JPH1027611A - Lithium-containing compound oxide for lithium ion secondary battery and its manufacture - Google Patents

Lithium-containing compound oxide for lithium ion secondary battery and its manufacture

Info

Publication number
JPH1027611A
JPH1027611A JP8183096A JP18309696A JPH1027611A JP H1027611 A JPH1027611 A JP H1027611A JP 8183096 A JP8183096 A JP 8183096A JP 18309696 A JP18309696 A JP 18309696A JP H1027611 A JPH1027611 A JP H1027611A
Authority
JP
Japan
Prior art keywords
nickel
cobalt
hydroxide
lithium
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8183096A
Other languages
Japanese (ja)
Other versions
JP3290355B2 (en
Inventor
Takeshi Usui
臼井  猛
Tetsuji Makino
哲司 牧野
Tokuyoshi Iida
得代志 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA KAGAKU KENKYUSHO KK
Original Assignee
TANAKA KAGAKU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA KAGAKU KENKYUSHO KK filed Critical TANAKA KAGAKU KENKYUSHO KK
Priority to JP18309696A priority Critical patent/JP3290355B2/en
Publication of JPH1027611A publication Critical patent/JPH1027611A/en
Application granted granted Critical
Publication of JP3290355B2 publication Critical patent/JP3290355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To restrict the decrease of electric capacity and improve cycle property by coprecipitating at least two types of hydroxide containing cobalt with nickel hydroxide in a reaction tank and additionally coprecipitating other hydroxide than cobalt therewith. SOLUTION: A reaction tank is used to supply nickel-cobalt-M salt water solution with the controlled concentration of salt, complexing agent to form complex salt with the water solution and alkali metal hydroxide in succession. Nickel-cobalt-M complex salt is produced and then decomposed with alkali metal hydroxide to precipitate nickel-cobalt-M hydroxide. The production and decomposition of the complex salt circulated in the tank are repeated to overflow and pick up the nickel-cobalt-M hydroxide. At this time, the concentration of salt in the reaction tank is kept at 50-200mS/cm, pH is at 11.0-13.0±0.05 and a temperature is at 20-80±0.5 deg.C. In this way, initial capacity is increased and the decrease of electric capacity with the repetition of charge and discharge is restricted.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水溶媒リチウム
イオン二次電池の正極活物質材料として使用されるリチ
ウム含有複合酸化物及びその製造法に関するものであ
る。
The present invention relates to a lithium-containing composite oxide used as a positive electrode active material of a non-aqueous solvent lithium ion secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】近年、小型携帯機器が普及するのに伴
い、それらに使用される電池に小型軽量、高容量のもの
が求められている。これらの要求に対応する電池として
リチウムイオン二次電池が挙げられる。リチウムイオン
二次電池の正極活物質として使用されるニッケル酸リチ
ウムは原料に安価な水酸化ニッケルが使用されている
が、この原料を用いたリチウムイオン二次電池はサイク
ル特性が劣り、改良を図ることが検討されている。即
ち、水酸化ニッケルに関してはその結晶性が良好で、よ
り安定的に生産されることが要求される。
2. Description of the Related Art In recent years, with the spread of small portable devices, batteries used for them have been required to have small size, light weight and high capacity. Lithium-ion secondary batteries are examples of batteries that meet these requirements. Inexpensive nickel hydroxide is used as a raw material for lithium nickel oxide, which is used as a positive electrode active material for lithium ion secondary batteries, but lithium ion secondary batteries using this raw material have poor cycle characteristics and are being improved. That is being considered. That is, it is required that nickel hydroxide has good crystallinity and is produced more stably.

【0003】しかしながら、従来の水酸化ニッケルの製
造法においては上記のような特性を備えた水酸化ニッケ
ルを得ることは困難であった。従来の製造法では、pH調
整により結晶性を制御することによってX線回析におけ
る(101)面ピークの半値幅を制御した水酸化ニッケル
を得ていた。
However, it has been difficult to obtain nickel hydroxide having the above-mentioned characteristics in the conventional method for producing nickel hydroxide. In the conventional production method, nickel hydroxide was obtained in which the half-width of the (101) plane peak in X-ray diffraction was controlled by controlling the crystallinity by adjusting the pH.

【0004】上記の製造法で得られた水酸化ニッケルを
リチウム二次電池の正極活物質材料として用いた場合、
その電池の特性は乏しい、即ち充放電を繰り返すことに
より電気容量の低下が著しくサイクル特性が劣ってい
た。
When the nickel hydroxide obtained by the above-mentioned production method is used as a positive electrode active material of a lithium secondary battery,
The characteristics of the battery were poor, that is, the charge and discharge were repeated, so that the electric capacity was significantly reduced and the cycle characteristics were inferior.

【0005】[0005]

【発明が解決しようとする課題】以上のことより水酸化
ニッケル及びその製造法の改善が望まれるところであ
る。即ち、Liイオン二次電池の材料として炭酸ニッケル
を用いた場合(特公平1-294364)、任意の粉体特性を得
ることが困難であったが、本発明において得られた水酸
化ニッケルを用いることにより、任意の粉体特性を有す
るリチウム含有複合酸化物を得ることが可能になった。
From the above, it is desired to improve nickel hydroxide and its production method. That is, when nickel carbonate was used as the material of the Li-ion secondary battery (Japanese Patent Publication No. 1-294364), it was difficult to obtain any powder characteristics, but the nickel hydroxide obtained in the present invention was used. This has made it possible to obtain a lithium-containing composite oxide having arbitrary powder characteristics.

【0006】また、従来の水酸化ニッケル及びその製造
法においてpH調整にて結晶を制御しさらに改良すること
は困難であった。本発明はこのような課題を解決するも
ので、電池を構成した場合、その電池特性、即ち充放電
の繰り返しによって生じるサイクル劣化を抑制すること
を目的とするものである。
In addition, it has been difficult to control and further improve crystals by adjusting pH in conventional nickel hydroxide and its production method. SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and it is an object of the present invention to suppress battery deterioration caused by repeated charge and discharge when a battery is configured.

【0007】[0007]

【課題を解決するための手段】この課題を解決するため
に、本発明は、リチウムイオン二次電池の正極活物質材
料である水酸化ニッケルに二種以上の水酸化物を共沈さ
せ、そのうちの一種をコバルトと限定することにより,
リチウム含有複合酸化物活物質の分極特性を改善し、更
にニッケル及びコバルト以外の水酸化物を共沈させるこ
とにより、格子の安定化を図った。この複合元素共沈水
酸化物を得るために、原料として用いられるニッケル塩
水溶液中の塩濃度を制御した。
In order to solve this problem, the present invention is to co-precipitate two or more hydroxides with nickel hydroxide, which is a positive electrode active material of a lithium ion secondary battery. By limiting one type of to cobalt,
The polarization characteristics of the lithium-containing composite oxide active material were improved, and a hydroxide other than nickel and cobalt was coprecipitated to stabilize the lattice. In order to obtain the composite element coprecipitated hydroxide, the salt concentration in the nickel salt aqueous solution used as a raw material was controlled.

【0008】この方法により得られた複合元素共沈水酸
化物をリチウムイオン二次電池の正極活物質材料として
用いた場合、その電池特性が改良される。即ち、本発明
によれば、2元素共沈水酸化物であるコバルト-ニッケル
水酸化物を用いた場合に比べ初期容量が上昇し、又充放
電の繰り返しによるサイクル劣化が抑制されるので、優
れた電池となるものである。
When the composite element coprecipitated hydroxide obtained by this method is used as a positive electrode active material for a lithium ion secondary battery, its battery characteristics are improved. That is, according to the present invention, the initial capacity is increased as compared with the case of using cobalt-nickel hydroxide, which is a two-element coprecipitated hydroxide, and cycle deterioration due to repetition of charge / discharge is suppressed. It will be a battery.

【0009】[0009]

【発明の実施の形態】本発明の3元素共沈水酸化物にお
いて、各物性の数値限定は、次の理由に基づいている。
BEST MODE FOR CARRYING OUT THE INVENTION In the three-element coprecipitated hydroxide of the present invention, the numerical limits of each physical property are based on the following reasons.

【0010】(1)共沈するコバルト-Mの量に関して; ・y+z<0.1の場合、充放電の繰り返しよるサイクル劣化
が大きい。 ・y+z>0.3の場合、粒子形状が球状を帯びなくなり、又
粒度分布幅が広くなる。
(1) Regarding the amount of co-precipitated cobalt-M: When y + z <0.1, cycle deterioration due to repeated charge / discharge is large. When y + z> 0.3, the particle shape does not take on a spherical shape, and the particle size distribution width is widened.

【0011】(2)水溶液の状態から固体結晶が析出す
る機構は、水溶液が、準飽和状態、飽和状態、過飽和状
態へと移行し、結晶が析出するというものである。この
機構において、水溶液の濃度勾配の絶対値が大きいと、
析出する固体結晶は、微粒子のものが多くなる。粒子を
成長させるためには、上記機構を出来るだけゆっくりと
円滑に行う必要がある。即ち、飽和状態付近の濃度勾配
を小さくする必要がある。ところが、水酸化ニッケルの
溶解度曲線は、pHに対して非常に大きく変化する。すな
わち、水溶液中でのpHに対するニッケルの濃度勾配は、
非常に大きい。従って、通常の方法では、微粒子の生成
しか望めない。
(2) The mechanism of precipitation of solid crystals from the aqueous solution state is that the aqueous solution shifts to a quasi-saturated state, a saturated state, and a supersaturated state, and crystals are precipitated. In this mechanism, if the absolute value of the concentration gradient of the aqueous solution is large,
The precipitated solid crystals are mostly fine particles. In order to grow particles, it is necessary to perform the above mechanism as slowly and smoothly as possible. That is, it is necessary to reduce the concentration gradient near the saturation state. However, the solubility curve of nickel hydroxide changes significantly with pH. That is, the concentration gradient of nickel with respect to pH in an aqueous solution is as follows:
Very large. Therefore, only the production of fine particles can be expected by the usual method.

【0012】本発明の3元素共沈水酸化ニッケルである
コバルト-ニッケル-M水酸化物の製造法においては、ニ
ッケルを錯塩としたので、水溶液中でのpHに対するニッ
ケルの濃度勾配が小さくなり、結晶の成長が促進され
る。
In the method of the present invention for producing cobalt-nickel-M hydroxide, which is a three-element coprecipitated nickel hydroxide, since nickel is used as a complex salt, the concentration gradient of nickel with respect to pH in an aqueous solution becomes small, and Growth is promoted.

【0013】なお、上記機構の状態を維持するために
は、必要とするニッケルに見合った錯化剤及びアルカリ
金属水酸化物が常に必要となるため、反応工程は連続と
する。コバルト-ニッケル-M塩水溶液として硫酸ニッケ
ル-コバルト-M(ただしM=Caの場合、硝酸ニッケル-コバ
ルト-Ca)を用い、錯化剤としてアンモニウムイオン
供給体である硫酸アンモニウムを用いる場合、反応槽内
の反応は、次式(I)、(II)のようになる。
In order to maintain the state of the above mechanism, a complexing agent and an alkali metal hydroxide corresponding to the required nickel are always required, so that the reaction process is continuous. When nickel sulfate-cobalt-M (where M = Ca, nickel nitrate-cobalt-Ca) is used as the cobalt-nickel-M salt aqueous solution and ammonium sulfate as an ammonium ion donor is used as the complexing agent, the reaction vessel Is as shown in the following formulas (I) and (II).

【0014】 Ni1-xCoyMzSO4+(NH4)2SO4→(NH4)2Ni1-xCoyMz(SO4)2・・・(I) (NH4)2Ni1-xCoyMz(SO4)2+2NaOH→Ni1-xCoyMz(OH)2+(NH4)2SO4+Na2SO4・・・(II )Ni 1-x Co y M z SO 4 + (NH 4 ) 2 SO 4 → (NH 4 ) 2 Ni 1-x Co y M z (SO 4 ) 2 ... (I) (NH 4) 2 Ni 1-x Co y M z (SO 4 ) 2 + 2NaOH → Ni 1-x Co y M z (OH) 2 + (NH 4 ) 2 SO 4 + Na 2 SO 4・ ・ ・ (II)

【0015】上記(I)式の生成物である(NH4)2Ni1-xCo
yMz(SO4)2は溶解度が小さい。このため、上記(I)と
(II)式の反応を別の槽で行う場合には、後の槽に供給
する上記生成物の濃度を低くする必要があり、生産性が
悪かった。しかし、本発明では、一つの反応槽にて上記
(I)式と(II)式の反応が行われるので、上記生成物
の次工程への供給濃度を低くする必要はなく、生産性は
向上する。
The product of formula (I), (NH 4 ) 2 Ni 1-x Co
y M z (SO 4 ) 2 has low solubility. Therefore, when the reactions of the above formulas (I) and (II) are carried out in separate tanks, it is necessary to lower the concentration of the product supplied to the subsequent tank, resulting in poor productivity. However, in the present invention, since the reactions of the above formulas (I) and (II) are carried out in one reaction vessel, it is not necessary to reduce the concentration of the above product to be supplied to the next step, and the productivity is improved. I do.

【0016】また、硫酸アンモニウムを用いると、中性
塩効果が期待できるため、水酸化ニッケルはより高密度
になる。なお、アンモニウムイオン供給体としては硫酸
アンモニウムの他に塩化アンモニウム、炭酸アンモニウ
ム、弗化アンモニウム等が使用される。
When ammonium sulfate is used, a neutral salt effect can be expected, so that nickel hydroxide has a higher density. As the ammonium ion supplier, ammonium chloride, ammonium carbonate, ammonium fluoride, or the like is used in addition to ammonium sulfate.

【0017】本発明において、ニッケル塩水溶液の塩濃
度を100〜300mS/cmに調整し、反応槽内のpHを11.0〜13.
0の範囲内の所定値の±0.05の範囲内に維持し、温度を2
0〜80℃の範囲内の所定値の±0.5℃の範囲に維持するこ
とにより、より良好な特性を有する複合元素共沈水酸化
物が得られる。又塩濃度を調整するものとして無機塩
(硫酸ナトリウム、塩化ナトリウム)を用いた。これら
の数値限定は、次の理由に基づいている。
In the present invention, the salt concentration of the aqueous nickel salt solution is adjusted to 100 to 300 mS / cm, and the pH in the reaction tank is adjusted to 11.0 to 13.
Keep the temperature within ± 0.05 of the predetermined value within the range of 0 and keep the temperature at 2
By maintaining the predetermined value in the range of 0 to 80 ° C. within a range of ± 0.5 ° C., a composite element coprecipitated hydroxide having better characteristics can be obtained. An inorganic salt (sodium sulfate, sodium chloride) was used to adjust the salt concentration. These numerical limits are based on the following reasons.

【0018】(3)塩濃度に関して; ・50mS/cmより小さいと、結晶成長が抑制され低密度の
ものしか得られない。 ・200mS/cmより大きいと、ニッケル塩水溶液が結晶化し
やすくなり安定供給できなくなる。 ・所定値の±10の範囲にすると、結晶のばらつきが少な
くなる。
(3) Regarding salt concentration: If it is less than 50 mS / cm, crystal growth is suppressed, and only low density ones can be obtained. -If it is larger than 200 mS / cm, the nickel salt aqueous solution tends to crystallize, so that it cannot be supplied stably. -When the value is in the range of ± 10 of the predetermined value, the dispersion of the crystal is reduced.

【0019】(4)pHに関して; ・11.0より小さいと、結晶成長が速くなり、結晶が大き
くなりすぎる。 ・13.0より大きいと、結晶成長が抑制され低密度のもの
しか得られない。 ・所定値の±0.05の範囲とすると、結晶のばらつきが少
なくなる。
(4) Regarding pH: If the pH is less than 11.0, crystal growth is accelerated and crystals become too large. -If it is larger than 13.0, crystal growth is suppressed and only low density ones can be obtained. -When the value is in the range of ± 0.05 of the predetermined value, the dispersion of the crystal is reduced.

【0020】(5)温度に関して; ・20℃より低いと、Na2SO4の結晶が析出しやすくなり、
高濃度が維持できなくなる。 ・80℃より大きいと、pH計による調整が困難になる。 ・所定値の±0.5℃の範囲とすると、結晶のばらつきが
少なくなる。
(5) Regarding temperature; If the temperature is lower than 20 ° C., Na 2 SO 4 crystals are likely to precipitate,
High concentration cannot be maintained.・ If the temperature is higher than 80 ° C, adjustment with a pH meter becomes difficult. When the temperature is within the range of ± 0.5 ° C. of the predetermined value, the dispersion of crystals is reduced.

【0021】[0021]

【実施例】以下、本発明の実施例について、具体的に説
明する。
EXAMPLES Examples of the present invention will be specifically described below.

【0022】[0022]

【実施例1】コバルト塩とアルミニウム塩を含むニッケ
ル塩水溶液として硫酸ニッケルと硫酸コバルト、硫酸ア
ルミニウムの混合した水溶液を、錯化剤としてアンモニ
ウムイオン供給体である硫酸アンモニウム水溶液を、ア
ルカリ金属水酸化物として水酸化ナトリウム水溶液を、
それぞれ用い、次のように行った。
Example 1 An aqueous solution of a mixture of nickel sulfate, cobalt sulfate, and aluminum sulfate was used as an aqueous solution of a nickel salt containing a cobalt salt and an aluminum salt, and an aqueous solution of ammonium sulfate as an ammonium ion donor was used as a complexing agent. Sodium hydroxide aqueous solution,
Each was used and performed as follows.

【0023】即ち、反応槽内に、塩濃度が100mS/cmに調
整され、且つ0.6mol/lの硫酸コバルト、0.3mol/lの硫酸
アルミニウムを含む2.0mol/lの硫酸ニッケル水溶液を30
0ml/min、また、6mol/lの硫酸アンモニウム水溶液を150
ml/min、同時に連続投入した。一方、10mol/lの水酸化
ナトリウム水溶液を、反応槽内のpHが自動的に12.5に維
持されるように投入した。反応槽内の温度は45℃に維持
し、撹拌機により常に撹拌した。生成した水酸化ニッケ
ルは、オーバーフロー管からオーバーフローさせて取り
出し、水洗、脱水、乾燥処理した。こうして実施例1の3
元素共沈水酸化物を得た。
That is, a 2.0 mol / l nickel sulfate aqueous solution having a salt concentration adjusted to 100 mS / cm and containing 0.6 mol / l cobalt sulfate and 0.3 mol / l aluminum sulfate was placed in a reactor.
0 ml / min, and 6 mol / l ammonium sulfate aqueous solution
ml / min. On the other hand, a 10 mol / l sodium hydroxide aqueous solution was introduced so that the pH in the reaction tank was automatically maintained at 12.5. The temperature in the reaction vessel was maintained at 45 ° C., and was constantly stirred by a stirrer. The generated nickel hydroxide was taken out of the overflow tube by overflowing, and was washed with water, dehydrated, and dried. Thus, 3 of Example 1
An elemental coprecipitated hydroxide was obtained.

【0024】[0024]

【実施例2】0.15mol/lの硫酸コバルト、0.07mol/lの硫
酸アルミニウムを含む2.0mol/lの硫酸ニッケル水溶液を
300ml/min、また、6mol/lの硫酸アンモニウム水溶液を1
50ml/min、同時に連続投入し、その他は実施例1と同様
に行って、実施例2の3元素共沈水酸化物を得た。
Example 2 A 2.0 mol / l nickel sulfate aqueous solution containing 0.15 mol / l cobalt sulfate and 0.07 mol / l aluminum sulfate was prepared.
300 ml / min, 6 mol / l aqueous solution of ammonium sulfate
The same three-element coprecipitated hydroxide of Example 2 was obtained in the same manner as in Example 1 except that 50 ml / min was continuously charged at the same time.

【0025】[0025]

【実施例3】0.5mol/lの硫酸コバルト、0.13mol/lの硫
酸マグネシウムを含む2.0mol/lの硫酸ニッケル水溶液を
300ml/min、また、6mol/lの硫酸アンモニウム水溶液を1
50ml/min、同時に連続投入し、その他は実施例1と同様
に行って、実施例3の3元素共沈水酸化物を得た。
Example 3 A 2.0 mol / l nickel sulfate aqueous solution containing 0.5 mol / l cobalt sulfate and 0.13 mol / l magnesium sulfate was prepared.
300 ml / min, 6 mol / l aqueous solution of ammonium sulfate
The three-element coprecipitated hydroxide of Example 3 was obtained in the same manner as in Example 1, except that the mixture was continuously charged at 50 ml / min simultaneously.

【0026】[0026]

【実施例4】0.5mol/lの硝酸コバルト、0.13mol/lの硝
酸カルシウムを含む2.0mol/lの硝酸ニッケル水溶液を30
0ml/min、また、6mol/lの硝酸アンモニウム水溶液を150
ml/min、同時に連続投入し、その他は実施例1と同様に
行って、実施例4の3元素共沈水酸化物を得た。
Example 4 A 2.0 mol / l nickel nitrate aqueous solution containing 0.5 mol / l cobalt nitrate and 0.13 mol / l calcium nitrate was added to 30
0 ml / min, and 6 mol / l ammonium nitrate aqueous solution
ml / min was continuously charged at the same time, and the others were carried out in the same manner as in Example 1 to obtain a three-element coprecipitated hydroxide of Example 4.

【0027】[0027]

【実施例5】0.5mol/lの硫酸コバルト、0.13mol/lの硫
酸チタンを含む2.0mol/lの硫酸ニッケル水溶液を300ml/
min、また、6mol/lの硫酸アンモニウム水溶液を150ml/m
in、同時に連続投入し、その他は実施例1と同様に行っ
て、実施例5の3元素共沈水酸化物を得た。
Example 5 A 2.0 mol / l nickel sulfate aqueous solution containing 0.5 mol / l cobalt sulfate and 0.13 mol / l titanium sulfate was added to 300 ml /
min, and a 6 mol / l aqueous solution of ammonium sulfate at 150 ml / m
in, and were continuously charged at the same time, and otherwise performed in the same manner as in Example 1 to obtain a three-element coprecipitated hydroxide of Example 5.

【0028】[0028]

【実施例6】0.5mol/lの硫酸コバルト、0.13mol/lの硫
酸バナジウムを含む2.0mol/lの硫酸ニッケル水溶液を30
0ml/min、また、6mol/lの硫酸アンモニウム水溶液を150
ml/min、同時に連続投入し、その他は実施例1と同様に
行って、実施例6の3元素共沈水酸化物を得た。
EXAMPLE 6 A 2.0 mol / l nickel sulfate aqueous solution containing 0.5 mol / l cobalt sulfate and 0.13 mol / l vanadium sulfate was added to 30
0 ml / min, and 6 mol / l ammonium sulfate aqueous solution
ml / min was continuously charged at the same time, and the others were carried out in the same manner as in Example 1 to obtain a three-element coprecipitated hydroxide of Example 6.

【0029】[0029]

【実施例7】0.5mol/lの硫酸コバルト、0.13mol/lの硫
酸クロムを含む2.0mol/lの硫酸ニッケル水溶液を300ml/
min、また、6mol/lの硫酸アンモニウム水溶液を150ml/m
in、同時に連続投入し、その他は実施例1と同様に行っ
て、実施例7の3元素共沈水酸化物を得た。
Example 7 A 2.0 mol / l nickel sulfate aqueous solution containing 0.5 mol / l cobalt sulfate and 0.13 mol / l chromium sulfate was added to 300 ml /
min, and a 6 mol / l aqueous solution of ammonium sulfate at 150 ml / m
in, and they were continuously charged at the same time, and the others were carried out in the same manner as in Example 1 to obtain a three-element coprecipitated hydroxide of Example 7.

【0030】[0030]

【実施例8】0.5mol/lの硫酸コバルト、0.13mol/lの硫
酸マンガンを含む2.0mol/lの硫酸ニッケル水溶液を300m
l/min、また、6mol/lの硫酸アンモニウム水溶液を150ml
/min、同時に連続投入し、その他は実施例1と同様に行
って、実施例8の3元素共沈水酸化物を得た。
Example 8 A 2.0 mol / l nickel sulfate aqueous solution containing 0.5 mol / l cobalt sulfate and 0.13 mol / l manganese sulfate was treated with 300 m
l / min, 6 mol / l ammonium sulfate aqueous solution 150 ml
/ min at the same time and continuously, and the others were carried out in the same manner as in Example 1 to obtain a three-element coprecipitated hydroxide of Example 8.

【0031】[0031]

【実施例9】0.5mol/lの硫酸コバルト、6.5×10-2mol/l
の硫酸第二鉄を含む2.0mol/lの硫酸ニッケル水溶液を30
0ml/min、また、6mol/lの硫酸アンモニウム水溶液を150
ml/min、同時に連続投入し、その他は実施例1と同様に
行って、実施例9の3元素共沈水酸化物を得た。
Example 9 0.5 mol / l cobalt sulfate, 6.5 × 10−2 mol / l
2.0 mol / l nickel sulfate aqueous solution containing ferric sulfate
0 ml / min, and 6 mol / l ammonium sulfate aqueous solution
ml / min was continuously charged at the same time, and the others were carried out in the same manner as in Example 1 to obtain a three-element coprecipitated hydroxide of Example 9.

【0032】[0032]

【実施例10】0.25mol/lの硝酸コバルト、0.13mol/lの
硝酸マグネシウム及び硝酸カルシウムを含む2.0mol/lの
硝酸ニッケル水溶液を300ml/min、また、6mol/lの硝酸
アンモニウム水溶液を150ml/min、同時に連続投入し、
その他は実施例1と同様に行って、実施例10の4元素共沈
水酸化物を得た。
Example 10 A 2.0 mol / l nickel nitrate aqueous solution containing 0.25 mol / l cobalt nitrate, 0.13 mol / l magnesium nitrate and calcium nitrate was 300 ml / min, and a 6 mol / l ammonium nitrate aqueous solution was 150 ml / min. , At the same time,
The other conditions were the same as in Example 1 to obtain the four-element coprecipitated hydroxide of Example 10.

【0033】[0033]

【比較例1】0.5mol/lの硫酸コバルトを含む2.0mol/lの
硫酸ニッケル水溶液を300ml/min、また、6mol/lの硫酸
アンモニウム水溶液を150ml/min、同時に連続投入し、
その他は実施例1と同様に行って、比較例1の2元素共沈
水酸化物を得た。
Comparative Example 1 A 2.0 mol / l aqueous solution of nickel sulfate containing 0.5 mol / l of cobalt sulfate was continuously and simultaneously supplied with 300 ml / min, and an aqueous solution of 6 mol / l of ammonium sulfate at 150 ml / min.
Otherwise in the same manner as in Example 1, the two-element coprecipitated hydroxide of Comparative Example 1 was obtained.

【0034】[0034]

【比較例2】8.0×10-2mol/lの硫酸コバルト、2.0×10-
2mol/lの硫酸アルミニウムを含む2.0mol/lの硫酸ニッケ
ル水溶液を300ml/min、また、6mol/lの硫酸アンモニウ
ム水溶液を150ml/min、同時に連続投入し、その他は実
施例1と同様に行って、比較例2の3元素共沈水酸化物を
得た。
Comparative Example 2 8.0 × 10−2 mol / l cobalt sulfate, 2.0 × 10−
300 mol / min of a 2.0 mol / l aqueous solution of nickel sulfate containing 2 mol / l of aluminum sulfate, and 150 ml / min of an aqueous solution of 6 mol / l of ammonium sulfate simultaneously and continuously, and in the same manner as in Example 1, The three-element coprecipitated hydroxide of Comparative Example 2 was obtained.

【0035】[0035]

【比較例3】5.0×10-2mol/lの硫酸コバルト、0.45mol/
lの硫酸アルミニウムを含む2.0mol/lの硫酸ニッケル水
溶液を300ml/min、また、6mol/lの硫酸アンモニウム水
溶液を150ml/min、同時に連続投入し、その他は実施例1
と同様に行って、比較例3の2元素共沈水酸化物を得た。
Comparative Example 3 5.0 × 10 −2 mol / l cobalt sulfate, 0.45 mol / l
300 ml / min of a 2.0 mol / l aqueous solution of nickel sulfate containing 1 l of aluminum sulfate, and 150 ml / min of an aqueous solution of 6 mol / l of ammonium sulfate at the same time.
Was carried out in the same manner as in the above to obtain a two-element coprecipitated hydroxide of Comparative Example 3.

【0036】[0036]

【比較例4】0.3mol/lの硫酸コバルト、1.0mol/lの硫酸
アルミニウムを含む2.0mol/lの硫酸ニッケル水溶液を30
0ml/min、また、6mol/lの硫酸アンモニウム水溶液を150
ml/min、同時に連続投入し、その他は実施例1と同様に
行って、比較例4の2元素共沈水酸化物を得た。
Comparative Example 4 A 2.0 mol / l nickel sulfate aqueous solution containing 0.3 mol / l cobalt sulfate and 1.0 mol / l aluminum sulfate was added to 30
0 ml / min, and 6 mol / l ammonium sulfate aqueous solution
ml / min was continuously charged at the same time, and the other steps were carried out in the same manner as in Example 1 to obtain a two-element coprecipitated hydroxide of Comparative Example 4.

【0037】[0037]

【比較例5】5.0×10-2mol/lの硫酸コバルト、0.45mol/
lの硫酸マグネシウムを含む2.0mol/lの硫酸ニッケル水
溶液を300ml/min、また、6mol/lの硫酸アンモニウム水
溶液を150ml/min、同時に連続投入し、その他は実施例1
と同様に行って、比較例5の3元素共沈水酸化物を得た。
Comparative Example 5 5.0 × 10−2 mol / l cobalt sulfate, 0.45 mol / l
1 mol of 2.0 mol / l nickel sulfate aqueous solution containing magnesium sulfate at 300 ml / min, and 6 mol / l ammonium sulfate aqueous solution at 150 ml / min, continuously and simultaneously.
In the same manner as in the above, a three-element coprecipitated hydroxide of Comparative Example 5 was obtained.

【0038】実施例1〜7と比較例1〜4によって得られた
複合元素共沈水酸化物の原料液とその得られた粉体の成
分組成を示すと表1の通りである。
Table 1 shows the raw material liquids of the composite element coprecipitated hydroxide obtained in Examples 1 to 7 and Comparative Examples 1 to 4 and the component compositions of the obtained powder.

【0039】[0039]

【表1】 [Table 1]

【0040】電池評価 複合元素共沈水酸化物のLiイオン電池正極活物質用材料
としての有効性を示すように、および、従来の水酸化ニ
ッケルからの改良点を明確にするために、以下のように
して実施例1〜10および比較例1〜5の複合元素共沈水酸
化物からリチウム含有複合酸化物を合成し、電池特性の
評価を行った。
Battery Evaluation In order to demonstrate the effectiveness of the composite element coprecipitated hydroxide as a material for a positive electrode active material of a Li-ion battery, and to clarify improvements over the conventional nickel hydroxide, the following was carried out. Then, lithium-containing composite oxides were synthesized from the composite element coprecipitated hydroxides of Examples 1 to 10 and Comparative Examples 1 to 5, and the battery characteristics were evaluated.

【0041】試験例 (リチウム含有複合酸化物の合成)水酸化リチウム・1
水和物と実施例1のAl-Co-Ni共沈水酸化ニッケルを(Li:
(Ni+Co+Al))=1.03:1.00のモル比で混合し、酸素中、650
℃で4時間加熱した後、酸素中、750℃で10時間反応させ
てLi(Ni0.70Co0.20Al0.10)O2 (アルミニウム-コバルト
-ニッケル)酸リチウムを合成した。
Test Example (Synthesis of lithium-containing composite oxide) Lithium hydroxide-1
The hydrate and the Al-Co-Ni coprecipitated nickel hydroxide of Example 1 (Li:
(Ni + Co + Al)) = 1.03: 1.00 mixed in a molar ratio, in oxygen, 650
After heating at 4 ° C for 4 hours, the reaction was carried out in oxygen at 750 ° C for 10 hours. Li (Ni 0.70 Co 0.20 Al 0.10 ) O 2 (aluminum-cobalt
-Nickel) lithium was synthesized.

【0042】(電池作製)正極は、上記のようにして得
たアルミニウム-コバルト-ニッケル酸リチウムと、導電
剤としてのアセチレンブラックと、結着剤としてのポリ
テトラフルオロエチレンとを、重量比50:40:10で混合し
て正極合剤を得た後、この正極合剤を加圧成形し、直径
16mm、厚さ0.3mmの円板状に切り抜いて作製した。
(Production of Battery) The positive electrode was prepared by mixing the aluminum-cobalt-lithium nickelate obtained as described above, acetylene black as a conductive agent, and polytetrafluoroethylene as a binder in a weight ratio of 50:50. After mixing at 40:10 to obtain a positive electrode mixture, this positive electrode mixture was molded under pressure, and the diameter was adjusted.
It was cut out into a disk having a thickness of 16 mm and a thickness of 0.3 mm.

【0043】負極は、金属リチウム薄膜を直径16mmの円
板状に切り抜いて作製した。参照極は、ニッケル線の先
端にリチウム箔片を巻き付けて作製した。電解液は、等
しい体積のプロピレンカーボネートと、1.2-ジメトキシ
エタンとを混合し、これにLiClO4を1mol/lの割合で溶解
させて作製した。
The negative electrode was manufactured by cutting a thin metal lithium film into a disk shape having a diameter of 16 mm. The reference electrode was made by winding a piece of lithium foil around the tip of a nickel wire. The electrolyte was prepared by mixing equal volumes of propylene carbonate and 1.2-dimethoxyethane and dissolving LiClO 4 at a rate of 1 mol / l.

【0044】上記にようにして作製した正極、負極、参
照極、及び非水電解液を用いて、図1に示す評価用電池
を組み立てた。この電池は三電極電池である。図1にお
いて、1は正極、2は負極、3はセパレーター、4は非水電
解液、5は参照極、6はセル本体、7は正極ホルダー、8は
負極ホルダーである。非水電解液4は、セル本体6と両ホ
ルダー7、8とで囲まれた空間に充満されている。正極1
は、正極ホルダー7のうち側にスポット溶接で固定され
たチタンメッシュ11上に載せられた後、さらにチタンメ
ッシュ21に挟持されている。セパレター3としては、イ
オン透過性を有するポリプロピレン製の微孔性多孔膜を
用いている。セパレーター3には非水電解液が含浸され
ている。
Using the positive electrode, the negative electrode, the reference electrode, and the nonaqueous electrolyte prepared as described above, an evaluation battery shown in FIG. 1 was assembled. This battery is a three-electrode battery. In FIG. 1, 1 is a positive electrode, 2 is a negative electrode, 3 is a separator, 4 is a non-aqueous electrolyte, 5 is a reference electrode, 6 is a cell body, 7 is a positive electrode holder, and 8 is a negative electrode holder. The nonaqueous electrolyte 4 is filled in a space surrounded by the cell body 6 and the holders 7 and 8. Positive electrode 1
Is placed on the titanium mesh 11 fixed to the side of the positive electrode holder 7 by spot welding, and is further sandwiched by the titanium mesh 21. As the separator 3, a microporous porous membrane made of polypropylene having ion permeability is used. The separator 3 is impregnated with a non-aqueous electrolyte.

【0045】(充放電サイクル試験)作製した電池を用
いて充放電サイクル試験を行った。充放電サイクルは、
1/36CmAにて4.2Vまで充電し、1/24CmAにて3.0Vまで放電
させ、これを繰り返した。なお、正極活物質を重点的に
検討するため、上記評価用電池において、電池電位とし
て正極と参照極とのポテンシャルを測定した。
(Charge / Discharge Cycle Test) A charge / discharge cycle test was performed using the prepared batteries. The charge and discharge cycle is
The battery was charged to 4.2 V at 1/36 CmA and discharged to 3.0 V at 1/24 CmA, and this was repeated. In order to focus on the positive electrode active material, the potential of the positive electrode and the reference electrode was measured as the battery potential in the battery for evaluation.

【0046】実施例2の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.90Co0.07A
l0.03)O2(アルミニウム-コバルト-ニッケル)酸リチウ
ムを合成し、電池作製の後、充放電サイクル試験を行っ
た。
The tri-element coprecipitated hydroxide of Example 2 was treated in the same manner as the tri-element co-precipitated hydroxide of Example 1 to obtain Li (Ni 0.90 Co 0.07 A
l 0.03 ) O 2 (aluminum-cobalt-nickel) lithium was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0047】実施例3の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.75Co0.20M
g0.05)O2(マグネシウム-コバルト-ニッケル)酸リチウ
ムを合成し、電池作製の後、充放電サイクル試験を行っ
た。
The three-element coprecipitated hydroxide of Example 3 was treated in the same manner as in the three-element coprecipitated hydroxide of Li (Ni 0.75 Co 0.20 M
g 0.05 ) Lithium O 2 (magnesium-cobalt-nickel) ate was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0048】実施例4の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.75Co0.20C
a0.05)O2 (カルシウム-コバルト-ニッケル)酸リチウ
ムを合成し、電池作製の後、充放電サイクル試験を行っ
た。
The tri-element coprecipitated hydroxide of Example 4 was treated in the same manner as the tri-element co-precipitated hydroxide of Example 1 to obtain Li (Ni 0.75 Co 0.20 C
a 0.05 ) Lithium O 2 (calcium-cobalt-nickel) ate was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0049】実施例5の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.75Co0.20T
i0.05)O2 (チタン-コバルト-ニッケル)酸リチウムを
合成し、電池作製の後、充放電サイクル試験を行った。
The tri-element coprecipitated hydroxide of Example 5 was treated in the same manner as the tri-element co-precipitated hydroxide of Example 1 to obtain Li (Ni 0.75 Co 0.20 T
i 0.05 ) Lithium O 2 (titanium-cobalt-nickel) ate was synthesized, and a battery was prepared and subjected to a charge / discharge cycle test.

【0050】実施例6の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.75Co0.20V
0.05)O2(バナジウム-コバルト-ニッケル)酸リチウム
を合成し、電池作製の後、充放電サイクル試験を行っ
た。
The triprecipitated hydroxide of Example 6 was treated in the same manner as the triprecipitated hydroxide of Example 1 to obtain Li (Ni 0.75 Co 0.20 V
0.05 ) Lithium O 2 (vanadium-cobalt-nickel) ate was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0051】実施例7の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.75Co0.20C
r0.05)O2(クロム-コバルト-ニッケル)酸リチウムを合
成し、電池作製の後、充放電サイクル試験を行った。
The ternary coprecipitated hydroxide of Example 7 was treated in the same manner as the ternary coprecipitated hydroxide of Example 1 to obtain Li (Ni 0.75 Co 0.20 C
r 0.05 ) Lithium O 2 (chromium-cobalt-nickel) oxide was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0052】実施例8の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.75Co0.20M
n0.05)O2(マンガン-コバルト-ニッケル)酸リチウムを
合成し、電池作製の後、充放電サイクル試験を行った。
The ternary coprecipitated hydroxide of Example 8 was treated in the same manner as the ternary coprecipitated hydroxide of Example 1 to obtain Li (Ni 0.75 Co 0.20 M
n 0.05 ) O 2 (manganese-cobalt-nickel) lithium was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0053】実施例9の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.75Co0.20F
e0.05)O2(鉄-コバルト-ニッケル)酸リチウムを合成
し、電池作製の後、充放電サイクル試験を行った。
The ternary coprecipitated hydroxide of Example 9 was treated in the same manner as in the ternary coprecipitated hydroxide of Example 1 to obtain Li (Ni 0.75 Co 0.20 F
e 0.05 ) Lithium O 2 (iron-cobalt-nickel) oxide was synthesized, and a battery was prepared and subjected to a charge / discharge cycle test.

【0054】実施例10の4元素共沈水酸化物ついて、実
施例1の3元素共沈水酸化物と同様にしてLi(Ni0.80Co
0.10Ca0.05Mg0.05)O2(マグネシウム-カルシウム-コバ
ルト-ニッケル)酸リチウムを合成し、電池作製の後、
充放電サイクル試験を行った。
The four-element coprecipitated hydroxide of Example 10 was treated in the same manner as the three-element coprecipitated hydroxide of Example 1 to obtain Li (Ni 0.80 Co
0.10 Ca 0.05 Mg 0.05 ) O 2 (magnesium-calcium-cobalt-nickel) lithium is synthesized, and after battery fabrication,
A charge / discharge cycle test was performed.

【0055】比較例1の2元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.80Co0.20)
O2(コバルト-ニッケル)酸リチウムを合成し、電池作
製の後、充放電サイクル試験を行った。
With respect to the two-element coprecipitated hydroxide of Comparative Example 1, Li (Ni 0.80 Co 0.20 )
Lithium O 2 (cobalt-nickel) oxide was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0056】比較例2の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.95Co0.04A
l0.01)O2(アルミニウム-コバルト-ニッケル)酸リチウ
ムを合成し、電池作製の後、充放電サイクル試験を行っ
た。
The tri-element coprecipitated hydroxide of Comparative Example 2 was subjected to Li (Ni 0.95 Co 0.04 A
l 0.01 ) O 2 (aluminum-cobalt-nickel) lithium was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0057】比較例3の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.80Co0.02A
l0.18)O2(アルミニウム-コバルト-ニッケル)酸リチウ
ムを合成し、電池作製の後、充放電サイクル試験を行っ
た。
The three-element coprecipitated hydroxide of Comparative Example 3 was treated in the same manner as the three-element coprecipitated hydroxide of Example 1 to obtain Li (Ni 0.80 Co 0.02 A
l 0.18 ) Lithium O 2 (aluminum-cobalt-nickel) oxide was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0058】比較例4の3元素共沈水酸化物ついて、実施
例1の3元素共沈水酸化物と同様にしてLi(Ni0.60Co0.10A
l0.30)O2(アルミニウム-コバルト-ニッケル)酸リチウ
ムを合成し、電池作製の後、充放電サイクル試験を行っ
た。
The tri-element coprecipitated hydroxide of Comparative Example 4 was treated in the same manner as in Example 1 to form a Li (Ni 0.60 Co 0.10 A
l 0.30 ) O 2 (aluminum-cobalt-nickel) lithium was synthesized, and after a battery was prepared, a charge / discharge cycle test was performed.

【0059】比較例5の3元素共沈水酸化物ついて、実
施例1の3元素共沈水酸化物と同様にしてLi(Ni0.80Co
0.02Mg0.15)O2(マグネシウム-コバルト-ニッケル)酸
リチウムを合成し、電池作製の後、充放電サイクル試験
を行った。
The tri-element coprecipitated hydroxide of Comparative Example 5 was subjected to Li (Ni 0.80 Co
Lithium 0.02 Mg 0.15 ) O 2 (magnesium-cobalt-nickel) was synthesized, and a battery was prepared and subjected to a charge / discharge cycle test.

【0060】実施例1〜10及び比較例1〜5のリチウム含
有複合酸化物の充放電サイクル試験の結果を表2及び表3
に示す。
Tables 2 and 3 show the results of the charge / discharge cycle test of the lithium-containing composite oxides of Examples 1 to 10 and Comparative Examples 1 to 5.
Shown in

【0061】[0061]

【表2】 [Table 2]

【0062】[0062]

【表3】 [Table 3]

【0063】[0063]

【発明の効果】以上のように、本発明の複合元素共沈水
酸化物によれば、2元素共沈水酸化物と比較すると初期
容量の上昇が認められ且つ充放電の繰り返しによる電気
容量の低下を抑制する、即ちサイクル特性を十分に向上
させることができる。
As described above, according to the composite element coprecipitated hydroxide of the present invention, an increase in the initial capacity is observed as compared with the binary element coprecipitated hydroxide, and a decrease in the electric capacity due to repetition of charging and discharging is observed. In other words, the cycle characteristics can be sufficiently improved.

【0064】また、本発明の3元素共沈水酸化物の製造
法によれば、ニッケル錯塩の生成と分解を繰り返すこと
により、結晶の成長をゆっくりと進行させることがで
き、球状で結晶性の良好なCo共沈水酸化ニッケルを得る
ことができる。
In addition, according to the method for producing a three-element coprecipitated hydroxide of the present invention, the crystal growth can be progressed slowly by repeating the formation and decomposition of the nickel complex salt. Co-precipitated nickel hydroxide can be obtained.

【0065】なお、上記方法において、コバルト-M塩を
含むニッケル塩水溶液の塩濃度を維持すれば、より結晶
の成長をゆっくりと進行させることができ、即ち粉体特
性の制御が容易になり、より良好な特性を有する3元素
共沈水酸化物を得ることができる。
In the above method, if the salt concentration of the nickel salt aqueous solution containing the cobalt-M salt is maintained, the crystal growth can proceed more slowly, that is, the control of the powder characteristics becomes easy, A three-element coprecipitated hydroxide having better characteristics can be obtained.

【0066】また、上記方法において、反応槽内のpHを
11.0〜13.0の範囲内の所定値の±0.05の範囲内に維持
し、温度を20〜80℃の範囲内の所定値の±0.5℃の範囲
に維持すれば、より良好な特性を有する3元素共沈水酸
化物を得ることができる。
In the above method, the pH in the reaction tank is adjusted
If the temperature is maintained in the range of ± 0.5 ° C. of the predetermined value in the range of 20 to 80 ° C., the three elements having better characteristics are maintained in the range of ± 0.05 of the predetermined value in the range of 11.0 to 13.0. A coprecipitated hydroxide can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 正極、負極、参照極及び非水電解液を備えた
評価用電池を示す図である。
FIG. 1 is a diagram showing an evaluation battery including a positive electrode, a negative electrode, a reference electrode, and a non-aqueous electrolyte.

【符号の説明】[Explanation of symbols]

1:正極 2:負極 3:セパレーター 4:非水電解液 5:参照極 1: Positive electrode 2: Negative electrode 3: Separator 4: Non-aqueous electrolyte 5: Reference electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式 LiNi1-xCoyMzO2 (ただし、0.1
≦x≦0.3、0.05≦y≦0.28、0.02≦z≦0.25、x=y+zであ
り、MはMg、Al、Ca、Ti、V、Cr、Mn、Feのうち少なく
とも一種以上から成る)で表されるリチウムイオン二次
電池用のリチウム含有複合酸化物。
[Claim 1] The general formula LiNi 1-x Co y M z O 2 (0.1
≤ x ≤ 0.3, 0.05 ≤ y ≤ 0.28, 0.02 ≤ z ≤ 0.25, x = y + z, M is at least one of Mg, Al, Ca, Ti, V, Cr, Mn, Fe) A lithium-containing composite oxide for a lithium ion secondary battery represented by the formula:
【請求項2】 一般式 LiNi1-xCoyMzO2 (ただし、0.1
≦x≦0.3、0.05≦y≦0.28、0.02≦z≦0.25、x=y+zであ
り、MはMg、Al、Ca、Ti、V、Cr、Mn、Feのうち少なく
とも一種以上から成る)で表されるリチウム含有複合酸
化物の製造法であって、反応槽を用い、これに塩濃度が
調整されたニッケル-コバルト-M塩水溶液、その水溶液
と錯塩を形成する錯化剤、及びアルカリ金属水酸化物を
それぞれ連続的に供給し、ニッケル-コバルト-M錯塩を
生成させ、次いでこの錯塩をアルカリ金属水酸化物によ
り分解してニッケル-コバルト-M水酸化物を析出させ、
上記錯塩の生成及び分解を槽内で循環させながら繰り返
し、ニッケル-コバルト-M水酸化物をオーバーフローさ
せて取り出すことにより得られる粒子形状が略球状であ
るニッケルーコバルトーM水酸化物を原料として用いる
か、或いは更にこれを焼成してニッケルーコバルトーM
酸化物とした後に、これにリチウム塩を混合し、焼成す
ることを特徴とする請求項1に記載のリチウム含有複合
酸化物の製造法。
2. The general formula LiNi 1-x Co y M z O 2 (provided that 0.1
≤ x ≤ 0.3, 0.05 ≤ y ≤ 0.28, 0.02 ≤ z ≤ 0.25, x = y + z, M is at least one of Mg, Al, Ca, Ti, V, Cr, Mn, Fe) A method for producing a lithium-containing composite oxide represented by the formula, using a reaction vessel, a salt concentration adjusted nickel-cobalt-M salt aqueous solution, a complexing agent that forms a complex salt with the aqueous solution, and an alkali Each metal hydroxide is continuously supplied to produce a nickel-cobalt-M complex salt, and then the complex salt is decomposed by an alkali metal hydroxide to precipitate nickel-cobalt-M hydroxide,
The formation and decomposition of the above complex salt are repeated while circulating in the tank, and the nickel-cobalt-M hydroxide obtained by overflowing and taking out the nickel-cobalt-M hydroxide has a substantially spherical particle shape. Or further sintering it to make nickel-cobalt-M
2. The method for producing a lithium-containing composite oxide according to claim 1, wherein a lithium salt is mixed with the oxide and then calcined.
【請求項3】 錯化剤として、アンモニウムイオン供給
体、ヒドラジン、エチレンジアミン四酢酸、ニトリト三
酢酸、ウラシル二酢酸、ジメチルグリオキシム、ジチゾ
ン、オキシン、アセチルアセトン、又はグリシンを用い
る請求項2記載のリチウム含有複合酸化物の製造法。
3. The lithium-containing composition according to claim 2, wherein the complexing agent is an ammonium ion donor, hydrazine, ethylenediaminetetraacetic acid, nitritotriacetic acid, uracildiacetate, dimethylglyoxime, dithizone, oxine, acetylacetone, or glycine. A method for producing a composite oxide.
【請求項4】 塩濃度が50〜200mS/cm、反応槽内のpHを
11.0〜13.0の範囲内の所定値の±0.05の範囲内に維持
し、温度を20〜80℃の範囲内の所定値の±0.5℃の範囲
に維持する請求項2記載のリチウム含有複合酸化物の製
造法。
4. A salt concentration of 50 to 200 mS / cm and a pH in the reaction vessel
The lithium-containing composite oxide according to claim 2, wherein the temperature is maintained within a range of ± 0.5 ° C of a predetermined value within a range of 20 to 80 ° C, and the temperature is maintained within a range of ± 0.05 of a predetermined value within a range of 11.0 to 13.0. Manufacturing method.
JP18309696A 1996-07-12 1996-07-12 Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same Expired - Fee Related JP3290355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18309696A JP3290355B2 (en) 1996-07-12 1996-07-12 Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18309696A JP3290355B2 (en) 1996-07-12 1996-07-12 Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1027611A true JPH1027611A (en) 1998-01-27
JP3290355B2 JP3290355B2 (en) 2002-06-10

Family

ID=16129702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18309696A Expired - Fee Related JP3290355B2 (en) 1996-07-12 1996-07-12 Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3290355B2 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243392A (en) * 1999-02-16 2000-09-08 Mitsubishi Electric Corp Positive electrode active material, its manufacture and lithium ion secondary battery using positive electrode active material
JP2001028265A (en) * 1999-06-17 2001-01-30 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery and manufacture thereof
US6207325B1 (en) 1997-05-19 2001-03-27 Showa Denko K.K. Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells
US6277521B1 (en) * 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
JP2004531034A (en) * 2001-06-15 2004-10-07 呉羽化学工業株式会社 Cathode materials for lithium secondary batteries
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
JP2005123111A (en) * 2003-10-20 2005-05-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
WO2005096416A1 (en) * 2004-04-02 2005-10-13 Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2006147499A (en) * 2004-11-24 2006-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP2006232608A (en) * 2005-02-24 2006-09-07 Mitsubishi Chemicals Corp Oxide with rock salt type crystal structure, lithium-nickel multiple oxide using the same, method for producing the same and method for producing lithium secondary battery using the same
JP2007070205A (en) * 2005-09-09 2007-03-22 Tanaka Chemical Corp Nickel manganese cobalt composite oxide and manufacturing method therefor
JP2007265784A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2008037749A (en) * 1996-08-12 2008-02-21 Toda Kogyo Corp Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery
JP2008133149A (en) * 2006-11-28 2008-06-12 National Institute Of Advanced Industrial & Technology Method for production of lithium-iron-manganese composite oxide
US7410511B2 (en) 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP2008195610A (en) * 1997-05-19 2008-08-28 Showa Denko Kk Lithium-containing compound metal oxide and its production and use
JP2008198364A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2008257902A (en) * 2007-04-02 2008-10-23 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
DE102007039471A1 (en) 2007-08-21 2009-02-26 H.C. Starck Gmbh Powdered compounds, process for their preparation and their use in lithium secondary batteries
DE102007049108A1 (en) 2007-10-12 2009-04-16 H.C. Starck Gmbh Powdered compounds, process for their preparation and their use in batteries
US7585435B2 (en) * 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2011181193A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Mining Co Ltd Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide
JP2013033759A (en) * 2012-11-07 2013-02-14 Mitsubishi Chemicals Corp Layered lithium nickel manganese complex oxide
JPWO2011108655A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8673499B2 (en) * 2005-06-16 2014-03-18 Panasonic Corporation Lithium ion secondary battery
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide
JP2015056368A (en) * 2013-09-13 2015-03-23 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003089526A (en) * 2001-09-12 2003-03-28 Mitsubishi Chemicals Corp Lithium nickel manganese multiple oxide, positive electrode material for lithium secondary cell by using the same, positive electrode for lithium secondary cell, and lithium secondary cell

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008037749A (en) * 1996-08-12 2008-02-21 Toda Kogyo Corp Lithium nickel cobalt composite oxide, its manufacturing method and cathode active material for secondary battery
US6277521B1 (en) * 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6207325B1 (en) 1997-05-19 2001-03-27 Showa Denko K.K. Lithium-containing complex metal oxide, preparation methods thereof, and cathode electroactive material using the same and lithium secondary cells
JP2008195610A (en) * 1997-05-19 2008-08-28 Showa Denko Kk Lithium-containing compound metal oxide and its production and use
US7074382B2 (en) 1998-11-13 2006-07-11 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US6620400B2 (en) 1998-11-13 2003-09-16 Fmc Corporation Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
JP2000243392A (en) * 1999-02-16 2000-09-08 Mitsubishi Electric Corp Positive electrode active material, its manufacture and lithium ion secondary battery using positive electrode active material
JP2001028265A (en) * 1999-06-17 2001-01-30 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery and manufacture thereof
US6932922B2 (en) 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US7585432B2 (en) * 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
US7585435B2 (en) * 2000-11-06 2009-09-08 Tanaka Chemical Corporation High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2008195608A (en) * 2000-11-06 2008-08-28 Tanaka Chemical Corp High density cobalt-manganese coprecipitated nickel hydroxide and process for its production
JP2002145623A (en) * 2000-11-06 2002-05-22 Seimi Chem Co Ltd Lithium-containing transition metal multiple oxide and manufacturing method thereof
JP2002338250A (en) * 2001-05-17 2002-11-27 Mitsubishi Chemicals Corp Method for producing layered lithium-nickel-manganese composite oxide
JP2004533104A (en) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 Graded positive electrode material for lithium secondary batteries
JP4663229B2 (en) * 2001-06-15 2011-04-06 ティアックス エルエルシー Positive electrode material for lithium secondary battery
JP2004531034A (en) * 2001-06-15 2004-10-07 呉羽化学工業株式会社 Cathode materials for lithium secondary batteries
US7410511B2 (en) 2002-08-08 2008-08-12 Matsushita Electric Industrial Co., Ltd. Production method of positive electrode active material for non-aqueous electrolyte secondary battery and positive electrode active material
JP4626141B2 (en) * 2003-10-20 2011-02-02 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2005123111A (en) * 2003-10-20 2005-05-12 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, and the nonaqueous electrolyte secondary battery
KR100824247B1 (en) * 2004-04-02 2008-04-24 에이지씨 세이미 케미칼 가부시키가이샤 Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
WO2005096416A1 (en) * 2004-04-02 2005-10-13 Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
US8101143B2 (en) 2004-04-02 2012-01-24 Seimi Chemical Co., Ltd. Process for producing lithium-containing composite oxide for positive electrode for lithium secondary battery
JP4833058B2 (en) * 2004-04-02 2011-12-07 Agcセイミケミカル株式会社 Method for producing lithium-containing composite oxide for positive electrode of lithium secondary battery
JP2006089364A (en) * 2004-08-24 2006-04-06 Sumitomo Metal Mining Co Ltd Nickel hydroxide particle containing aluminum and its manufacturing method
JP2006147499A (en) * 2004-11-24 2006-06-08 Sumitomo Metal Mining Co Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this
JP4655599B2 (en) * 2004-11-24 2011-03-23 住友金属鉱山株式会社 Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same
JP2006232608A (en) * 2005-02-24 2006-09-07 Mitsubishi Chemicals Corp Oxide with rock salt type crystal structure, lithium-nickel multiple oxide using the same, method for producing the same and method for producing lithium secondary battery using the same
US8673499B2 (en) * 2005-06-16 2014-03-18 Panasonic Corporation Lithium ion secondary battery
JP2007070205A (en) * 2005-09-09 2007-03-22 Tanaka Chemical Corp Nickel manganese cobalt composite oxide and manufacturing method therefor
JP2007265784A (en) * 2006-03-28 2007-10-11 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2008133149A (en) * 2006-11-28 2008-06-12 National Institute Of Advanced Industrial & Technology Method for production of lithium-iron-manganese composite oxide
JP2008198363A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP2008198364A (en) * 2007-02-08 2008-08-28 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP2008257902A (en) * 2007-04-02 2008-10-23 Sumitomo Metal Mining Co Ltd Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
US9028710B2 (en) 2007-08-21 2015-05-12 H.C. Starck Gmbh Powdered NiaM1bM2c(O)x(OH)y compounds, method for the production thereof and use thereof in batteries
DE102007039471A1 (en) 2007-08-21 2009-02-26 H.C. Starck Gmbh Powdered compounds, process for their preparation and their use in lithium secondary batteries
US9352977B2 (en) 2007-08-21 2016-05-31 H.C. Starck Gmbh Powered compounds, method for the production thereof, and use thereof in lithium secondary batteries
JP2010536697A (en) * 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Powdered compound, process for its production and its use in lithium secondary batteries
DE102007049108A1 (en) 2007-10-12 2009-04-16 H.C. Starck Gmbh Powdered compounds, process for their preparation and their use in batteries
US8545794B2 (en) 2007-10-12 2013-10-01 H.C. Starck Gmbh Powder NiaMbOx(OH)γcompounds, processes for making the same, and uses thereof in batteries
JP2011181193A (en) * 2010-02-26 2011-09-15 Sumitomo Metal Mining Co Ltd Nickel-cobalt composite hydroxide for nonaqueous electrolyte secondary battery positive electrode active material, manufacturing method thereof, and method of manufacturing nonaqueous electrolyte secondary battery positive electrode active material using nickel-cobalt composite hydroxide
JPWO2011108655A1 (en) * 2010-03-04 2013-06-27 Jx日鉱日石金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2013033759A (en) * 2012-11-07 2013-02-14 Mitsubishi Chemicals Corp Layered lithium nickel manganese complex oxide
JP2015056368A (en) * 2013-09-13 2015-03-23 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing the same
JP2014197552A (en) * 2014-06-18 2014-10-16 三菱化学株式会社 Lamellar lithium nickel manganese complex oxide

Also Published As

Publication number Publication date
JP3290355B2 (en) 2002-06-10

Similar Documents

Publication Publication Date Title
JP3290355B2 (en) Lithium-containing composite oxide for lithium ion secondary battery and method for producing the same
JP6855752B2 (en) Nickel-manganese composite hydroxide and its manufacturing method, positive electrode active material for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
JP7135856B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
JP5409724B2 (en) Positive electrode material that combines high safety and high output in Li storage batteries
US8956759B2 (en) 3V class spinel complex oxides as cathode active materials for lithium secondary batteries, method for preparing the same by carbonate coprecipitation, and lithium secondary batteries using the same
JP2003059490A (en) Positive active material for nonaqueous electrolyte secondary battery and its manufacturing method
KR20140128949A (en) Nickel-cobalt-manganese composite hydroxide and method for manufacturing same
JP7135855B2 (en) Nickel-manganese composite hydroxide and method for producing same, positive electrode active material for non-aqueous electrolyte secondary battery and method for producing same, and non-aqueous electrolyte secondary battery
WO2012176471A1 (en) Lithium-containing complex oxide powder and method for producing same
JP6910697B2 (en) Manufacturing method of positive electrode active material
JP3461800B2 (en) Lithium manganese nickel composite oxide and method for producing the same
JP6343951B2 (en) Positive electrode active material particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP2023027147A (en) Metal composite hydroxide and production method thereof, positive electrode active material for nonaqueous electrolyte secondary battery and production method thereof, and nonaqueous electrolyte secondary battery using the same
JP2023040082A (en) Metal complex hydroxide and production method therefor, cathode active material for lithium-ion secondary battery and production method therefor, and lithium-ion secondary battery using the same
JP6968844B2 (en) Positive electrode active material particles for non-aqueous electrolyte secondary batteries and their manufacturing methods, and non-aqueous electrolyte secondary batteries
JP2008257902A (en) Positive active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using it
JP7293576B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, manufacturing method thereof, and non-aqueous electrolyte secondary battery using the same
JP7310117B2 (en) Metal composite hydroxide and manufacturing method thereof, positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same
JP6988370B2 (en) Method for Producing Nickel Composite Hydroxide and Nickel Composite Hydroxide
WO2006126854A1 (en) Processes of preparing manganese oxides and processes of preparing spinel type cathode active material using the same
KR100424635B1 (en) Positive active material for lithium secondary battery and method of preparing same
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP3609228B2 (en) Method for producing lithium-containing aluminum-nickel oxide
JP2018073751A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080322

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090322

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100322

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110322

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120322

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130322

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140322

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees