JP6136604B2 - Method for producing nickel cobalt composite hydroxide particles - Google Patents

Method for producing nickel cobalt composite hydroxide particles Download PDF

Info

Publication number
JP6136604B2
JP6136604B2 JP2013121888A JP2013121888A JP6136604B2 JP 6136604 B2 JP6136604 B2 JP 6136604B2 JP 2013121888 A JP2013121888 A JP 2013121888A JP 2013121888 A JP2013121888 A JP 2013121888A JP 6136604 B2 JP6136604 B2 JP 6136604B2
Authority
JP
Japan
Prior art keywords
nickel
cobalt
reaction
composite hydroxide
cobalt composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013121888A
Other languages
Japanese (ja)
Other versions
JP2014237573A (en
Inventor
加瀬 克也
克也 加瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013121888A priority Critical patent/JP6136604B2/en
Publication of JP2014237573A publication Critical patent/JP2014237573A/en
Application granted granted Critical
Publication of JP6136604B2 publication Critical patent/JP6136604B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水系電解質二次電池の正極活物質として用いられるLiNiCo1−x(0.90≦w≦1.10、0.05≦x≦0.95)で表されるリチウムニッケルコバルト複合酸化物の合成において、原材料として用いるニッケルコバルト複合水酸化物の製造方法に関するものである。 The present invention is expressed as Li w Ni x Co 1-x O 2 (0.90 ≦ w ≦ 1.10, 0.05 ≦ x ≦ 0.95) used as a positive electrode active material of a non-aqueous electrolyte secondary battery. The present invention relates to a method for producing a nickel cobalt composite hydroxide used as a raw material in the synthesis of a lithium nickel cobalt composite oxide.

近年、電子技術の進歩に伴い、電子機器の小型化、軽量化が急速に進んでいる。
特に、最近の携帯電話やノートパソコンなどのポータブル電子機器の普及と高機能化により、これらに使用されるポータブル用電源として、高いエネルギー密度を有し、小型で、かつ軽量な電池の開発が強く望まれている。
In recent years, with the advancement of electronic technology, electronic devices are rapidly becoming smaller and lighter.
In particular, as portable electronic devices such as mobile phones and notebook PCs have become popular and highly functional, the development of small, lightweight batteries with high energy density has become strong as portable power sources used in these devices. It is desired.

その中で、非水系電解質二次電池であるリチウムイオン二次電池は、小型で高いエネルギーを有することから、ポータブル電子機器の電源としてすでに利用されている。また、かかる用途に限られず、リチウムイオン二次電池について、ハイブリッド自動車や電気自動車などの大型電源としての利用を目指した研究開発も進められている。   Among them, a lithium ion secondary battery, which is a nonaqueous electrolyte secondary battery, is already used as a power source for portable electronic devices because it is small and has high energy. In addition to such applications, research and development aimed at using lithium-ion secondary batteries as large-scale power sources such as hybrid vehicles and electric vehicles are being promoted.

このリチウムイオン二次電池の正極活物質には、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)が使用されているが、リチウムコバルト複合酸化物の原料には、希産で高価なコバルト化合物を用いるため、正極活物質のコストアップの原因となっている。この正極活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を実現することは、現在普及しているポータブル電子機器の低コスト化や将来の大型電源へのリチウムイオン二次電池の搭載を可能とすることから、工業的に大きな意義を有しているといえる。 A lithium cobalt composite oxide (LiCoO 2 ) that is relatively easy to synthesize is used as the positive electrode active material of the lithium ion secondary battery. However, the raw material for the lithium cobalt composite oxide is rare and expensive. Since a cobalt compound is used, it causes a cost increase of the positive electrode active material. Lowering the cost of this positive electrode active material and realizing the production of cheaper lithium ion secondary batteries can reduce the cost of portable electronic devices that are currently in widespread use, and lithium ion secondary batteries for future large-scale power supplies. Since it can be mounted, it can be said that it has significant industrial significance.

そこで、リチウムイオン二次電池用の正極活物質に適用可能な正極材料として、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO)を挙げることができる。
前者のリチウムマンガン複合酸化物は原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物の有力な代替材料である。しかしながら、その理論容量はリチウムコバルト複合酸化物のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持っている。さらに、電池温度が45℃以上になると自己放電が激しくなり、充放電寿命も低下するという欠点を有している。
Therefore, as a positive electrode material applicable to a positive electrode active material for a lithium ion secondary battery, lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, or lithium nickel composite oxidation using nickel (LiNiO 2 ).
The former lithium-manganese composite oxide is an effective alternative to lithium-cobalt composite oxide because it is inexpensive and has excellent thermal stability, in particular, safety with respect to ignition. However, since its theoretical capacity is only about half that of lithium cobalt composite oxide, it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year. Further, when the battery temperature is 45 ° C. or higher, the self-discharge becomes intense and the charge / discharge life is also reduced.

一方、後者のリチウムニッケル複合酸化物は、現在主流のリチウムコバルト複合酸化物と比べて、高容量であって、原料であるニッケルがコバルトと比べて安価で、かつ、安定して入手可能であるといった利点を有していることから、次世代の正極材料として期待され、リチウムニッケル複合酸化物について、活発に研究および開発が続けられている。
しかしながら、リチウムニッケル複合酸化物は、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣るという問題点がある。リチウムニッケル複合酸化物は、その結晶構造がリチウムを脱離するに伴って六方晶から単斜晶、さらに再び六方晶へと変化していくが、この結晶構造の変化が可逆性に乏しく、充放電反応を繰り返すうちにリチウムを挿入・脱離できるサイトが徐々に失われてしまうことが原因と考えられている。
On the other hand, the latter lithium-nickel composite oxide has a higher capacity than the current mainstream lithium-cobalt composite oxide, and nickel, which is a raw material, is cheaper than cobalt and is stably available. Therefore, it is expected to be a next-generation positive electrode material, and research and development of lithium-nickel composite oxides are being continued actively.
However, the lithium-nickel composite oxide does not replace nickel with other elements, and when a lithium-ion secondary oxide is produced using a lithium-nickel composite oxide composed purely of nickel as a positive electrode active material, There exists a problem that cycling characteristics are inferior compared with cobalt complex oxide. Lithium-nickel composite oxide changes its crystal structure from hexagonal to monoclinic and then again hexagonal as lithium is desorbed. This is thought to be due to the gradual loss of sites where lithium can be inserted and removed during repeated discharge reactions.

この解決方法として、ニッケルの一部をコバルトで置換することが提案されている(例えば特許文献1〜3参照)。コバルトによる置換は、リチウムの脱離に伴う結晶構造の相転移を抑制し、そのコバルト置換量が多くなるほど結晶相がより安定化してサイクル特性を改善するものと考えられる。   As a solution, it has been proposed to replace a part of nickel with cobalt (see, for example, Patent Documents 1 to 3). Substitution with cobalt is considered to suppress the phase transition of the crystal structure accompanying the desorption of lithium, and as the amount of cobalt substitution increases, the crystal phase becomes more stable and the cycle characteristics are improved.

このように、コバルトによる置換は結晶構造内のニッケルと置換することによる結晶相の安定化にその目的があるから、コバルトとニッケルは原子レベルで均一に混合されている必要がある。これを実現する正極活物質の原料としてニッケル源とコバルト源とを共沈で作製した水酸化物を用いる方法が有効である。例えば特許文献4にはニッケルコバルト共沈水酸化物の粒子形状、粒子径、比表面積、タップ密度、細孔の空間体積、細孔の占有率を制御することにより、サイクル劣化を防止すると共に、良好な充放電特性を有する電池を得ることができると報告されており、実際このような方法で一定の特性を得ることができている。   Thus, since the purpose of substitution with cobalt is to stabilize the crystal phase by substitution with nickel in the crystal structure, it is necessary that cobalt and nickel be uniformly mixed at the atomic level. A method using a hydroxide prepared by coprecipitation of a nickel source and a cobalt source is effective as a raw material of the positive electrode active material for realizing this. For example, in Patent Document 4, by controlling the particle shape, particle diameter, specific surface area, tap density, pore volume, pore occupancy of nickel-cobalt coprecipitated hydroxide, cycle deterioration is prevented and good It has been reported that a battery having excellent charge / discharge characteristics can be obtained, and in fact, certain characteristics can be obtained by such a method.

しかしながら近年はポータブル機器の付加価値が大きくなるにしたがって電池に要求される性能は高まる一方であり、限られた体積の中に正極活物質をできるだけ多く詰め込み、より高いエネルギー密度を持つ電池が要求されるようになってきた。一方で、電極を作製した際に高いエネルギー密度を持つためには、正極活物質粒子自身の密度が大きい、即ち空隙が少なく高充填な正極活物質粒子を使用することが有効である。   However, in recent years, the performance required of batteries has been increasing as the added value of portable devices has increased, and a battery having a higher energy density by packing as much positive electrode active material as possible in a limited volume is required. It has come to be. On the other hand, in order to have a high energy density when an electrode is produced, it is effective to use positive electrode active material particles having a high density, that is, a highly filled positive electrode active material particle with few voids.

リチウムコバルト複合酸化物のように高い焼成温度で合成することによって一つ一つの粒子(一次粒子)を大きくすることができるものは充填密度を上げやすいが、リチウムニッケル複合酸化物は高温焼成では自己分解反応が起こるので焼成温度は850℃以下にする必要があり、一次粒子を大きくできず充填密度を上げにくい。そこで細かい一次粒子が多数集合して略球状の二次粒子を形成した活物質とすることで充填密度を維持することが行われる(例えば特許文献5参照)。   Although it is easy to increase the packing density when one particle (primary particle) can be enlarged by synthesizing at a high firing temperature, such as lithium cobalt composite oxide, lithium nickel composite oxide is self-impressed at high temperature firing. Since the decomposition reaction occurs, the firing temperature needs to be 850 ° C. or less, and the primary particles cannot be increased and the packing density is difficult to increase. Therefore, the packing density is maintained by using an active material in which a large number of fine primary particles gather to form substantially spherical secondary particles (see, for example, Patent Document 5).

ところが、リチウムニッケル複合酸化物の粉体特性は基本的に原料に用いるニッケルコバルト化合物の粉体特性に大きく影響される。つまり、空隙が少なく高充填密度なリチウムニッケル複合酸化物を得るためには、原料のニッケルコバルト化合物は空隙が少なく、高充填密度なものであることが極めて有効である。しかしながら前述したようなニッケル源とコバルト源とを共沈させて水酸化物を合成するこれまでの方法では、さらなる高充填性を実現するのが難しいという問題点を有していた。   However, the powder characteristics of the lithium nickel composite oxide are basically greatly influenced by the powder characteristics of the nickel cobalt compound used as a raw material. That is, in order to obtain a lithium nickel composite oxide having a small gap and a high packing density, it is very effective that the raw material nickel cobalt compound has a small gap and a high packing density. However, the conventional methods for synthesizing hydroxide by coprecipitation of the nickel source and the cobalt source as described above have a problem that it is difficult to realize further high filling properties.

特開昭63−114063号公報JP-A-63-114063 特開昭63−211565号公報JP 63-2111565 A 特開平8−213015号公報Japanese Patent Laid-Open No. 8-213015 特開平9−270258号公報JP-A-9-270258 特許3614670号公報Japanese Patent No. 3614670

本発明は、このような問題点に着目してなされたものであり、工業的な量産性を犠牲にすることなく空隙が少なく高い充填密度を有する非水系電解質二次電池正極材料をもたらすニッケルコバルト複合水酸化物の製造方法を提供することを目的とするものである。   The present invention has been made paying attention to such problems, and nickel cobalt that provides a positive electrode material for a non-aqueous electrolyte secondary battery having a small gap and a high packing density without sacrificing industrial mass productivity. An object of the present invention is to provide a method for producing a composite hydroxide.

本発明者は、上記目的を達成するためにリチウムイオン電池正極材料の原料用ニッケルコバルト複合水酸化物粒子について鋭意検討を重ねた結果、ニッケル及びコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に反応槽に撹拌しながら供給して反応させ、この反応槽からニッケルコバルト複合水酸化物粒子と水溶液を連続的にオーバーフローさせて、固液分離、水洗、乾燥することによって、ニッケルコバルト複合水酸化物粒子を得るに際し、反応系内のpHとアンモニウムイオン濃度を制御することで、特異な結晶形状の一次粒子を析出せしめ、なおかつ一次粒子間の空隙を小さくすることが出来ることを見いだし、本発明を完成したものである。   In order to achieve the above object, the present inventor has intensively studied nickel-cobalt composite hydroxide particles for raw materials of lithium ion battery positive electrode materials. As a result, an aqueous solution containing nickel and cobalt and an aqueous solution containing an ammonium ion supplier And a caustic aqueous solution are continuously supplied to the reaction vessel while stirring, and the nickel cobalt composite hydroxide particles and the aqueous solution are continuously overflowed from the reaction vessel to separate the solid and liquid, and rinse with water. When obtaining nickel-cobalt composite hydroxide particles by drying, by controlling the pH and ammonium ion concentration in the reaction system, primary particles having a unique crystal shape are precipitated, and voids between the primary particles are formed. The present invention has been completed by finding that it can be made smaller.

すなわち、本発明の第1の発明よれば、一般式NiCo1−x(OH)で表されるリチウムイオン電池正極材料用ニッケルコバルト複合水酸化物(式中xは0.05〜0.95である)の製造方法であって、ニッケル及びコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に反応槽に撹拌しながら供給して、反応槽中の25℃で測定したpHを12.2以上、12.8以下且つ液中アンモニウムイオン濃度を30g/L以上、40g/L以下に保ちつつ晶析反応を起こさせてニッケルコバルト複合水酸化物粒子を生成させ、得られたニッケルコバルト複合水酸化物粒子と残部水溶液を、反応槽から連続的にオーバーフローさせて固液分離した後、水洗、乾燥することでニッケルコバルト複合水酸化物粒子を得ることを特徴とするニッケルコバルト複合水酸化物粒子の製造方法である。 That is, according to the first invention of the present invention, a nickel cobalt composite hydroxide for a lithium ion battery positive electrode material represented by the general formula Ni x Co 1-x (OH) 2 (wherein x is 0.05 to 0). .95), an aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier, and an aqueous caustic solution are each continuously fed to the reaction vessel while stirring to react. Nickel-cobalt complex hydroxylation by causing a crystallization reaction while maintaining the pH measured at 25 ° C. in the tank at 12.2 or more and 12.8 or less and the ammonium ion concentration in the liquid at 30 g / L or more and 40 g / L or less. After the resulting nickel-cobalt composite hydroxide particles and the remaining aqueous solution are continuously overflowed from the reaction vessel and separated into solid and liquid, they are washed with water and dried. A method for producing a nickel-cobalt composite hydroxide particles characterized by obtaining the Kell-cobalt composite hydroxide particles.

本発明の第2の発明は、第1の発明におけるニッケル及びコバルトを含む水溶液が、硫酸塩または塩化物水溶液であることを特徴とするニッケルコバルト複合水酸化物粒子の製造方法である。   A second invention of the present invention is a method for producing nickel-cobalt composite hydroxide particles, wherein the aqueous solution containing nickel and cobalt in the first invention is a sulfate or chloride aqueous solution.

本発明の第3の発明は、第1〜第2の発明におけるアンモニウムイオン供給体が、アンモニア水、硫酸アンモニウムまたは塩化アンモニウムのいずれかであることを特徴とするニッケルコバルト複合水酸化物粒子の製造方法である。   According to a third aspect of the present invention, there is provided a method for producing nickel-cobalt composite hydroxide particles, wherein the ammonium ion supplier in the first to second aspects is any one of ammonia water, ammonium sulfate, and ammonium chloride. It is.

本発明の第4の発明は、一般式Ni Co 1−x (OH) で表されるリチウムイオン電池正極材料用ニッケルコバルト複合水酸化物粒子(式中xは0.05〜0.95である)であって、そのニッケルコバルト複合水酸化物粒子の粒子断面の空隙率が8.1%以下であることを特徴とするニッケルコバルト複合水酸化物粒子である。 A fourth invention of the present invention is a nickel cobalt composite hydroxide particle for a lithium ion battery positive electrode material represented by the general formula Ni x Co 1-x (OH) 2 (wherein x is 0.05 to 0.95). The nickel-cobalt composite hydroxide particles are characterized in that the nickel-cobalt composite hydroxide particles have a particle cross-sectional porosity of 8.1% or less .

本発明によれば、略球状で一次粒子間の空隙が少なく、錯形成剤やハロゲン等の混入が無い高充填密度なリチウムイオン電池正極材料として好適なニッケルコバルト複合水酸化物粒子を得ることができ、工業上顕著な効果を奏するものである。   According to the present invention, it is possible to obtain nickel-cobalt composite hydroxide particles suitable as a positive electrode material having a high packing density and having a substantially spherical shape with few voids between primary particles and no complexing agent, halogen or the like. It is possible to produce industrially remarkable effects.

実施例で作製した複合水酸化物粒子における「反応槽内液温25℃における反応槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係」を示す図である。It is a figure which shows "relationship pH in reaction tank in reaction tank liquid temperature of 25 degreeC, ammonium concentration in liquid, and porosity of particle | grain cross section" in the composite hydroxide particle produced in the Example.

以下、本発明のニッケルコバルト複合水酸化物粒子の製造方法を詳細に説明する。
本発明のニッケルコバルト複合水酸化物粒子の製造方法は、一般式NiCo1−x(OH)で表されるリチウムイオン電池正極材料用ニッケルコバルト複合水酸化物(式中xは0.05〜0.95である)の製造方法であって、ニッケル及びコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に反応槽に撹拌しながら供給して反応させ、この反応槽からニッケルコバルト複合水酸化物粒子と水溶液を連続的にオーバーフローさせて固液分離した後、水洗、乾燥することでニッケルコバルト複合水酸化物粒子を得るもので、その反応槽中の25℃で測定したpHを12.2以上、且つ液中アンモニウムイオン濃度を30g/L以上、40g/L以下に保ちつつ晶析反応を行わせることを特徴とするものである。
Hereinafter, the manufacturing method of the nickel cobalt composite hydroxide particles of the present invention will be described in detail.
The method for producing nickel-cobalt composite hydroxide particles of the present invention is a nickel-cobalt composite hydroxide for a lithium ion battery positive electrode material represented by the general formula Ni x Co 1-x (OH) 2 (wherein x is 0.00). And an aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier, and an aqueous caustic solution are continuously supplied to the reaction vessel while stirring. In this reaction tank, nickel cobalt composite hydroxide particles and aqueous solution are continuously overflowed and separated into solid and liquid, and then washed with water and dried to obtain nickel cobalt composite hydroxide particles. The crystallization reaction was carried out while maintaining the pH measured at 25 ° C. in the tank at 12.2 or higher and the ammonium ion concentration in the liquid at 30 g / L or higher and 40 g / L or lower. It is characterized in that to.

この製造方法によって、略球状で一次粒子間の空隙が少なく、高充填密度なリチウムイオン電池正極材料として好適なニッケルコバルト複合水酸化物粒子を得ることができる。
上記一般式において、ニッケルとコバルトの割合を示すxは0.05〜0.95であり、0.1〜0.9がより好ましい。すなわち、xが0.05未満ではコバルトの割合が多いため原料コストが増加するため好ましくない。一方、xが0.95を超えると、熱安定性や充放電サイクル特性が悪化するため、好ましくない。
By this production method, nickel-cobalt composite hydroxide particles suitable as a lithium ion battery positive electrode material having a substantially spherical shape with few voids between primary particles and a high packing density can be obtained.
In the above general formula, x indicating the ratio of nickel and cobalt is 0.05 to 0.95, and more preferably 0.1 to 0.9. That is, if x is less than 0.05, the proportion of cobalt is large, and the raw material cost increases. On the other hand, when x exceeds 0.95, thermal stability and charge / discharge cycle characteristics deteriorate, which is not preferable.

本発明の製造方法において、ニッケル及びコバルトを含む水溶液は、ニッケル及びコバルトの供給源である。また、アンモニウムイオン供給体を含む水溶液は、錯形成剤として、生成するニッケル−コバルト水酸化物粒子の粒径と形状を制御する役割を担うもので、しかもアンモニウムイオンは生成するニッケル−コバルト水酸化物粒子内に取り込まれないので、不純物の無いニッケル−コバルト水酸化物粒子を得るために好ましい錯形成剤である。また、苛性アルカリ水溶液は中和反応のpH調整剤である。   In the production method of the present invention, the aqueous solution containing nickel and cobalt is a source of nickel and cobalt. Moreover, the aqueous solution containing an ammonium ion supplier plays a role of controlling the particle size and shape of the produced nickel-cobalt hydroxide particles as a complexing agent, and ammonium ions are produced by nickel-cobalt hydroxide. Since it is not incorporated into the product particles, it is a preferable complexing agent for obtaining nickel-cobalt hydroxide particles free of impurities. Further, the caustic aqueous solution is a pH adjuster for the neutralization reaction.

使用する反応槽の仕様及びそれぞれの溶液の供給量の調整方法は特に限定されるものではないが、反応槽には撹拌機、オーバーフロー口、及び温度制御手段が備えられ、ニッケル及びコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液を定量的に連続供給しつつ、そこに添加量を調整した苛性アルカリ水溶液を供給することによって、反応槽内の反応液を所定のpHに保持しながら連続晶析反応を行って複合水酸化物粒子を生成し、その生成された複合水酸化物粒子がオーバーフロー口を経て連続排出される方法が好ましい。   The specifications of the reaction tank to be used and the method for adjusting the supply amount of each solution are not particularly limited, but the reaction tank is equipped with a stirrer, an overflow port, and temperature control means, and contains an aqueous solution containing nickel and cobalt. And continuously supplying an aqueous solution containing an ammonium ion supplier, while supplying a caustic aqueous solution adjusted in addition amount to the continuous solution while maintaining the reaction solution in the reaction tank at a predetermined pH. A method is preferred in which a composite hydroxide particle is produced by performing an precipitation reaction, and the produced composite hydroxide particle is continuously discharged through an overflow port.

このような連続晶析反応において、得られる水酸化物の粒度分布や結晶構造の制御は、反応時の反応液のpH(以下、反応pHとする)をコントロールすることが一般的である。
連続晶析反応では、供給されたニッケル及びコバルト水溶液に含まれるニッケル濃度及びコバルト濃度が、反応系内のニッケルの溶解度及びコバルトの溶解度を上回った場合、ニッケルの溶解度、コバルトの溶解度を上回った量のニッケル及びコバルトが析出することで目的とするニッケルコバルト化合物を得ることが出来る。また、供給された水溶液のニッケル、コバルト濃度に対する、反応系内のニッケル、コバルトの溶解度の差の大小が結晶核の生成速度、容積あたりの発生密度、生成した結晶核の成長速度、結晶形状などを左右するため、反応系内のニッケル及びコバルトの溶解度を変えることで、様々な結晶形状、粉体物性を持ったニッケルコバルト化合物を得ることが可能である。
In such a continuous crystallization reaction, the particle size distribution and crystal structure of the resulting hydroxide are generally controlled by controlling the pH of the reaction solution during the reaction (hereinafter referred to as reaction pH).
In the continuous crystallization reaction, when the nickel concentration and cobalt concentration contained in the supplied nickel and cobalt aqueous solution exceed the solubility of nickel and the solubility of cobalt in the reaction system, the amount exceeding the solubility of nickel and the solubility of cobalt. The target nickel cobalt compound can be obtained by precipitation of nickel and cobalt. In addition, the difference in the solubility of nickel and cobalt in the reaction system relative to the nickel and cobalt concentrations in the supplied aqueous solution is the crystal nucleus generation rate, density per volume, crystal nucleus growth rate, crystal shape, etc. Therefore, it is possible to obtain nickel-cobalt compounds having various crystal shapes and powder properties by changing the solubility of nickel and cobalt in the reaction system.

しかし、単にニッケル及びコバルト水溶液を溶解度の低い反応系内に注入すると、その反応pHでの溶解度とニッケル及びコバルト水溶液中のイオン濃度の差が大きいために、微細な水酸化物粒子が一気に析出し、不定型な水酸化物溶液が得られるに留まる。
そこで、ニッケル及びコバルトと溶解度の大きい錯イオンを形成する化合物を共存させ、溶解度と水溶液中のイオン濃度の差を小さくすることが有効である。例えばアンモニアを同時に系内に投入すると、アンモニアはニッケルイオン及びコバルトイオンとアンモニウム錯イオンを形成し、同じpHでの溶解度を大きくして、水酸化物の析出を緩やかに行わせ、かつ、析出−再溶解の過程を繰り返すことで、粒子は球状に成長することが出来る。また、アンモニウムイオンの存在量によって析出する水酸化物の結晶形状が代わり、二次粒子を構成した際の充填性も変化する。
However, when nickel and cobalt aqueous solutions are simply injected into a reaction system with low solubility, the difference in solubility at the reaction pH and the ion concentration in the nickel and cobalt aqueous solutions is large, so fine hydroxide particles precipitate at once. Only an amorphous hydroxide solution is obtained.
Therefore, it is effective to reduce the difference between the solubility and the ion concentration in the aqueous solution by coexisting a compound that forms complex ions with high solubility with nickel and cobalt. For example, when ammonia is introduced into the system at the same time, the ammonia forms nickel ions and cobalt ions and ammonium complex ions, increasing the solubility at the same pH, allowing the hydroxide to precipitate slowly, and By repeating the re-dissolution process, the particles can grow into a spherical shape. In addition, the crystal form of the precipitated hydroxide changes depending on the amount of ammonium ions present, and the filling properties when the secondary particles are formed also change.

反応槽の反応pHは25℃で測定した時に12.2以上である。
この反応pHが低いとニッケル及びコバルトの溶解度が高くなりすぎ、投入したニッケル及びコバルトが析出せずに反応ろ液中に残存する割合が大きくなるため製品収率を低下させる。またニッケル及びコバルトの溶解度が高すぎると水酸化物粒子が大きな結晶として析出するため、その凝集体である二次粒子の密度が小さく、言い換えると空隙率が大きくなり緻密な二次粒子が生成しにくくなる。
The reaction pH of the reaction vessel is 12.2 or higher when measured at 25 ° C.
If this reaction pH is low, the solubility of nickel and cobalt becomes too high, and the proportion of nickel and cobalt that are charged does not precipitate and remains in the reaction filtrate increases, thereby reducing the product yield. If the solubility of nickel and cobalt is too high, the hydroxide particles will precipitate as large crystals, so the density of the secondary particles that are aggregates will be small, in other words, the porosity will be large and dense secondary particles will be formed. It becomes difficult.

一方、反応pHが高くなっても、ニッケル及びコバルトの溶解度はほとんど変化しなくなるため、無駄にアルカリを投入することになり製品コストの面で好ましくない。また、ニッケル及びコバルトの溶解度が低すぎると、微細な水酸化物粒子が一気に析出するため不定型な水酸化物粒子が形成される危険が大きくなる。そのため、反応pHとしては、25℃で測定した時の値が12.2以上、12.8以下の範囲が好ましい。   On the other hand, even if the reaction pH is increased, the solubility of nickel and cobalt hardly changes, so that alkali is wasted and this is not preferable in terms of product cost. Further, when the solubility of nickel and cobalt is too low, fine hydroxide particles are precipitated at a stretch, which increases the risk that amorphous hydroxide particles are formed. Therefore, the reaction pH is preferably in the range of 12.2 to 12.8 when measured at 25 ° C.

用いるニッケル及びコバルトを含む水溶液としては特に限定されるものではないが、硫酸塩水溶液又は塩化物水溶液であることが好ましく、ハロゲンによる汚染の無い硫酸塩水溶液がより好ましい。   The aqueous solution containing nickel and cobalt to be used is not particularly limited, but an aqueous sulfate solution or an aqueous chloride solution is preferable, and an aqueous sulfate solution free from halogen contamination is more preferable.

用いるアンモニウムイオン供給体を含む水溶液としては特に限定されるものではないが、アンモニア水、硫酸アンモニウム又は塩化アンモニウムが好ましく、ハロゲンによる汚染の無いアンモニア水、硫酸アンモニウムがより好ましい。
このアンモニウムイオン濃度は、反応pHと共にニッケル及びコバルト溶解度を決める因子であるが、アンモニウムイオン濃度が高いほど、ニッケル及びコバルトとのアンミン錯体形成が進みやすくなるためニッケル及びコバルト溶解度を大きくすることが出来る。
反応pHを12.2以上とした時のアンモニウムイオン濃度は30g/L以上、40g/L以下が好ましい。30g/L以下ではニッケル及びコバルト溶解度が低いため、微細な水酸化物粒子が一気に析出するため不定型な水酸化物粒子が形成される危険が大きくなる。また、40g/Lを超えるとニッケル及びコバルトの溶解度が高すぎるため水酸化物粒子が大きな結晶として析出して、その凝集体である二次粒子の密度が小さく、言い換えると空隙率が大きくなり、緻密な二次粒子が生成しにくくなる。
Although it does not specifically limit as aqueous solution containing the ammonium ion supplier to be used, Ammonia water, ammonium sulfate, or ammonium chloride is preferable, and ammonia water and ammonium sulfate which are not contaminated with a halogen are more preferable.
The ammonium ion concentration is a factor that determines the solubility of nickel and cobalt together with the reaction pH. However, the higher the ammonium ion concentration, the easier the formation of an ammine complex with nickel and cobalt, so that the solubility of nickel and cobalt can be increased. .
The ammonium ion concentration when the reaction pH is 12.2 or more is preferably 30 g / L or more and 40 g / L or less. If it is 30 g / L or less, the solubility of nickel and cobalt is low, and fine hydroxide particles precipitate at a stretch, which increases the risk of forming amorphous hydroxide particles. In addition, if it exceeds 40 g / L, the solubility of nickel and cobalt is too high, so that hydroxide particles are precipitated as large crystals, and the density of secondary particles that are aggregates is small, in other words, the porosity is large, It becomes difficult to produce dense secondary particles.

目標とする水酸化物の粒径は、目標とする製品リチウムニッケルコバルト複合酸化物の粒径に併せて定められるが、一般にニッケル及びコバルト溶解度が高い条件で晶析反応を行わせると水酸化物の粒径は大きくなり、逆にニッケル及びコバルト溶解度が低い条件で晶析反応を行わせると水酸化物の粒径は小さくなる。
そこで、目標とする粒径の水酸化物を得るためには反応pH、アンモニウムイオン濃度と共に攪拌強度や反応温度、攪拌翼形状などを制御する必要があるが、反応pH、アンモニウムイオン濃度以外の制御因子は粒子の空隙率に対する影響が小さいため、反応pH及びアンモニウムイオン濃度により空隙率を制御し、その他の制御因子で粒径を制御することも出来る。
The target particle size of the hydroxide is determined in accordance with the particle size of the target product lithium nickel cobalt composite oxide. Generally, if the crystallization reaction is carried out under the high nickel and cobalt solubility conditions, the hydroxide On the contrary, when the crystallization reaction is carried out under the condition where the solubility of nickel and cobalt is low, the particle size of the hydroxide becomes small.
Therefore, in order to obtain a hydroxide with the target particle size, it is necessary to control the reaction pH and ammonium ion concentration, as well as the stirring intensity, reaction temperature, stirring blade shape, etc., but control other than the reaction pH and ammonium ion concentration Since the factor has a small influence on the porosity of the particles, the porosity can be controlled by the reaction pH and ammonium ion concentration, and the particle size can also be controlled by other control factors.

以上の製造方法によって、錯形成剤やハロゲン等の混入が無い、リチウムイオン電池正極材料の原料として好適な組成を有する空隙の少ない、高密度の略球状のニッケル−コバルト水酸化物粒子が得られる。   By the above manufacturing method, high-density substantially spherical nickel-cobalt hydroxide particles having a composition suitable as a raw material for a lithium ion battery positive electrode material free from complexing agents and halogens are obtained. .

以下に本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例によってなんら限定されるものではない。   The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited to these examples.

実施例及び比較例で得られたニッケル−コバルト水酸化物粒子の評価方法は、以下の通りである。
(1)金属成分の分析:ICP発光分析法で行った。
(2)アンモニウムイオン濃度の分析:JIS標準による蒸留法によって測定した。
(3)平均粒径の測定:レーザー回折式粒度分布計(商品名:マイクロトラック、日機装株式会社製)を用いて行った。
(4)形態の観察:走査型電子顕微鏡を用いて、形状と外観の観察を行った。
(5)粒子内の空隙率の測定:クロスセクションポリッシャ加工により露出させた粒子断面のSEM撮影を行い、撮影画像の二値化処理を行い、空隙部と一次粒子部の面積割合を求めた。
The evaluation method of the nickel-cobalt hydroxide particles obtained in the examples and comparative examples is as follows.
(1) Analysis of metal component: The analysis was performed by ICP emission analysis.
(2) Analysis of ammonium ion concentration: measured by a distillation method according to JIS standard.
(3) Measurement of average particle diameter: Measurement was performed using a laser diffraction particle size distribution meter (trade name: Microtrack, manufactured by Nikkiso Co., Ltd.).
(4) Observation of form: The shape and appearance were observed using a scanning electron microscope.
(5) Measurement of void ratio in particles: SEM imaging of the cross section of the particle exposed by cross section polisher processing was performed, binarization processing of the captured image was performed, and the area ratio between the void portion and the primary particle portion was obtained.

邪魔板を4枚取り付けた槽容積34Lのオーバーフロー式晶析反応槽に、25重量%アンモニア水を3900mlと工業用水を混合して32Lとして恒温槽及び加温ジャケットにて50℃に加温し、24%苛性ソーダ溶液を添加して、槽内pHを25℃における値としてpH12.2を保つように制御した。実際にはpH管理を正確に行うため、槽内液を採取し25℃に冷却してpHを測定し、25℃でのpHが12.2〜12.3になるように40℃でのpHを調整した。   In an overflow-type crystallization reaction tank having a tank volume of 34 L with four baffle plates, 3900 ml of 25 wt% ammonia water and industrial water were mixed to make 32 L, and heated to 50 ° C. with a thermostatic tank and a heating jacket, A 24% caustic soda solution was added, and the pH in the tank was controlled to be a value at 25 ° C. so as to keep the pH 12.2. In practice, in order to accurately control the pH, the solution in the tank is collected, cooled to 25 ° C., measured for pH, and the pH at 40 ° C. is adjusted so that the pH at 25 ° C. is 12.2 to 12.3. Adjusted.

晶析反応は、50℃に保持した反応槽内を攪拌しつつ、定量ポンプを用いて、Niモル濃度1.69mol/L、Coモル濃度0.31mol/Lの硫酸ニッケル・硫酸コバルト複合溶液(以下、原料溶液)を30ml/minで供給し、併せて25重量%アンモニア水を7.5ml/minで供給しつつ、24%苛性ソーダ溶液を断続的に添加し、25℃でのpHが12.2になるように制御して行った。
この際の攪拌は、直径10cmの3枚羽根プロペラ翼(傾斜角30度)を用いて800rpmで攪拌して行った。原料溶液の反応系内への添加方法としては、液中に注入ノズルを差込み、原料溶液が反応系内に直接注入されるようにして行った。
次に、生成した水酸化ニッケルをオーバーフローにて連続的に取り出し、これを適宜固液分離、水洗、乾燥して粉末状のニッケルコバルト複合水酸化物を作製した。
In the crystallization reaction, a nickel sulfate / cobalt sulfate composite solution having a Ni molar concentration of 1.69 mol / L and a Co molar concentration of 0.31 mol / L (using a quantitative pump) is stirred in a reaction vessel maintained at 50 ° C. Hereinafter, a 24% sodium hydroxide solution is intermittently added while supplying a raw material solution) at 30 ml / min, and at the same time supplying 25 wt% aqueous ammonia at 7.5 ml / min, and the pH at 25 ° C. is 12. The control was carried out so as to be 2.
The stirring at this time was performed by stirring at 800 rpm using a three-blade propeller blade having a diameter of 10 cm (inclination angle of 30 degrees). As a method for adding the raw material solution into the reaction system, an injection nozzle was inserted into the liquid so that the raw material solution was directly injected into the reaction system.
Next, the produced nickel hydroxide was continuously taken out by overflow, and this was appropriately solid-liquid separated, washed with water, and dried to prepare a powdered nickel-cobalt composite hydroxide.

[評価]
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物のクロスセクションポリッシャ加工により露出させた粒子断面をSEMにて観察し、画像処理して空隙率を求めた。視野内10個の粒子の空隙率の平均値は8.1%であった。
表1にその結果を示す。
また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
[Evaluation]
The particle cross section exposed by the cross section polisher processing of nickel cobalt composite hydroxide taken out from the start of the reaction for 48 to 72 hours was observed with an SEM, and image processing was performed to determine the porosity. The average porosity of 10 particles in the field of view was 8.1%.
Table 1 shows the results.
FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

25重量%アンモニア水を5100ml、反応中の25重量%アンモニア水供給量を10.0ml/minとした以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は7.2%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
A nickel-cobalt composite hydroxide was prepared in the same manner as in Example 1 except that 5100 ml of 25 wt% aqueous ammonia was used and the supply amount of 25 wt% aqueous ammonia during the reaction was 10.0 ml / min.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 7.2%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを12.4になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は6.8%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
A nickel-cobalt composite hydroxide was produced in the same manner as in Example 1 except that the addition amount of the 24% caustic soda solution was adjusted and the pH in the tank at 25 ° C. was controlled to be 12.4.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 6.8%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

25重量%アンモニア水を5100ml、反応中の25重量%アンモニア水供給量を10.0ml/min、24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを12.4になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は5.3%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
Adjust 25wt% ammonia water 5100ml, 25wt% ammonia water supply amount during reaction 10.0ml / min, 24% caustic soda solution addition amount so that pH in the tank at 25 ° C becomes 12.4 A nickel-cobalt composite hydroxide was produced in the same manner as in Example 1 except that the control was performed.
The porosity of the nickel-cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 5.3%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを12.6になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は5.8%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
A nickel-cobalt composite hydroxide was prepared in the same manner as in Example 1 except that the addition amount of the 24% caustic soda solution was adjusted and the pH in the tank at 25 ° C. was controlled to 12.6.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 5.8%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

25重量%アンモニア水を5100ml、反応中の25重量%アンモニア水供給量を10.0ml/min、24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを12.6になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は4.9%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
Adjust 25wt% ammonia water 5100ml, 25wt% ammonia water supply amount during reaction 10.0ml / min, 24% caustic soda solution addition amount so that the pH in the tank at 25 ° C becomes 12.6. A nickel-cobalt composite hydroxide was produced in the same manner as in Example 1 except that the control was performed.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 4.9%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを12.8になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は5.5%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
A nickel-cobalt composite hydroxide was prepared in the same manner as in Example 1 except that the addition amount of the 24% caustic soda solution was adjusted and the pH in the tank at 25 ° C. was controlled to 12.8.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 5.5%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

25重量%アンモニア水を5100ml、反応中の25重量%アンモニア水供給量を10.0ml/min、24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを12.8になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は4.6%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
Adjust 25wt% ammonia water 5100ml, 25wt% ammonia water supply amount during reaction 10.0ml / min, 24% caustic soda solution addition amount so that the pH in the tank at 25 ° C becomes 12.8 A nickel-cobalt composite hydroxide was produced in the same manner as in Example 1 except that the control was performed.
The porosity of the nickel-cobalt composite hydroxide taken out from 48 to 72 hours after the start of the reaction was 4.6%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを13.0になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は5.6%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
A nickel-cobalt composite hydroxide was produced in the same manner as in Example 1 except that the addition amount of the 24% caustic soda solution was adjusted and the pH in the tank at 25 ° C. was controlled to 13.0.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 5.6%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

25重量%アンモニア水を5100ml、反応中の25重量%アンモニア水供給量を10.0ml/min、24%苛性ソーダ溶液の添加量を調整し、25℃での槽内pHを13.0になるように制御した以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は5.2%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
Adjust 25wt% ammonia water 5100ml, 25wt% ammonia water supply amount during reaction 10.0ml / min, 24% caustic soda solution addition amount so that the pH in the tank at 25 ° C becomes 13.0 A nickel-cobalt composite hydroxide was produced in the same manner as in Example 1 except that the control was performed.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 5.2%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例1)
25℃における槽内pHを11.8に制御し、25重量%アンモニア水を1300ml、反応中の25重量%アンモニア水供給量を2.5ml/minとした以外は実施例1と同様にして、ニッケルコバルト複合水酸化物を作製した。
反応開始から48〜72時間にかけて取り出されたニッケルコバルト複合水酸化物の空隙率は18.4%であった。
表1にその結果を示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 1)
In the same manner as in Example 1 except that the pH in the tank at 25 ° C. was controlled to 11.8, 25 wt% ammonia water was 1300 ml, and the 25 wt% ammonia water supply amount during the reaction was 2.5 ml / min. A nickel cobalt composite hydroxide was prepared.
The porosity of the nickel cobalt composite hydroxide taken over 48 to 72 hours from the start of the reaction was 18.4%.
Table 1 shows the results. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例2)
25重量%アンモニア水投入量を2600ml、反応中の25重量%アンモニア水供給量を5.0ml/minとした以外は比較例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 2)
Nickel hydroxide was prepared in the same manner as in Comparative Example 1 except that the amount of 25 wt% aqueous ammonia was 2600 ml and the amount of 25 wt% aqueous ammonia during the reaction was 5.0 ml / min.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例3)
25重量%アンモニア水投入量を3900ml、反応中の25重量%アンモニア水供給量を7.5ml/minとした以外は比較例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 3)
Nickel hydroxide was prepared in the same manner as in Comparative Example 1 except that the amount of 25 wt% ammonia water was 3900 ml and the amount of 25 wt% ammonia water during the reaction was 7.5 ml / min.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例4)
25重量%アンモニア水投入量を5200ml、反応中の25重量%アンモニア水供給量を10.0ml/minとした以外は比較例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 4)
Nickel hydroxide was prepared in the same manner as in Comparative Example 1 except that the amount of 25 wt% ammonia water was 5200 ml and the amount of 25 wt% ammonia water during the reaction was 10.0 ml / min.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例5)
25℃における槽内pHを12.0に制御し、25重量%アンモニア水投入量を2600ml、反応中の25重量%アンモニア水供給量を5.0ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 5)
The pH in the tank at 25 ° C was controlled to 12.0, the amount of 25 wt% ammonia water input was 2600 ml, and the amount of 25 wt% ammonia water supply during the reaction was 5.0 ml / min. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例6)
25℃における槽内pHを12.0に制御し、25重量%アンモニア水投入量を3900ml、反応中の25重量%アンモニア水供給量を7.5ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 6)
The pH in the tank at 25 ° C was controlled to 12.0, the amount of 25 wt% ammonia water input was 3900 ml, and the amount of 25 wt% ammonia water supply during the reaction was 7.5 ml / min. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例7)
25℃における槽内pHを12.0に制御し、25重量%アンモニア水投入量を5100ml、反応中の25重量%アンモニア水供給量を10.0ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 7)
The pH in the tank at 25 ° C. was controlled to 12.0, the amount of 25 wt% ammonia water input was 5100 ml, and the amount of 25 wt% ammonia water supply during the reaction was 10.0 ml / min. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例8)
25℃における槽内pHを12.2に制御し、25重量%アンモニア水投入量を2600ml、反応中の25重量%アンモニア水供給量を5.0ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 8)
The pH in the tank at 25 ° C. was controlled to 12.2, the amount of 25 wt% ammonia water input was 2600 ml, and the amount of 25 wt% ammonia water supply during the reaction was 5.0 ml / min. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例9)
25℃における槽内pHを12.4に制御し、25重量%アンモニア水投入量を2600ml、反応中の25重量%アンモニア水供給量を5.0ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 9)
The pH in the tank at 25 ° C. was controlled to 12.4, the amount of 25 wt% ammonia water input was 2600 ml, and the amount of 25 wt% ammonia water supply during the reaction was 5.0 ml / min. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例10)
25℃における槽内pHを12.6に制御し、25重量%アンモニア水投入量を2600ml、反応中の25重量%アンモニア水供給量を5.0ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 10)
The pH in the tank at 25 ° C. was controlled to 12.6, the amount of 25 wt% aqueous ammonia was 2600 ml, and the amount of 25 wt% aqueous ammonia was 5.0 ml / min during the reaction. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例11)
25℃における槽内pHを12.8に制御し、25重量%アンモニア水投入量を6400ml、反応中の25重量%アンモニア水供給量を5.0ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 11)
The pH in the tank at 25 ° C. was controlled to 12.8, the amount of 25 wt% ammonia water input was 6400 ml, and the amount of 25 wt% ammonia water supply during the reaction was 5.0 ml / min. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

(比較例12)
25℃における槽内pHを13.0に制御し、25重量%アンモニア水投入量を6400ml、反応中の25重量%アンモニア水供給量を5.0ml/minとした以外は実施例1と同様にして、水酸化ニッケルを作製した。
反応開始から48〜72時間にかけて取り出された水酸化ニッケルの空隙率を表1に示す。また、25℃における槽内pH、液中アンモニウム濃度と粒子断面の空隙率の関係を図1に示す。
(Comparative Example 12)
The pH in the tank at 25 ° C. was controlled to 13.0, the input amount of 25 wt% ammonia water was 6400 ml, and the supply amount of 25 wt% ammonia water during the reaction was 5.0 ml / min. Thus, nickel hydroxide was produced.
Table 1 shows the porosity of nickel hydroxide taken from 48 to 72 hours after the start of the reaction. FIG. 1 shows the relationship between the pH in the tank at 25 ° C., the ammonium concentration in the liquid, and the porosity of the particle cross section.

上記の結果から、粒子断面の空隙率が10%以下の水酸化ニッケルを得るためには、反応槽中の25℃で測定したpHを12.2以上かつ、液中アンモニウムイオン濃度を30g/L以上、40g/L以下に保ちつつ晶析反応を行わせる必要があることがわかった。   From the above results, in order to obtain nickel hydroxide having a particle cross-sectional porosity of 10% or less, the pH measured at 25 ° C. in the reaction vessel is 12.2 or more and the ammonium ion concentration in the liquid is 30 g / L. As described above, it has been found that it is necessary to cause the crystallization reaction to be performed at 40 g / L or less.

Figure 0006136604
Figure 0006136604

Claims (3)

一般式NiCo1−x(OH)で表されるリチウムイオン電池正極材料用ニッケルコバルト複合水酸化物(式中xは0.05〜0.95である)の製造方法であって、
ニッケル及びコバルトを含む水溶液と、アンモニウムイオン供給体を含む水溶液と、苛性アルカリ水溶液とを、それぞれ連続的に反応槽に撹拌しながら供給して、前記反応槽中の25℃で測定したpHを12.2以上、12.8以下、且つ液中アンモニウムイオン濃度を30g/L以上、40g/L以下に保ちつつ晶析反応を起こさせてニッケルコバルト複合水酸化物粒子を生成させ、得られたニッケルコバルト複合水酸化物粒子と残部水溶液を、前記反応槽から連続的にオーバーフローさせて固液分離した後、水洗、乾燥することでニッケルコバルト複合水酸化物粒子を得ることを特徴とするニッケルコバルト複合水酸化物粒子の製造方法。
A nickel cobalt composite hydroxide for a lithium ion battery positive electrode material represented by the general formula Ni x Co 1-x (OH) 2 (wherein x is 0.05 to 0.95),
An aqueous solution containing nickel and cobalt, an aqueous solution containing an ammonium ion supplier, and an aqueous caustic solution were continuously fed to the reaction vessel while stirring, and the pH measured at 25 ° C. in the reaction vessel was 12. Nickel obtained by causing a crystallization reaction while maintaining the ammonium ion concentration in the liquid at 30 g / L or more and 40 g / L or less to produce nickel cobalt composite hydroxide particles. The nickel-cobalt composite hydroxide particles are obtained by continuously overflowing the cobalt composite hydroxide particles and the remaining aqueous solution from the reaction vessel and separating them into solid and liquid, followed by washing and drying. A method for producing hydroxide particles.
前記ニッケル及びコバルトを含む水溶液が、硫酸塩または塩化物水溶液であることを特徴とする請求項1に記載のニッケルコバルト複合水酸化物粒子の製造方法。   The method for producing nickel-cobalt composite hydroxide particles according to claim 1, wherein the aqueous solution containing nickel and cobalt is a sulfate or chloride aqueous solution. 前記アンモニウムイオン供給体が、アンモニア水、硫酸アンモニウムまたは塩化アンモニウムであることを特徴とする請求項1又は2に記載のニッケルコバルト複合水酸化物粒子の製造方法。   The method for producing nickel-cobalt composite hydroxide particles according to claim 1 or 2, wherein the ammonium ion supplier is ammonia water, ammonium sulfate, or ammonium chloride.
JP2013121888A 2013-06-10 2013-06-10 Method for producing nickel cobalt composite hydroxide particles Active JP6136604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121888A JP6136604B2 (en) 2013-06-10 2013-06-10 Method for producing nickel cobalt composite hydroxide particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121888A JP6136604B2 (en) 2013-06-10 2013-06-10 Method for producing nickel cobalt composite hydroxide particles

Publications (2)

Publication Number Publication Date
JP2014237573A JP2014237573A (en) 2014-12-18
JP6136604B2 true JP6136604B2 (en) 2017-05-31

Family

ID=52135106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121888A Active JP6136604B2 (en) 2013-06-10 2013-06-10 Method for producing nickel cobalt composite hydroxide particles

Country Status (1)

Country Link
JP (1) JP6136604B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112299494A (en) * 2020-10-29 2021-02-02 格林爱科(荆门)新能源材料有限公司 Preparation method of nickel-cobalt hydroxide material
CN114261997A (en) * 2021-12-28 2022-04-01 广西中伟新能源科技有限公司 Nickel-cobalt hydroxide and preparation method thereof, nickel-cobalt oxide, lithium ion battery positive electrode material, positive electrode, battery and electric equipment

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3463337B2 (en) * 1994-03-07 2003-11-05 住友金属鉱山株式会社 Method for producing nickel hydroxide for positive electrode material
JP3229544B2 (en) * 1996-04-01 2001-11-19 松下電器産業株式会社 Nickel-cobalt hydroxide for non-aqueous electrolyte battery active material
JP3609196B2 (en) * 1996-04-01 2005-01-12 株式会社田中化学研究所 Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP4051771B2 (en) * 1997-06-10 2008-02-27 堺化学工業株式会社 Nickel hydroxide particles, production method thereof, lithium / nickel composite oxide particles using the same, and production method thereof
KR19990015234A (en) * 1997-08-04 1999-03-05 손욱 Manufacturing method of high density nickel hydroxide active material
AU2001260646A1 (en) * 2000-05-30 2001-12-11 Seimi Chemical Co., Ltd. Lithium-transition metal composite oxide
JP2002304992A (en) * 2001-02-01 2002-10-18 Sumitomo Metal Mining Co Ltd Nickel hydroxide powder for alkaline secondary battery and its evaluation method
KR101131479B1 (en) * 2003-09-16 2012-03-30 에이지씨 세이미 케미칼 가부시키가이샤 Composite oxide containing lithium, nickel, cobalt, manganese, and fluorine, process for producing the same, and lithium secondary cell employing it
WO2007019986A1 (en) * 2005-08-12 2007-02-22 Toda Kogyo Europe Gmbh Inorganic compounds
DE102006049107A1 (en) * 2006-10-13 2008-04-17 H.C. Starck Gmbh Powdery compounds, processes for their preparation and their use in electrochemical applications
US8999573B2 (en) * 2010-03-29 2015-04-07 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for non-aqueous electrolyte secondary battery and production method for same, precursor for positive electrode active material, and non-aqueous electrolyte secondary battery using positive electrode active material

Also Published As

Publication number Publication date
JP2014237573A (en) 2014-12-18

Similar Documents

Publication Publication Date Title
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
JP6287970B2 (en) Nickel composite hydroxide and production method thereof
JP5464348B2 (en) Nickel-cobalt composite hydroxide for non-aqueous electrolyte secondary battery positive electrode active material and method for producing the same, and method for producing non-aqueous electrolyte secondary battery positive electrode active material using the nickel-cobalt composite hydroxide
KR102161044B1 (en) Nickel-cobalt composite hydroxide and process for manufacturing same
KR101644258B1 (en) Nickel composite hydroxide and method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing same, and nonaqueous electrolyte secondary battery
JP4789066B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP6094591B2 (en) Nickel-cobalt composite hydroxide and its production method and production apparatus, positive electrode active material for non-aqueous electrolyte secondary battery, its production method, and non-aqueous electrolyte secondary battery
KR101696524B1 (en) Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP5614334B2 (en) Nickel-cobalt composite hydroxide, method for producing the same, and positive electrode active material for non-aqueous electrolyte secondary battery obtained using the composite hydroxide
JP2019108264A (en) Li-Ni COMPOSITE OXIDE PARTICLE POWDER AND NONAQUEOUS ELECTROLYTE SECONDARY BATTERY
JP6201895B2 (en) Method for producing nickel cobalt manganese composite hydroxide
JP4826147B2 (en) Aluminum-containing nickel hydroxide particles and method for producing the same
JP5754416B2 (en) Method for producing nickel cobalt composite hydroxide
JP7382758B2 (en) Nickel composite hydroxide, positive electrode active material using nickel composite hydroxide as a precursor
US10230105B2 (en) Cobalt hydroxide particles and manufacturing process therefor and positive electrode active material and manufacturing process therefor
JP2006219323A (en) Lithium-manganese-nickel-aluminum complex oxide and its production method
JP6935601B1 (en) A method for producing a positive electrode active material using a nickel-containing hydroxide or a nickel-containing hydroxide as a precursor, and a method for producing a nickel-containing hydroxide.
JP6136604B2 (en) Method for producing nickel cobalt composite hydroxide particles
JP7273260B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP5799849B2 (en) Nickel-cobalt composite hydroxide and method for producing the same
JP5943051B2 (en) Method for producing nickel cobalt composite hydroxide
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP3609231B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery
JP2015173122A (en) Method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP3609196B2 (en) Method for producing cobalt-nickel hydroxide for Li-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170417

R150 Certificate of patent or registration of utility model

Ref document number: 6136604

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150