondary batteries with high energy density. In addition, there is a strong demand for the development of high-output large-sized secondary batteries as batteries for hybrid automobiles and electric automobiles.

このような要求を満たす二次電池としてリチウムイオン二次電池がある。リチウムイオン二次電池は、負極、正極、セパレータ、および非水電解質などで構成され、その負極および正極を構成する活物質としては、充放電時にリチウムを脱離および挿入することの可能な材料が用いられている。なお、非水電解質としては、支持塩であるリチウム塩を有機溶媒に溶解してなる非水電解液や、不燃性でイオン電導性を有する固体電解質などが用いられている。 A lithium ion secondary battery is a secondary battery that satisfies such requirements. A lithium-ion secondary battery consists of a negative electrode, a positive electrode, a separator, a non-aqueous electrolyte, etc. The active materials that make up the negative electrode and positive electrode are materials that can desorb and insert lithium during charging and discharging. used. As the non-aqueous electrolyte, a non-aqueous electrolytic solution obtained by dissolving a lithium salt as a supporting salt in an organic solvent, a nonflammable solid electrolyte having ion conductivity, or the like is used.

リチウムイオン二次電池の研究開発は現在も盛んに行われているが、層状岩塩型またはスピネル型の構造を有するリチウム遷移金属含有複合酸化物を正極活物質として用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する二次電池として実用化されている。 Research and development of lithium ion secondary batteries are still actively carried out, but lithium ion secondary batteries using a lithium transition metal-containing composite oxide having a layered rock salt type or spinel type structure as a positive electrode active material are Since a high voltage of the 4V class can be obtained, it has been put into practical use as a secondary battery having a high energy density.

これまで主に提案されているリチウム遷移金属含有複合酸化物としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)、および要求される特性に応じて添加元素を添加したリチウム遷移金属含有複合酸化物などを挙げることができる。これらの中でも、リチウムニッケルコバルトマンガン複合酸化物は、比較的安価であり、熱安定性や耐久性などのバランスに優れているため、正極活物質として注目されている。また、電池性能の改良に向けて、優れたサイクル特性を有することも求められている。 Lithium-transition metal-containing composite oxides mainly proposed so far include lithium-cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, and lithium-nickel composite oxide using nickel, which is cheaper than cobalt ( LiNiO 2 ), lithium nickel cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), lithium manganese composite oxide using manganese (LiMn 2 O 4 ), and Lithium-transition metal-containing composite oxides to which additive elements are added according to the requirements can be mentioned. Among these, lithium-nickel-cobalt-manganese composite oxides are attracting attention as positive electrode active materials because they are relatively inexpensive and have an excellent balance of thermal stability and durability. In addition, to improve battery performance, it is also required to have excellent cycle characteristics.

ここで、高いサイクル特性を得るためには、小粒径で、粒度分布が狭い正極活物質とすることが有効である。粒度分布が広い正極活物質を使用した場合、電極内で粒子に印加される電圧が不均一となることに起因して、充放電を繰り返すと微細な粒子が選択的に劣化し、放電容量が低下してしまう。さらには、放電容量の劣化が早くなることにより、サイクル特性が低下する。 Here, in order to obtain high cycle characteristics, it is effective to use a positive electrode active material having a small particle size and a narrow particle size distribution. When a positive electrode active material with a wide particle size distribution is used, the voltage applied to the particles in the electrode becomes non-uniform, causing selective deterioration of the fine particles after repeated charging and discharging, resulting in a decrease in the discharge capacity. will decline. Furthermore, the deterioration of the discharge capacity is accelerated, thereby deteriorating the cycle characteristics.

リチウムニッケルコバルトマンガン複合酸化物からなる正極活物質は、通常、ニッケルコバルトマンガン複合水酸化物を前駆体として製造されるため、正極活物質を小粒径かつ粒度分布の狭い粒子により構成するためには、その前駆体となるニッケルコバルトマンガン複合水酸化物も同様に、小粒径かつ粒度分布の狭い粒子により構成することが必要とされる。 A positive electrode active material composed of a lithium-nickel-cobalt-manganese composite oxide is usually produced using a nickel-cobalt-manganese composite hydroxide as a precursor. Similarly, nickel-cobalt-manganese composite hydroxide, which is a precursor thereof, is required to be composed of particles having a small particle size and a narrow particle size distribution.

そのため、狭い粒度分布を有する粒子の製造方法についていくつか提案されている。たとえば、特許文献1には、一次粒子が凝集した二次粒子で構成され、該二次粒子のメジアン径D50が1μm~6μmの範囲にあり、粒度分布の広がりを示す指標である〔(D90-D10)/D50〕が0.50以下であるニッケルマンガン含有複合水酸化物の製造方法が提案されている。この製造方法は、主として核生成反応が生じる工程(核生成工程)と、主として粒子成長反応が生じる工程(粒子成長工程)とを、それぞれの製造条件によって明確に分離することにより狭い粒度分布を有する粒子の合成を行なっている。 Therefore, several proposals have been made for methods of producing particles having a narrow particle size distribution. For example, in Patent Document 1, primary particles are composed of secondary particles that are agglomerated, and the median diameter D50 of the secondary particles is in the range of 1 μm to 6 μm, which is an index showing the spread of the particle size distribution [(D90- A method for producing a nickel-manganese-containing composite hydroxide in which D10)/D50] is 0.50 or less has been proposed. In this manufacturing method, a narrow particle size distribution is obtained by clearly separating a step in which a nucleation reaction mainly occurs (nucleation step) and a step in which a particle growth reaction mainly occurs (particle growth step) according to respective manufacturing conditions. Particles are being synthesized.

特開2017-065975号公報JP 2017-065975 A

しかしながら、これまでの技術では、「一定のニッケル、コバルト、マンガンを含む原料金属塩水溶液(以下「原料溶液」ともいう)の供給速度において、粒度分布の狭い粒子を合成するという技術」が記載されているものの、「ニッケル、コバルト、マンガンを含む原料金属塩水溶液の供給速度を増加させた際、粒度分布を広くする要因となる新規の微小粒子を発生させない」という技術の報告はなされていなかった。そして、生産性を上げるために原料金属塩水溶液の供給速度を増加させた場合、晶析途中で新規の微小粒子が発生し、粒度分布の広がりが大きくなるという問題があった。 However, in the conventional technology, ``a technique of synthesizing particles with a narrow particle size distribution at a constant feed rate of an aqueous raw material metal salt solution containing nickel, cobalt, and manganese (hereinafter also referred to as a ``raw material solution'') is described. However, there was no report of a technology that "when the feed rate of the raw metal salt aqueous solution containing nickel, cobalt, and manganese is increased, new microparticles that cause a widening of the particle size distribution are not generated." . In addition, when the feed rate of the starting metal salt aqueous solution is increased in order to increase the productivity, there is a problem that new microparticles are generated during crystallization and the particle size distribution becomes broader.

本発明は、以上の実情に鑑みてなされたものであり、リチウムイオン二次電池用正極活物質(以下「正極活物質」ともいう)の前駆体として用いられる遷移金属複合水酸化物の製造方法において、粒度分布が狭い遷移金属複合水酸化物を高い生産性で製造することが可能な製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and a method for producing a transition metal composite hydroxide used as a precursor of a positive electrode active material for lithium ion secondary batteries (hereinafter also referred to as a "positive electrode active material"). An object of the above is to provide a production method capable of producing a transition metal composite hydroxide having a narrow particle size distribution with high productivity.

本発明者は上記課題を解決するため鋭意検討した結果、種粒子の平均粒径D50(μm)と、種粒子の体積V(L)より、原料金属塩水溶液の供給速度の上限を規定することにより、粒子成長工程で新規の微小粒子を発生させないことが可能となるとの知見を得て、本発明を完成したものである。 As a result of intensive studies to solve the above problems, the inventors of the present invention found that the upper limit of the supply rate of the raw metal salt aqueous solution is defined by the average particle diameter D50 (μm) of the seed particles and the volume V (L) of the seed particles. The present inventors have completed the present invention based on the finding that it is possible to prevent the generation of new microparticles in the particle growth process.

また、本発明の一態様は、ニッケル、コバルト、マンガンのいずれか一種以上を含む遷移金属複合水酸化物の製造方法であり、各成分遷移金属元素の金属塩または金属化合物の水溶液を、アルカリ溶液で中和する晶析反応による製造方法であり、前記晶析反応は、少なくとも核生成工程と粒子成長工程を含み、前記核生成工程により得られる種粒子の平均粒径D50(μm)と、種粒子の総体積V(L)としたとき、前記粒子成長工程における、前記各成分遷移金属元素の金属塩または金属化合物の水溶液の供給速度M(g/分・L:反応槽容積1L当たりの金属水酸化物換算重量)が、次の関係式(1)を満たすことを特徴とする。
M<63.4×(V/D50)-5.8 式(1)
Another aspect of the present invention is a method for producing a transition metal composite hydroxide containing at least one of nickel, cobalt, and manganese, wherein an aqueous solution of a metal salt or metal compound of each component transition metal element is added to an alkaline solution. The crystallization reaction includes at least a nucleation step and a particle growth step, and the average particle diameter D50 (μm) of the seed particles obtained by the nucleation step and the seed When the total volume of the particles is V (L), the supply rate of the aqueous solution of the metal salt or metal compound of each component transition metal element in the particle growth step M (g/min L: metal per liter of reaction tank volume Hydroxide conversion weight) is characterized by satisfying the following relational expression (1).
M<63.4×(V/D50)−5.8 Formula (1)

また、本発明の一態様では、前記遷移金属複合水酸化物の各成分遷移金属元素は、少なくともニッケル、コバルト、マンガンを含むことが好ましい。 Moreover, in one aspect of the present invention, each component transition metal element of the transition metal composite hydroxide preferably contains at least nickel, cobalt, and manganese.

また、本発明の一態様では、前記遷移金属複合水酸化物の各成分遷移金属元素の原子量比Ni:Co:Mn:Mが、1-x-y-z:x:y:z(ただし、0≦x≦0.5、0≦y≦0.5、0≦z≦0.1、0≦1-x-y-z≦1.0であり、MはAl、Mg、Ca、Ti、Zr、V、Cr、Nb、Mo、Hf、Ta、Wから選ばれる添加元素の1種以上)で表されることが好ましい。 Further, in one aspect of the present invention, the atomic weight ratio Ni:Co:Mn:M of each component transition metal element of the transition metal composite hydroxide is 1-xyz:x:y:z (however, 0≦x≦0.5, 0≦y≦0.5, 0≦z≦0.1, 0≦1-xyz≦1.0, and M is Al, Mg, Ca, Ti, one or more additive elements selected from Zr, V, Cr, Nb, Mo, Hf, Ta and W).

また、本発明の一態様は、ニッケル、コバルト、マンガンのいずれか一種以上を含む遷移金属複合水酸化物の製造方法であり、各成分遷移金属元素の金属塩または金属化合物の水溶液を、アルカリ溶液で中和する晶析反応による製造方法であり、前記晶析反応の開始時に種粒子を添加し、前記種粒子の平均粒径D50(μm)と、種粒子の総体積V(L)としたとき、前記晶析反応における、前記各成分遷移金属元素の金属塩または金属化合物の水溶液の供給速度M(g/分・L:反応槽容積1L当たりの金属水酸化物換算重量)が、次の関係式(1)を満たすことを特徴とする。
M<63.4×(V/D50)-5.8 式(1)
Another aspect of the present invention is a method for producing a transition metal composite hydroxide containing at least one of nickel, cobalt, and manganese, wherein an aqueous solution of a metal salt or metal compound of each component transition metal element is added to an alkaline solution. in which seed particles are added at the start of the crystallization reaction, and the average particle diameter of the seed particles is D50 (μm) and the total volume of the seed particles is V (L). When, in the crystallization reaction, the supply rate M (g/min L: metal hydroxide equivalent weight per 1 L of reaction vessel volume) of the aqueous solution of the metal salt or metal compound of each component transition metal element in the crystallization reaction is as follows: It is characterized by satisfying the relational expression (1).
M<63.4×(V/D50)−5.8 Formula (1)

本発明によれば、原料金属塩水溶液の供給速度を増加させた場合においても新規の微小粒子を発生させずに遷移金属複合水酸化物粒子を成長させることが可能となるため、粒度分布が狭い遷移金属複合水酸化物を高い生産性で製造することができる。 According to the present invention, it is possible to grow the transition metal composite hydroxide particles without generating new fine particles even when the feed rate of the raw metal salt aqueous solution is increased, so that the particle size distribution is narrow. A transition metal composite hydroxide can be produced with high productivity.

新たな微小粒子が発生しない条件として、種粒子の半径と種粒子の総体積および金属塩水溶液の供給速度との間に見られた相関関係のグラフである。10 is a graph showing the correlation between the seed particle radius, the total volume of the seed particles, and the supply rate of the metal salt aqueous solution as conditions under which new fine particles are not generated.

以下、本発明の具体的な実施形態について説明する。なお本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Specific embodiments of the present invention are described below. The present invention is by no means limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present invention.

上述したように、正極活物質に対しては、リチウムイオン二次電池におけるさらなるサイクル特性の向上が求められている。また、リチウムイオン二次電池をより安価に製造するためには生産性を高める必要があり、正極活物質の前駆体として使用する遷移金属複合水酸化物の生産速度を上げることが望まれる。 As described above, positive electrode active materials are required to further improve cycle characteristics in lithium ion secondary batteries. Moreover, in order to manufacture lithium ion secondary batteries at a lower cost, it is necessary to increase productivity, and it is desired to increase the production rate of the transition metal composite hydroxide used as the precursor of the positive electrode active material.

しかし、遷移金属複合水酸化物の生産速度を上げようとすると、遷移金属複合水酸化物の微小粒子が発生しやすくなる。このような遷移金属複合水酸化物を前駆体として生成される正極活物質をリチウムイオン二次電池に使用すると、上述したように電極内の微小粒子が選択的に劣化し充放電容量の低下が発生することによって、リチウムイオン二次電池のサイクル特性が低下する。 However, if an attempt is made to increase the production rate of the transition metal composite hydroxide, fine particles of the transition metal composite hydroxide tend to be generated. When a positive electrode active material produced using such a transition metal composite hydroxide as a precursor is used in a lithium ion secondary battery, the fine particles in the electrode selectively deteriorate as described above, resulting in a decrease in charge/discharge capacity. The cycle characteristics of the lithium-ion secondary battery deteriorate due to the occurrence of this.

この微小粒子の発生は、後述する粒子成長工程において、原料溶液の添加速度が、新たな核が発生する下限の添加速度を超えることにより生じる。 The generation of fine particles occurs when the addition rate of the raw material solution exceeds the lower limit of the addition rate at which new nuclei are generated in the particle growth step, which will be described later.

従来は、微小粒子が粒子成長工程において発生しないように、新たな核が発生しないような速度に原料溶液の添加速度を抑えて、粒子成長工程を行っていた。このため、遷移金属複合水酸化物の生産性が低い問題があった。 Conventionally, in order to prevent microparticles from being generated in the particle growth process, the addition speed of the raw material solution has been suppressed to a speed at which new nuclei are not generated, and the particle growth process has been carried out. Therefore, there is a problem that the productivity of the transition metal composite hydroxide is low.

本発明者らは、上記課題を解決するため、遷移金属複合水酸化物の析出場となる、粒子の最表面部の面積量に着目し、粒子成長工程に用いる種粒子の半径と種粒子の総体積との関係を検討したところ、新たな微小粒子が発生しないための金属塩水溶液の供給速度との間に相関関係があるとの知見を得て、本発明を完成するに至った。 In order to solve the above problems, the present inventors focused on the area amount of the outermost surface portion of the particle, which is the precipitation site of the transition metal composite hydroxide, and found that the radius of the seed particle used in the particle growth step and the size of the seed particle As a result of examining the relationship with the total volume, the inventors have found that there is a correlation with the supply rate of the metal salt aqueous solution for preventing the generation of new fine particles, and have completed the present invention.

以下、本発明の一実施形態に係る遷移金属複合水酸化物の製造方法の概要について説明する。 An outline of a method for producing a transition metal composite hydroxide according to one embodiment of the present invention will be described below.

(本発明の概要)
本発明の一実施形態に係る遷移金属複合水酸化物の製造方法は、核生成工程と粒子成長工程に大別され、粒子成長工程において、用いる種粒子の半径および総体積にあわせて金属塩水溶液の供給速度を変更することを特徴とする。なお「種粒子」とは、粒子成長工程の開始時に存在する粒子をいう。種粒子の製造方法は特に限定されないが、製造の簡便さから本願の核生成工程によって製造することが好ましい。
(Outline of the present invention)
The method for producing a transition metal composite hydroxide according to one embodiment of the present invention is roughly divided into a nucleation step and a particle growth step. It is characterized by changing the supply speed of The term "seed grains" refers to grains present at the start of the grain growth process. Although the method for producing the seed particles is not particularly limited, it is preferable to produce the seed particles by the nucleation step of the present application because of the simplicity of production.

以下、前記核生成工程と前記粒子成長工程について詳細に説明するが、最初に、本発明の最大の特徴である、種粒子の半径と種粒子の総体積および金属塩水溶液の供給速度との間に見られる相関関係の導出について説明する。 The nucleation step and the particle growth step will be described in detail below. I will explain the derivation of the correlation seen in .

(種粒子の半径と総体積および、金属塩水溶液の供給速度の相関関係)
まず、晶析途中における微小粒子の発生は、系内に存在する粒子の総表面積が少ない場合に、供給された金属水酸化物の析出場が不足することが原因である。ここでいう析出場とは、遷移金属化合物溶液とアルカリ溶液が反応した際に複合水酸化物が生じた時、その複合水酸化物が固体として析出可能な場のことであり、本発明の場合は、系内に存在する複合水酸化物粒子の二次粒子表面または一次粒子表面がそれにあたる。
(Correlation between seed particle radius, total volume, and supply rate of metal salt aqueous solution)
First, the generation of fine particles during crystallization is caused by insufficient precipitation sites for the supplied metal hydroxide when the total surface area of the particles present in the system is small. The term "precipitation field" as used herein refers to a field where, when a composite hydroxide is produced when a transition metal compound solution and an alkaline solution react, the composite hydroxide can precipitate as a solid, and in the case of the present invention, corresponds to the secondary particle surface or the primary particle surface of the composite hydroxide particles present in the system.

金属水酸化物の析出場となる粒子の総表面積は、粒子の総体積Vを平均粒径D50で除することにより算出することができる。この総表面積に、単位面積当たりにおける金属水酸化物の析出可能量(結晶成長速度)などを掛け合わせることにより、粒子成長において消費される金属塩水溶液量を求めることができる。金属塩水溶液の消費量はV/D50の関数として表すことができる。 The total surface area of the particles serving as a deposition site for the metal hydroxide can be calculated by dividing the total volume V1 of the particles by the average particle diameter D501 . By multiplying the total surface area by the amount of metal hydroxide that can be precipitated per unit area (crystal growth rate), the amount of the aqueous metal salt solution consumed during particle growth can be obtained. The consumption of the aqueous metal salt solution can be expressed as a function of V 1 / D501 .

そして、単位時間当たりの金属塩水溶液の供給量である供給速度が、単位時間当たりの金属塩水溶液の消費量である消費速度を上回った場合、消費されずに残存する金属塩により新たな微小粒子が発生すると考えると、新たな微小粒子が発生する条件は以下の式(2)で表すことができる。なお金属水酸化物換算重量とは、金属塩水溶液中の金属元素が全て水酸化物となったとした場合の重量をいう。
M≧f(V/D50) 式(2)
(M:金属塩水溶液の供給速度(g/分:金属水酸化物換算重量)、V:粒子の総体積(L)、D50:粒子の平均粒径(μm))
When the supply rate, which is the amount of the aqueous metal salt solution supplied per unit time, exceeds the consumption rate, which is the amount of the aqueous metal salt solution consumed per unit time, the remaining unconsumed metal salt forms new microparticles. is generated, the condition under which new microparticles are generated can be represented by the following equation (2). Note that the metal hydroxide equivalent weight refers to the weight when all the metal elements in the metal salt aqueous solution are converted to hydroxides.
M≧f(V 1 /D50 1 ) Equation (2)
(M: supply rate of metal salt aqueous solution (g/min: metal hydroxide equivalent weight), V 1 : total volume of particles (L), D50 1 : average particle size of particles (μm))

実際に晶析を行い、新たな微小粒子が観測された時間帯においては、式(2)の関係が成立していると考えられる。そして、金属塩水溶液の供給速度M、粒子の総体積V、粒子の平均粒径D50の測定値から、本発明者は新たな微小粒子が発生する条件として具体的な関係式(3)を見出した。
M≧63.4×(V/D50)-5.8 式(3)
(M:金属塩水溶液の供給速度(g/分・L:反応槽容積1L当たりの金属水酸化物換算重量)、V:粒子の総体積(L)、D50:粒子の平均粒径(μm))
It is considered that the relationship of formula (2) holds true in the time period when crystallization is actually performed and new microparticles are observed. Then, from the measured values of the supply rate M of the metal salt aqueous solution, the total volume V1 of the particles, and the average particle diameter D501 of the particles, the present inventor determined the specific relational expression (3) as the condition for generating new fine particles: I found
M≧63.4×(V 1 /D50 1 )−5.8 Equation (3)
(M: Supply rate of metal salt aqueous solution (g/min L: Metal hydroxide equivalent weight per 1 L of reaction tank volume), V 1 : Total volume of particles (L), D50 1 : Average particle diameter of particles ( μm))

また、粒子成長工程開始時の種粒子の総体積V、種粒子の平均粒径D50を上記の関係式(3)に適用することで、新たな微小粒子が発生しないような金属塩水溶液の供給速度Mを式(4)から算出することができる。
M<63.4×(V/D50)-5.8 式(4)
(M:金属塩水溶液の供給速度(g/分・L:反応槽容積1L当たりの金属水酸化物換算重量)、V:種粒子の総体積(L)、D50:種粒子の平均粒径(μm))
By applying the total volume V of the seed particles at the start of the particle growth process and the average particle diameter D50 of the seed particles to the above relational expression (3), it is possible to supply an aqueous metal salt solution that does not generate new microparticles. Velocity M can be calculated from equation (4).
M<63.4×(V/D50)−5.8 Formula (4)
(M: Supply rate of metal salt aqueous solution (g/min L: Metal hydroxide equivalent weight per 1 L of reaction tank volume), V: Total volume of seed particles (L), D50: Average particle size of seed particles ( μm))

上記式(4)の範囲内で金属塩水溶液の供給速度を増加させ、粒子成長工程で新規の微小粒子を発生させずに、核生成工程で発生した微小粒子のみを成長させることができるため、粒度分布が狭い遷移金属複合水酸化物を高い生産性で製造することができる。 By increasing the supply rate of the metal salt aqueous solution within the range of the above formula (4), only the microparticles generated in the nucleation process can be grown without generating new microparticles in the particle growth process. A transition metal composite hydroxide having a narrow particle size distribution can be produced with high productivity.

以下、本発明の一実施形態に係る遷移金属複合水酸化物の製造方法の詳細について説明する。 Hereinafter, the details of the method for producing a transition metal composite hydroxide according to one embodiment of the present invention will be described.

1.遷移金属複合水酸化物
(組成)
本発明の遷移金属複合水酸化物は、一例としてその組成が、各成分遷移金属元素の原子量比Ni:Co:Mn:Mが、1-x-y-z:x:y:z(ただし、0≦x≦0.5、0≦y≦0.5、0≦z≦0.1、0≦1-x-y-z≦1.0であり、MはAl、Mg、Ca、Ti、Zr、V、Cr、Nb、Mo、Hf、Ta、Wから選ばれる添加元素の1種以上)で表されるように調製される。なお各成分遷移金属元素とは、遷移金属複合水酸化物を構成するそれぞれの遷移金属元素をいう。
1. Transition metal composite hydroxide (composition)
As an example, the transition metal composite hydroxide of the present invention has a composition such that the atomic weight ratio Ni:Co:Mn:M of each component transition metal element is 1-xyz:x:y:z (however, 0≦x≦0.5, 0≦y≦0.5, 0≦z≦0.1, 0≦1-xyz≦1.0, and M is Al, Mg, Ca, Ti, one or more additive elements selected from Zr, V, Cr, Nb, Mo, Hf, Ta and W). Each component transition metal element means each transition metal element constituting the transition metal composite hydroxide.

なお、遷移金属複合水酸化物を原料として正極活物質を得た場合、該遷移金属複合水酸化物の各遷移金属の物質量の比(Ni:Mn:Co:M)は、得られる正極活物質においても維持される。したがって、本発明の遷移金属複合水酸化物の各遷移金属の物質量の比は、得ようとする正極活物質に要求される物質量の比と同様となるように調製される。 When a positive electrode active material is obtained using a transition metal composite hydroxide as a raw material, the ratio (Ni:Mn:Co:M) of the amount of each transition metal in the transition metal composite hydroxide is It is also maintained in matter. Therefore, the ratio of the amount of each transition metal in the transition metal composite hydroxide of the present invention is adjusted to be the same as the ratio of the amount of material required for the positive electrode active material to be obtained.

(平均粒径)
本発明の遷移金属複合水酸化物の平均粒径は、1μmを超え、15μm以下、好ましくは平均粒径が3μm以上、8μm以下の範囲に調製される。遷移金属複合水酸化物の平均粒径をこのような範囲に制御することにより、該遷移金属複合水酸化物を原料として得られる正極活物質を所定の平均粒径(1μmを超え、15μm以下)に調製することができる。得られる正極活物質の粒径は原料とした遷移金属複合水酸化物の粒径と相関する。このため、この正極活物質を正極材料に用いたリチウムイオン二次電池の特性は、原料とした遷移金属複合水酸化物の粒径に影響される。
(Average particle size)
The average particle size of the transition metal composite hydroxide of the present invention is more than 1 μm and 15 μm or less, preferably the average particle size is in the range of 3 μm or more and 8 μm or less. By controlling the average particle size of the transition metal composite hydroxide within such a range, the positive electrode active material obtained from the transition metal composite hydroxide as a raw material has a predetermined average particle size (more than 1 μm and 15 μm or less). can be prepared to The particle size of the obtained positive electrode active material correlates with the particle size of the transition metal composite hydroxide used as a raw material. Therefore, the characteristics of a lithium ion secondary battery using this positive electrode active material as a positive electrode material are affected by the particle size of the transition metal composite hydroxide used as a raw material.

遷移金属複合水酸化物の平均粒径が1μm以下であると、得られる正極活物質の平均粒径も小さくなる。正極活物質の平均粒径が小さいと、正極活物質の表面積が増加することで充放電反応に関与する面積が大きくなるため、高い出力特性を有するリチウムイオン二次電池が得られるが、正極の充填密度が低下して電池容積あたりの充放電容量が低下するとともに、電極ペーストを調製する際に導電助剤と正極活物質の電極ペースト中での分散性が悪化し、電極内で個々の粒子に掛かる電圧が不均一となることで、充放電を繰り返すと粒径の小さな一部の正極活物質粒子が優先的に劣化し、充放電容量が低下する。逆に、該遷移金属複合水酸化物の平均粒径が15μmを超えると、得られる正極活物質の比表面積が低下して、電解液との界面が減少することにより、正極の抵抗が上昇してリチウムイオン二次電池の出力特性が低下する。 When the average particle size of the transition metal composite hydroxide is 1 μm or less, the average particle size of the obtained positive electrode active material is also small. When the average particle diameter of the positive electrode active material is small, the surface area of the positive electrode active material increases, and the area involved in the charge-discharge reaction becomes large, so a lithium ion secondary battery having high output characteristics can be obtained. The charge-discharge capacity per unit battery volume decreases due to a decrease in packing density, and the dispersibility of the conductive aid and the positive electrode active material in the electrode paste deteriorates when the electrode paste is prepared. When charging and discharging are repeated, some positive electrode active material particles having small particle diameters preferentially deteriorate, resulting in a decrease in charging and discharging capacity. Conversely, if the average particle size of the transition metal composite hydroxide exceeds 15 μm, the specific surface area of the obtained positive electrode active material is reduced, and the interface with the electrolyte solution is reduced, thereby increasing the resistance of the positive electrode. As a result, the output characteristics of the lithium-ion secondary battery deteriorate.

(粒度分布)
本発明の複合水酸化物は、その粒度分布の広がりを示す指標である〔(D90-D10)/平均粒径〕が、1.0以下、好ましくは0.70以下、より好ましくは0.50以下となるように調製される。
(particle size distribution)
In the composite hydroxide of the present invention, [(D90-D10)/average particle diameter], which is an index showing the spread of the particle size distribution, is 1.0 or less, preferably 0.70 or less, more preferably 0.50. It is prepared as follows.

正極活物質の粒度分布は、原料である遷移金属複合水酸化物の粒度分布の影響を強く受ける。たとえば、遷移金属複合水酸化物に微小粒子あるいは粗大粒子が混入していると、正極活物質にも、同様に、微小粒子あるいは粗大粒子が存在するようになる。すなわち、遷移金属複合水酸化物の〔(D90-D10)/平均粒径〕が1.0を超え、粒度分布が広い状態であると、それから合成した正極活物質にも微小粒子あるいは粗大粒子が存在するようになる。 The particle size distribution of the positive electrode active material is strongly influenced by the particle size distribution of the raw transition metal composite hydroxide. For example, when fine particles or coarse particles are mixed in the transition metal composite hydroxide, fine particles or coarse particles are also present in the positive electrode active material. That is, when the [(D90-D10)/average particle size] of the transition metal composite hydroxide exceeds 1.0 and the particle size distribution is wide, the positive electrode active material synthesized therefrom also contains fine particles or coarse particles. come to exist.

微小粒子が多く存在する正極活物質を用いて正極を形成した場合、微小粒子の局所的な反応に起因して発熱する可能性があり、電池の安全性が低下するとともに、微小粒子が選択的に劣化するため、リチウムイオン二次電池のサイクル特性が悪化してしまう。一方、粗大粒子が多く存在する正極活物質を用いて正極を形成した場合、電解液と正極活物質との反応面積が十分に取れず、反応抵抗の増加により電池出力が低下する。 When a positive electrode is formed using a positive electrode active material containing a large number of fine particles, heat may be generated due to local reactions of the fine particles. As a result, the cycle characteristics of the lithium ion secondary battery deteriorate. On the other hand, when a positive electrode is formed using a positive electrode active material containing many coarse particles, the reaction area between the electrolyte and the positive electrode active material is insufficient, resulting in an increase in reaction resistance and a decrease in battery output.

平均粒径や、D90、D10を求める方法は特に限定されないが、たとえば、レーザ光回折散乱式粒度分析計で測定した体積積算値から求めることができる。平均粒径はD50を用い、D90と同様に累積体積が全粒子体積の50%となる粒径を用いればよい。 The method for obtaining the average particle diameter, D90, and D10 is not particularly limited, but for example, they can be obtained from volume integrated values measured with a laser beam diffraction/scattering particle size analyzer. D50 is used as the average particle diameter, and the particle diameter at which the cumulative volume is 50% of the total particle volume may be used in the same manner as D90.

(粒子構造)
本発明の遷移金属複合水酸化物は、複数の一次粒子が凝集して形成された略球状の二次粒子により構成される。二次粒子を構成する一次粒子の形状としては、板状、針状、直方体状、楕円状、稜面体状などのさまざまな形態を採りうる。また、その凝集状態も、ランダムな方向に凝集する場合のほか、中心から放射状に粒子の長径方向が凝集する場合も本発明に適用することは可能である。
(particle structure)
The transition metal composite hydroxide of the present invention is composed of substantially spherical secondary particles formed by aggregation of a plurality of primary particles. The shape of the primary particles that make up the secondary particles can take various forms such as plate-like, needle-like, rectangular parallelepiped, elliptical, and rhombohedral shapes. In addition, as for the state of aggregation, in addition to the case of aggregation in random directions, the present invention can also be applied to the case of aggregation radially from the center in the major axis direction of the particles.

2.遷移金属複合水酸化物の製造方法
本発明の一実施形態に係る遷移金属複合水酸化物の製造方法は、晶析反応によって遷移金属複合水酸化物を製造する方法であって、核生成を行う核生成工程と、核生成工程において生成された核を成長させる粒子成長工程とから構成されている。
2. Method for Producing Transition Metal Composite Hydroxide A method for producing a transition metal composite hydroxide according to one embodiment of the present invention is a method for producing a transition metal composite hydroxide by a crystallization reaction, in which nucleation is performed. It is composed of a nucleation step and a grain growth step for growing the nuclei generated in the nucleation step.

(a)核生成工程
本発明の遷移金属複合水酸化物の製造方法においては、まず、少なくともニッケル化合物、コバルト化合物、およびマンガン化合物のいずれか一種以上を含む、複数の金属化合物を、所定の割合で水に溶解させ、原料溶液を作製する。
(a) Nucleation step In the method for producing a transition metal composite hydroxide of the present invention, first, a plurality of metal compounds containing at least one or more of a nickel compound, a cobalt compound, and a manganese compound are mixed in a predetermined ratio. to prepare a raw material solution.

一方、反応槽には、pH調整剤である水酸化ナトリウム水溶液などのアルカリ水溶液、アンモニウムイオン供給体であるアンモニア水溶液、および水を供給して混合して反応前水溶液を形成する。この反応前水溶液について、そのpH値を、アルカリ水溶液の供給量を調整することにより、液温25℃基準でのpH値が12.0~14.0の範囲、好ましくは12.3~13.5の範囲、より好ましくは12.5~13.3の範囲となるように調節する。 On the other hand, an alkaline aqueous solution such as a sodium hydroxide aqueous solution as a pH adjuster, an ammonia aqueous solution as an ammonium ion donor, and water are supplied to the reaction vessel and mixed to form a pre-reaction aqueous solution. By adjusting the supply amount of the alkaline aqueous solution, the pH value of the pre-reaction aqueous solution is in the range of 12.0 to 14.0, preferably 12.3 to 13.0, based on the liquid temperature of 25°C. 5, preferably 12.5 to 13.3.

また、反応前水溶液中のアンモニウムイオンの濃度を、アンモニア水溶液の供給量を調整することにより、3g/L~25g/Lの範囲、好ましくは5g/L~20g/Lの範囲となるように調節する。なお、反応前水溶液の温度についても、好ましくは20~60℃、より好ましくは35~60℃となるように調節する。反応槽内の水溶液のpH値、アンモニウムイオンの濃度については、それぞれ一般的なpH計、イオンメータによって測定可能である。 Further, the concentration of ammonium ions in the pre-reaction aqueous solution is adjusted to be in the range of 3 g/L to 25 g/L, preferably in the range of 5 g/L to 20 g/L, by adjusting the supply amount of the aqueous ammonia solution. do. The temperature of the pre-reaction aqueous solution is also preferably adjusted to 20 to 60°C, more preferably 35 to 60°C. The pH value of the aqueous solution in the reaction tank and the concentration of ammonium ions can be measured with a general pH meter and ion meter, respectively.

反応槽内の雰囲気は非酸化性雰囲気とする。反応槽内に不活性ガスを導入し、反応雰囲気を酸素濃度5体積%以下、好ましくは2体積%以下の非酸化性雰囲気に制御する。酸素濃度が5体積%より高くなると、生成する核が疎になってしまい、粒子密度が低下し正極活物質の粒子密度が低下する。しかも球形度の低い核が生成するため、後に粒子成長を行っても、球形度の高い粒子が得られず、充填性が低下する。 The atmosphere in the reaction vessel is a non-oxidizing atmosphere. An inert gas is introduced into the reaction vessel to control the reaction atmosphere to a non-oxidizing atmosphere with an oxygen concentration of 5% by volume or less, preferably 2% by volume or less. When the oxygen concentration is higher than 5% by volume, the nuclei generated become sparse, the particle density decreases, and the particle density of the positive electrode active material decreases. Moreover, since nuclei with a low degree of sphericity are formed, particles with a high degree of sphericity cannot be obtained even if the particles are grown later, resulting in a decrease in packing properties.

反応槽内において反応前水溶液の温度、pH値、アンモニウムイオン濃度を調整した後に、この反応前水溶液を攪拌しながら原料溶液を反応槽内に供給する。これにより、反応槽内には、反応前水溶液と原料溶液とが混合した、核生成工程における反応水溶液である核生成用水溶液が形成され、この核生成用水溶液中において複合水酸化物の微細な核が生成されることになる。このとき、核生成用水溶液のpH値は上記範囲にあるので、生成した核はほとんど成長することなく、核の生成が優先的に生じる。 After adjusting the temperature, pH value and ammonium ion concentration of the pre-reaction aqueous solution in the reaction vessel, the raw material solution is supplied into the reaction vessel while stirring the pre-reaction aqueous solution. As a result, an aqueous solution for nucleation, which is a reaction aqueous solution in the nucleation step, is formed in the reaction vessel by mixing the pre-reaction aqueous solution and the raw material solution. A nucleus will be generated. At this time, since the pH value of the aqueous solution for nucleation is within the above range, the generated nuclei hardly grow and preferentially generate nuclei.

本発明では、核生成工程において、晶析反応の全体に用いられる原料溶液中の金属化合物に由来する金属元素の全物質量のうち、0.6%~5.0%、好ましくは0.7%~5.0%、より好ましくは0.8%~~4.5%に相当する量の原料溶液を、核生成工程に用いる。 In the present invention, in the nucleation step, 0.6% to 5.0%, preferably 0.7%, of the total substance amount of metal elements derived from metal compounds in the raw material solution used for the entire crystallization reaction % to 5.0%, more preferably 0.8% to 4.5% of the raw material solution is used in the nucleation step.

核生成工程と粒子成長工程とで、モル濃度が等しい原料溶液を用いる場合には、原料溶液の液量を指標として制御することができ、たとえば、原料溶液の全液量の0.6%~5.0%(原料溶液の全液量が26Lの場合、0.156L~1.3L)を核生成工程に用いて、残りを粒子成長工程に用いる。このような範囲とすることで、凝集を抑制しながら、タップ密度の高い小粒径な粒子を得ることができる。また、核生成工程において用いられる原料溶液中の金属元素を適切に制御することで、より高い球形度を達成して、その充填性をより高いものとすることができる。 When raw material solutions having the same molar concentration are used in the nucleation process and the particle growth process, the liquid volume of the raw material solution can be used as an index for control. 5.0% (0.156 L to 1.3 L when the total volume of the raw material solution is 26 L) is used for the nucleation step, and the rest is used for the grain growth step. By setting it as such a range, it is possible to obtain small-diameter particles with a high tap density while suppressing agglomeration. In addition, by appropriately controlling the metal elements in the raw material solution used in the nucleation step, higher sphericity can be achieved and the packing property can be improved.

また、このとき核生成用水溶液を攪拌するための攪拌所要動力を、6.0kW/m~30kW/m、好ましくは8.0kW/m~30kW/m、より好ましくは10kW/m~25kW/mとなるように調節する。 Further, at this time, the power required for stirring the aqueous solution for nucleation is 6.0 kW/m 3 to 30 kW/m 3 , preferably 8.0 kW/m 3 to 30 kW/m 3 , more preferably 10 kW/m. Adjust to 3 to 25 kW/m 3 .

なお、原料溶液の供給による核生成に伴って、核生成用水溶液内のpH値およびアンモニウムイオンの濃度が変化するので、核生成用水溶液に対して、原料溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、核生成用水溶液の液温25℃基準でのpH値が12.0~14.0の範囲、アンモニウムイオンの濃度が3g/L~25g/Lの範囲で、それぞれ維持されるように制御する。 In addition, since the pH value and the concentration of ammonium ions in the aqueous solution for nucleation change with the nucleation caused by the supply of the raw material solution, the alkaline aqueous solution and the aqueous ammonia solution are supplied to the aqueous solution for nucleation together with the raw material solution. Then, the pH value of the aqueous solution for nucleation is maintained in the range of 12.0 to 14.0 and the ammonium ion concentration in the range of 3 g/L to 25 g/L, respectively, based on the liquid temperature of 25 ° C. Control.

(b)粒子成長工程
核生成工程の終了後、得られた種粒子の総体積(V)および平均粒径(D50)を分析し、金属塩水溶液の供給速度がM<63.4×(V/D50)-5.8となるように調節する。核生成用水溶液の液温25℃基準でのpH値を10.5~12.0の範囲、好ましくは11.0~12.0の範囲となるように調整して、粒子成長工程における反応水溶液である粒子成長用水溶液を得る。具体的には、この調整時のpHの制御は、アルカリ水溶液の供給量を調節することにより行う。粒子成長工程においても、粒子成長用水溶液を攪拌するための攪拌所要動力を、好ましくは3.0kW/m~25kW/m、より好ましくは5.0kW/m~25kW/m、さらに好ましくは6.0kW/m~20kW/mとなるように調節する。
(b) Particle growth step After the nucleation step, the total volume (V) and average particle diameter (D50) of the obtained seed particles were analyzed, and the supply rate of the metal salt aqueous solution was M < 63.4 × (V /D50)-5.8. The reaction aqueous solution in the particle growth step is adjusted so that the pH value of the aqueous solution for nucleation at a liquid temperature of 25° C. is in the range of 10.5 to 12.0, preferably in the range of 11.0 to 12.0. An aqueous solution for particle growth is obtained. Specifically, the pH control during this adjustment is performed by adjusting the supply amount of the alkaline aqueous solution. Also in the particle growth step, the power required for stirring the aqueous solution for particle growth is preferably 3.0 kW/m 3 to 25 kW/m 3 , more preferably 5.0 kW/m 3 to 25 kW/m 3 , and further preferably It is preferably adjusted to 6.0 kW/m 3 to 20 kW/m 3 .

核生成工程と同様に、粒子成長工程においても、原料溶液の供給による粒子成長の反応に伴って、粒子成長用水溶液のpH値およびアンモニウムイオンの濃度が変化するので、粒子成長用水溶液に対して、原料溶液とともに、アルカリ水溶液、アンモニア水溶液を供給して、粒子成長用水溶液の液温25℃基準でのpH値が10.5~12.0の範囲、アンモニウムイオンの濃度が3g/L~25g/Lの範囲に、それぞれ維持されるように制御する。なお反応槽内において、反応水溶液の温度は、好ましくは20~60℃、より好ましくは35~60℃に設定する。 As in the nucleation step, in the particle growth step as well, the pH value and ammonium ion concentration of the aqueous solution for particle growth change with the reaction of particle growth due to the supply of the raw material solution. , an aqueous alkaline solution and an aqueous ammonia solution are supplied together with the raw material solution, and the pH value of the aqueous solution for particle growth is in the range of 10.5 to 12.0 at a liquid temperature of 25 ° C., and the concentration of ammonium ions is in the range of 3 g / L to 25 g. /L range. In the reaction vessel, the temperature of the aqueous reaction solution is preferably set to 20 to 60°C, more preferably 35 to 60°C.

なお、反応槽内の雰囲気は非酸化性雰囲気とする。反応槽内に不活性ガスを導入し、反応雰囲気を酸素濃度5体積%以下、好ましくは2体積%以下の非酸化性雰囲気に制御する。酸素濃度が5体積%より高くなると、ニッケル、マンガンなどの金属の酸化が進み、疎な粒子となる。しかも、成長後の粒子のモフォロジが崩れ、タップ密度の高い粒子が得られない。ここでいう「モフォロジ」とは、粒子の外形、平均粒径、粒度分布の広がりを示す指標、球形度、結晶構造などの粒子の形態、構造に関わる特性である。 The atmosphere in the reaction vessel is a non-oxidizing atmosphere. An inert gas is introduced into the reaction vessel to control the reaction atmosphere to a non-oxidizing atmosphere with an oxygen concentration of 5% by volume or less, preferably 2% by volume or less. When the oxygen concentration is higher than 5% by volume, metals such as nickel and manganese are oxidized and become coarse particles. Moreover, the morphology of the grains after growth is destroyed, and grains with a high tap density cannot be obtained. The term "morphology" as used herein refers to characteristics relating to the form and structure of particles, such as the outer shape of particles, average particle diameter, an index indicating the spread of particle size distribution, sphericity, and crystal structure.

その後、原料溶液全量から核生成工程で用いた液量を差し引いた原料溶液量を滴下、あるいはニッケルマンガン含有複合水酸化物が所定の粒径まで成長した時点で、粒子成長工程を終了する。 After that, the particle growth step is completed when the amount of the raw material solution obtained by subtracting the liquid amount used in the nucleation step from the total amount of the raw material solution is dropped, or when the nickel-manganese-containing composite hydroxide has grown to a predetermined particle size.

以上のように、本発明の遷移金属複合水酸化物の製造方法において、得られた種粒子の総体積および平均粒径をもとに算出した金属塩水溶液の供給速度にて晶析を行なうことで、晶析途中において新たな微小粒子の発生を防ぐことができる。このため、粒度分布が狭い遷移金属複合水酸化物を高い生産性で製造することができる。 As described above, in the method for producing a transition metal composite hydroxide of the present invention, crystallization is performed at a supply rate of the aqueous metal salt solution calculated based on the total volume and average particle size of the obtained seed particles. Therefore, it is possible to prevent new microparticles from being generated during crystallization. Therefore, a transition metal composite hydroxide having a narrow particle size distribution can be produced with high productivity.

以下、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。 EXAMPLES The present invention will be described in more detail below with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.

(実施例1)
遷移金属複合水酸化物を、以下に示す方法により作製した。なお、原料として和光純薬工業株式会社製試薬(特級)を用い、遷移金属複合水酸化物を作製した。
(Example 1)
A transition metal composite hydroxide was produced by the method shown below. A reagent (special grade) manufactured by Wako Pure Chemical Industries, Ltd. was used as a raw material to prepare a transition metal composite hydroxide.

(核生成工程)
まず、反応槽(60L)内に、水を14L入れて攪拌しながら、槽内温度を40℃に設定した。この際、反応槽内に窒素ガスを30分間流通させ、反応槽内の酸素濃度を1体積%以下とした。この反応槽内の水に、25質量%水酸化ナトリウム水溶液と25質量%アンモニア水を適量加えて、槽内の反応水溶液の液温25℃基準でのpH値が12.6となるように、さらに、そのアンモニア濃度が10g/Lとなるように調節して、反応前水溶液とした。
(Nucleation step)
First, 14 L of water was put into a reaction tank (60 L), and the temperature in the tank was set to 40° C. while stirring. At this time, nitrogen gas was passed through the reaction tank for 30 minutes to make the oxygen concentration in the reaction tank 1% by volume or less. Appropriate amounts of 25% by mass sodium hydroxide aqueous solution and 25% by mass ammonia water are added to the water in the reaction tank so that the pH value of the reaction aqueous solution in the tank becomes 12.6 at a liquid temperature of 25° C. Further, the ammonia concentration was adjusted to 10 g/L to prepare a pre-reaction aqueous solution.

次に、硫酸ニッケル、硫酸コバルト、硫酸マンガンを水に溶かして2.3mol/Lの原料溶液を27L調製した。この原料溶液では、各金属元素のモル比が、Ni:Co:Mn=38:32:30となるように調整した。 Next, nickel sulfate, cobalt sulfate, and manganese sulfate were dissolved in water to prepare 27 L of a 2.3 mol/L raw material solution. In this raw material solution, the molar ratio of each metal element was adjusted to Ni:Co:Mn=38:32:30.

この原料溶液を、攪拌所要動力を21kW/mの下で、反応槽内の反応前水溶液に100mL/分の割合で3.9L加えて、反応水溶液とした。同時に、25質量%アンモニア水および25質量%水酸化ナトリウム水溶液も、この反応水溶液に一定速度で加えていき、核生成用水溶液中のアンモニア濃度を上記値に保持した状態で、25℃基準でのpH値を12.6(核生成pH値)に制御しながら、晶析反応によって、60分間の核生成を行なった。 3.9 L of this raw material solution was added to the pre-reaction aqueous solution in the reaction tank at a rate of 100 mL/min under a stirring power requirement of 21 kW/m 3 to obtain a reaction aqueous solution. At the same time, 25% by mass ammonia water and 25% by mass sodium hydroxide aqueous solution were also added to this reaction aqueous solution at a constant rate, and while the ammonia concentration in the aqueous solution for nucleation was maintained at the above value, the temperature at 25° C. The crystallization reaction allowed nucleation for 60 minutes while controlling the pH value at 12.6 (nucleation pH value).

(粒子成長工程)
核生成終了後、金属塩水溶液の供給速度をM<63.4×(V/D50)-5.8より算出するため、得られたスラリーを1000rpmで5分、3000rpmで5分遠心分離を実施し、スラリー中の種粒子体積濃度を求め、スラリーの総体積を掛け合わせることで、種粒子の総体積(V)を求めた。また、レーザ回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて、平均粒径(D50)を分析し、得られた値より、M<63.4×(V/D50)-5.8となるように、金属塩水溶液の供給速度を10.0g/分・L(L:反応槽容積1L当たりの金属水酸化物換算重量)に調節した。また、反応水溶液の液温25℃基準でのpH値は11.2となるように調節し、攪拌所要動力を6.0kW/mに調節し、反応水溶液(粒子成長用水溶液)に、再度、25質量%水酸化ナトリウム水溶液の供給を再開し、アンモニア濃度を10g/Lに保持し、かつ、液温25℃基準でのpH値を11.2に制御したまま、金属塩水溶液を加えていき晶析を行った後、晶析を終了させた。そして、生成物を水洗、濾過、乾燥させて遷移金属複合水酸化物を得た。なお、上記晶析において、pHは、pHコントローラ(株式会社日伸理化製、NPH-690D)により水酸化ナトリウム水溶液の供給量を調整することで制御され、変動幅は設定値の上下0.2の範囲内であった。
(Particle growth step)
After completion of nucleation, the resulting slurry was centrifuged at 1000 rpm for 5 minutes and then at 3000 rpm for 5 minutes in order to calculate the supply rate of the metal salt aqueous solution from M<63.4×(V/D50)−5.8. Then, the volume concentration of seed particles in the slurry was obtained, and the total volume of the seed particles was multiplied by the total volume of the slurry to obtain the total volume (V) of the seed particles. In addition, the average particle size (D50) was analyzed using a laser diffraction scattering particle size distribution analyzer (Microtrac HRA, manufactured by Nikkiso Co., Ltd.), and the obtained value was M<63.4×(V/D50 )-5.8, the feed rate of the aqueous metal salt solution was adjusted to 10.0 g/min.L (L: metal hydroxide-equivalent weight per 1 L of reaction vessel volume). Further, the pH value of the reaction aqueous solution at a liquid temperature of 25° C. is adjusted to 11.2, the power required for stirring is adjusted to 6.0 kW/m 3 , and the reaction aqueous solution (aqueous solution for particle growth) is added again. , The supply of the 25% by mass sodium hydroxide aqueous solution is resumed, the ammonia concentration is maintained at 10 g / L, and the pH value at the liquid temperature of 25 ° C. is controlled to 11.2, and the metal salt aqueous solution is added. After performing crystallization, the crystallization was terminated. Then, the product was washed with water, filtered and dried to obtain a transition metal composite hydroxide. In the above crystallization, the pH is controlled by adjusting the amount of sodium hydroxide aqueous solution supplied by a pH controller (Nisshin Rika Co., Ltd., NPH-690D), and the fluctuation range is 0.2 above and below the set value. was within the range of

(遷移金属複合水酸化物の分析)
粒子成長工程における遷移金属複合水酸化物の粒度分布を、レーザ回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて、10分ごとに計測を行なった。そして、平均粒径D50が1-2μmの新たな微小粒子の有無を確認した。
(Analysis of transition metal composite hydroxide)
The particle size distribution of the transition metal composite hydroxide in the particle growth step was measured every 10 minutes using a laser diffraction/scattering particle size distribution analyzer (Microtrac HRA manufactured by Nikkiso Co., Ltd.). Then, the presence or absence of new microparticles having an average particle diameter D50 of 1 to 2 μm was confirmed.

(比較例1)
粒子成長工程において、金属塩水溶液の供給速度を13.5g/分・L(L:反応槽容積1L当たりの金属水酸化物換算重量)に調節したこと以外は実施例1と同様にして、遷移金属複合水酸化物の晶析を実施した。
(Comparative example 1)
Transition Crystallization of metal composite hydroxide was carried out.

粒子成長工程における遷移金属複合水酸化物の粒度分布を、レーザ回折散乱式粒度分布測定装置(日機装株式会社製、マイクロトラックHRA)を用いて、10分ごとに計測を行なった。そして、新たな微小粒子の有無を確認した。 The particle size distribution of the transition metal composite hydroxide in the particle growth step was measured every 10 minutes using a laser diffraction/scattering particle size distribution analyzer (Microtrac HRA manufactured by Nikkiso Co., Ltd.). Then, the presence or absence of new microparticles was confirmed.

(比較例2)
核生成工程において、50分間の核生成を行なった。そして、粒子成長工程において、金属塩水溶液の供給速度を17.0g/分・L(L:反応槽容積1L当たりの金属水酸化物換算重量)に調節したこと以外は実施例1と同様にして、遷移金属複合水酸化物の晶析を実施した。
(Comparative example 2)
In the nucleation step, nucleation was performed for 50 minutes. Then, in the particle growth step, the same procedure as in Example 1 was performed except that the supply rate of the aqueous metal salt solution was adjusted to 17.0 g/min L (L: metal hydroxide equivalent weight per 1 L reaction vessel volume). , crystallization of transition metal composite hydroxides was carried out.

(比較例3)
核生成工程において、40分間の核生成を行なった。そして、粒子成長工程において、金属塩水溶液の供給速度を18.5g/分・L(L:反応槽容積1L当たりの金属水酸化物換算重量)に調節したこと以外は実施例1と同様にして、遷移金属複合水酸化物の晶析を実施した。
(Comparative Example 3)
In the nucleation step, nucleation was performed for 40 minutes. Then, in the particle growth step, the same procedure as in Example 1 was performed except that the supply rate of the aqueous metal salt solution was adjusted to 18.5 g/min L (L: metal hydroxide equivalent weight per 1 L reaction tank volume). , crystallization of transition metal composite hydroxides was carried out.

(比較例4)
核生成工程において、30分間の核生成を行なった。そして、粒子成長工程において、金属塩水溶液の供給速度を21.5g/分・L(L:反応槽容積1L当たりの金属水酸化物換算重量)に調節したこと以外は実施例1と同様にして、遷移金属複合水酸化物の晶析を実施した。
(Comparative Example 4)
In the nucleation step, nucleation was performed for 30 minutes. Then, in the particle growth step, the same procedure as in Example 1 was performed except that the supply rate of the metal salt aqueous solution was adjusted to 21.5 g/min L (L: metal hydroxide equivalent weight per 1 L reaction tank volume). , crystallization of transition metal composite hydroxides was carried out.

実施例1及び比較例1から4における、核生成工程の晶析時間、種粒子の総表面積、種粒子の平均粒径、金属塩水溶液の供給速度および微小粒子の発生の有無を表1に示す。表1では、微小粒子が発生しなかった場合を〇、微小粒子が発生した場合を×で示した。 Table 1 shows the crystallization time in the nucleation step, the total surface area of the seed particles, the average particle size of the seed particles, the supply rate of the aqueous metal salt solution, and the presence or absence of fine particles in Example 1 and Comparative Examples 1 to 4. . In Table 1, ◯ indicates that no microparticles were generated, and x indicates that microparticles were generated.

Figure 0007336647000001
Figure 0007336647000001

表1から、実施例1では微小粒子が発生していないことが分かる。これに対し、比較例1から4では微小粒子が発生している。実施例1及び比較例1の結果から、金属塩水溶液の供給速度が所定量より大きくなると微小粒子が発生することが分かる。 From Table 1, it can be seen that fine particles were not generated in Example 1. On the other hand, in Comparative Examples 1 to 4, fine particles are generated. From the results of Example 1 and Comparative Example 1, it can be seen that fine particles are generated when the supply rate of the metal salt aqueous solution exceeds a predetermined amount.

また、比較例2から4は、比較例1と異なる種粒子の総表面積、種粒子の平均粒径において微小粒子が発生するような、金属塩水溶液の供給速度を求めたものである。 In Comparative Examples 2 to 4, the supply rate of the aqueous metal salt solution was determined so that fine particles were generated with the total surface area of the seed particles and the average particle diameter of the seed particles different from those in Comparative Example 1.

比較例1から4における、V/D50と金属塩水溶液の供給速度Mの関係を図1に示す。図1から、微小粒子が発生した比較例1から4において、V/D50とMは比例関係にあると考えられる。 FIG. 1 shows the relationship between V/D50 and the supply rate M of the metal salt aqueous solution in Comparative Examples 1 to 4. As shown in FIG. From FIG. 1, it is considered that V/D50 and M are in a proportional relationship in Comparative Examples 1 to 4 in which fine particles were generated.

また、実施例1の供給速度は図1において、比較例1の測定点よりも供給速度が小さい領域に該当し、かつ実施例1では微小粒子は発生していない。このことから、比較例1から4のプロットから1次直線で近似した式を求めることで、微小粒子が発生しない条件を以下のように求めることができる。
M<63.4×(V/D50)-5.8 式(1)
In addition, the supply speed of Example 1 corresponds to a region where the supply speed is lower than the measurement point of Comparative Example 1 in FIG. From this, by obtaining an equation approximated by a first-order straight line from the plots of Comparative Examples 1 to 4, the conditions under which microparticles are not generated can be obtained as follows.
M<63.4×(V/D50)−5.8 Formula (1)

本発明により、粒度分布を広くする要因となる新規の微小粒子の発生が生じない、遷移金属複合水酸化物が提供される。さらに、用いる種粒子の分析値に合わせてニッケル、コバルト、マンガンを含む金属塩水溶液供給速度を増加させることが可能であることから、本発明の工業的価値はきわめて大きい。 ADVANTAGE OF THE INVENTION The present invention provides a transition metal composite hydroxide that does not generate new microparticles that broaden the particle size distribution. Furthermore, the present invention is of great industrial value because it is possible to increase the feed rate of the aqueous metal salt solution containing nickel, cobalt and manganese in accordance with the analytical value of the seed particles used.

なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although the embodiments and examples of the present invention have been described in detail as described above, it should be understood by those skilled in the art that many modifications are possible without substantially departing from the novel matters and effects of the present invention. , will be easily understood. Accordingly, all such modifications are intended to be included within the scope of the present invention.

例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、遷移金属複合水酸化物の製造方法の構成、動作も本発明の各実施形態及び各実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described at least once in the specification or drawings together with a different, broader or synonymous term can be replaced with the different term anywhere in the specification or drawings. Also, the configuration and operation of the method for producing a transition metal composite hydroxide are not limited to those described in each embodiment and each example of the present invention, and various modifications are possible.

Claims (4)

ニッケル、コバルト、マンガンのいずれか一種以上を含む遷移金属複合水酸化物の製造方法であり、
各成分遷移金属元素の金属塩または金属化合物の水溶液を、アルカリ溶液で中和する晶析反応による製造方法であり、
前記晶析反応は、少なくとも核生成工程と粒子成長工程を含み、
前記核生成工程により得られる種粒子の平均粒径D50(μm)と、種粒子の総体積V(L)としたとき、
前記粒子成長工程における、前記各成分遷移金属元素の金属塩または金属化合物の水溶液の供給速度M(g/分・L:反応槽容積1L当たりの金属水酸化物換算重量)が、次の関係式(1)を満たすことを特徴とする、遷移金属複合水酸化物の製造方法。
M<63.4×(V/D50)-5.8 式(1)
A method for producing a transition metal composite hydroxide containing one or more of nickel, cobalt, and manganese,
A manufacturing method by a crystallization reaction in which an aqueous solution of a metal salt or metal compound of each component transition metal element is neutralized with an alkaline solution,
The crystallization reaction includes at least a nucleation step and a grain growth step,
When the average particle diameter D50 (μm) of the seed particles obtained in the nucleation step and the total volume V (L) of the seed particles are
In the particle growth step, the supply rate M (g/min L: metal hydroxide equivalent weight per 1 L of reaction tank volume) of the aqueous solution of the metal salt or metal compound of each component transition metal element is expressed by the following relational expression: A method for producing a transition metal composite hydroxide, characterized by satisfying (1).
M<63.4×(V/D50)−5.8 Formula (1)
前記遷移金属複合水酸化物の各成分遷移金属元素は、少なくともニッケル、コバルト、マンガンを含む、請求項1に記載の遷移金属複合水酸化物の製造方法。 2. The method for producing a transition metal composite hydroxide according to claim 1 , wherein each component transition metal element of said transition metal composite hydroxide contains at least nickel, cobalt and manganese. 前記遷移金属複合水酸化物の各成分遷移金属元素の原子量比Ni:Co:Mn:Mが、1-x-y-z:x:y:z(ただし、0≦x≦0.5、0≦y≦0.5、0≦z≦0.1、0≦1-x-y-z≦1.0であり、MはAl、Mg、Ca、Ti、Zr、V、Cr、Nb、Mo、Hf、Ta、Wから選ばれる添加元素の1種以上)で表される、請求項1又は2に記載の遷移金属複合水酸化物の製造方法。 The atomic weight ratio Ni:Co:Mn:M of each component transition metal element of the transition metal composite hydroxide is 1-xyz:x:y:z (where 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 0.5, 0 ≤ z ≤ 0.1, 0 ≤ 1-xyz ≤ 1.0, and M is Al, Mg, Ca, Ti, Zr, V, Cr, Nb, Mo , Hf, Ta, and one or more additional elements selected from W). ニッケル、コバルト、マンガンのいずれか一種以上を含む遷移金属複合水酸化物の製造方法であり、
各成分遷移金属元素の金属塩または金属化合物の水溶液を、アルカリ溶液で中和する晶析反応による製造方法であり、
前記晶析反応の開始時に種粒子を添加し、
前記種粒子の平均粒径D50(μm)と、種粒子の総体積V(L)としたとき、
前記晶析反応における、前記各成分遷移金属元素の金属塩または金属化合物の水溶液の供給速度M(g/分・L:反応槽容積1L当たりの金属水酸化物換算重量)が、次の関係式(1)を満たすことを特徴とする、遷移金属複合水酸化物の製造方法。
M<63.4×(V/D50)-5.8 式(1)
A method for producing a transition metal composite hydroxide containing one or more of nickel, cobalt, and manganese,
A manufacturing method by a crystallization reaction in which an aqueous solution of a metal salt or metal compound of each component transition metal element is neutralized with an alkaline solution,
adding seed particles at the start of the crystallization reaction;
When the average particle size D50 (μm) of the seed particles and the total volume V (L) of the seed particles are
In the crystallization reaction, the supply rate M (g/min L: metal hydroxide equivalent weight per 1 L of reaction tank volume) of the aqueous solution of the metal salt or metal compound of each component transition metal element is expressed by the following relational expression: A method for producing a transition metal composite hydroxide, characterized by satisfying (1).
M<63.4×(V/D50)−5.8 Formula (1)
JP2019067537A 2019-03-29 2019-03-29 Method for producing transition metal composite hydroxide Active JP7336647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019067537A JP7336647B2 (en) 2019-03-29 2019-03-29 Method for producing transition metal composite hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019067537A JP7336647B2 (en) 2019-03-29 2019-03-29 Method for producing transition metal composite hydroxide

Publications (2)

Publication Number Publication Date
JP2020164372A JP2020164372A (en) 2020-10-08
JP7336647B2 true JP7336647B2 (en) 2023-09-01

Family

ID=72717197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019067537A Active JP7336647B2 (en) 2019-03-29 2019-03-29 Method for producing transition metal composite hydroxide

Country Status (1)

Country Link
JP (1) JP7336647B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100063783A1 (en) 2008-09-10 2010-03-11 Chau-Chyun Chen Systems and methods for modeling of crystallization processes
JP2018130685A (en) 2017-02-16 2018-08-23 住友金属鉱山株式会社 Prediction method of grain size distribution of crystallization grain

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0788358A (en) * 1993-09-20 1995-04-04 Kao Corp Continuous production of hardly water-soluble salt

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100063783A1 (en) 2008-09-10 2010-03-11 Chau-Chyun Chen Systems and methods for modeling of crystallization processes
JP2018130685A (en) 2017-02-16 2018-08-23 住友金属鉱山株式会社 Prediction method of grain size distribution of crystallization grain

Also Published As

Publication number Publication date
JP2020164372A (en) 2020-10-08

Similar Documents

Publication Publication Date Title
JP5626382B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
KR101576719B1 (en) Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
KR101478417B1 (en) Nickel-cobalt-manganese complex hydroxide particles and method for producing same, positive electrode active material for nonaqueous electrolyte secondary battery and method for producing same, and nonaqueous electrolyte secondary battery
JP6287970B2 (en) Nickel composite hydroxide and production method thereof
KR101757490B1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
KR101696524B1 (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
KR101644258B1 (en) Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
JP6428105B2 (en) Nickel cobalt manganese compound and method for producing the same
JP7188081B2 (en) TRANSITION METAL CONTAINING COMPOSITE HYDROXIDE AND MANUFACTURING METHOD THEREOF, POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
JP6895105B2 (en) A method for producing nickel-manganese composite hydroxide particles and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
CN109311696B (en) Scalable precipitation synthesis method for battery materials with adjustable particle size distribution
JP2017533571A (en) Positive electrode active material for lithium battery having porous structure and production method
JP2007257985A (en) Cathode active material for nonaqueous electrolyte secondary battery and its manufacturing method and nonaqueous electrolyte secondary battery using it
JP7114876B2 (en) Transition metal composite hydroxide particles and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
JP2015038878A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP7255386B2 (en) Method for producing transition metal composite hydroxide
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5943051B2 (en) Method for producing nickel cobalt composite hydroxide
JP7336647B2 (en) Method for producing transition metal composite hydroxide
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles
JP7345729B2 (en) Method for producing transition metal composite hydroxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7336647

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150