JP6757391B2 - 測定方法 - Google Patents

測定方法 Download PDF

Info

Publication number
JP6757391B2
JP6757391B2 JP2018216261A JP2018216261A JP6757391B2 JP 6757391 B2 JP6757391 B2 JP 6757391B2 JP 2018216261 A JP2018216261 A JP 2018216261A JP 2018216261 A JP2018216261 A JP 2018216261A JP 6757391 B2 JP6757391 B2 JP 6757391B2
Authority
JP
Japan
Prior art keywords
sensor
work
machine tool
accuracy
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018216261A
Other languages
English (en)
Other versions
JP2020082231A (ja
Inventor
山田 智明
智明 山田
建太 神藤
建太 神藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DMG Mori Co Ltd
Original Assignee
DMG Mori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DMG Mori Co Ltd filed Critical DMG Mori Co Ltd
Priority to JP2018216261A priority Critical patent/JP6757391B2/ja
Priority to PCT/JP2019/027111 priority patent/WO2020105218A1/ja
Publication of JP2020082231A publication Critical patent/JP2020082231A/ja
Application granted granted Critical
Publication of JP6757391B2 publication Critical patent/JP6757391B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、工作機械の機械精度についての測定方法に関する。
工作機械の機械精度を把握して適切にキャリブレーションを行うことが、高い寸法精度を伴う機械加工を行うために重要である。これに対応するため、精度が補償された四直角マスタのような基準器を用いて、工作機械の精度測定を行う方法が提案されている(例えば、特許文献1参照)。
特開2009−103599号
特許文献1に記載の測定方法では、機内に設置した基準器を、工具主軸に取り付けたセンサで測定することにより、真直度や直角度の測定を行うことができる。しかし、基準器を別途所有する必要がある上、測定の度にセンサを機内に設置する必要があり、コストや工数の面で課題を有する。
本発明は、上記問題に鑑みてなされたものであり、基準器を用いずに、少ない工数かつ低コストで実施可能な工作機械の機械精度に関する測定方法を提供することを目的とする。
上記課題を解決するために、本開示の1つの実施態様に係る測定方法は、
ワークを工作機械にセットして加工を行う工程と、
センサを前記工作機械にセットする工程と、
前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定する工程と、
前記少なくとも2つの測定点における測定結果に基づいて、前記工作機械の精度を検出する工程と、
を含む。
上記の実施態様によれば、基準器を用いずに、少ない工数かつ低コストで実施可能な工作機械の機械精度に関する測定方法を提供することができる。
主軸に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図であって、特に、主軸の移動方向がテーブルの載置面の基準方向に対して平行な場合を示す図である。 主軸に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図であって、特に、主軸の移動方向がテーブルの載置面の基準方向に対して傾斜角を有する場合を示す図である。 主軸に取り付けられたセンサを回転及び移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図である。 センサの視野内における3つの測定点を模式的に示した図である。 工作機械のX、Y、Z軸ごとに存在する機械精度を模式的に示した図である。 同一の測定点が同一視野に入るようにしながら、主軸に取り付けられたセンサを順次移動させて、X軸方向における傾斜角を求める工程を示す図である。
以下、図面を参照しながら、本開示を実施するための実施形態や実施例を説明する。なお、以下に説明する測定方法は、本開示の技術思想を具体化するためのものであって、特定的な記載がない限り、本開示を以下のものに限定しない。
各図面中、同一の機能を有する部材には、同一符号を付している場合がある。要点の説明または理解の容易性を考慮して、便宜上実施形態や実施例に分けて示す場合があるが、異なる実施形態や実施例で示した構成の部分的な置換または組み合わせは可能である。後述の実施形態や実施例では、前述と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については、実施形態や実施例ごとには逐次言及しないものとする。各図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張して示している場合もある。
(本開示の第1の実施形態に係る測定方法)
はじめに、図1及び図2を参照しながら、工作機械の機械精度に関する本開示の第1の実施形態に係る測定方法の説明を行う。まず、図1を参照しながら、測定方法の基本的な説明を行う。図1は、主軸(工具主軸)に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する工程を模式的に示す側面図である。特に、図1では、主軸がテーブルの載置面の基準方向(例えばX軸方向だがこれには限られない)に対して平行な方向へ移動した場合を示す。
本実施形態では、ワークWを工作機械2のテーブル10の載置面10aにセットして加工を行った後、ワークWをテーブル10から取り外すことなく、センサ30を工作機械の主軸20にセットする。ここで用いるセンサ30としては、縞投影エリアセンサのような、三次元のプロファイルが得られる三次元センサを例示することができる。また、光学切断式センサを用いて、ライン光の長手方向に対して垂直な方向に走査することにより、三次元のプロファイルを得ることもできる。また、検出する方向によっては、画像センサのような二次元センサを用いることもできる。
何れのセンサを用いる場合も、センサ単体でのキャリブレーション(センサの測定範囲内でのキャリブレーション)が完了し、二次元の視野内の座標が校正された状態で計測を行う。
また、工作機械の基準位置(例えばテーブルの回転中心)付近でセンサの主軸に対する取り付けが校正されている状態で測定を行う。この取り付けに関する校正は基準を作るためのもので、例えばテーブル回転中心付近で視野上の2点S1、S2で同一点を測定して見かけ上の傾きを出しても良い。なお、本測定の性質上、一定の面内(測定範囲内)で精度を保証できるセンサである必要がある。
本実施形態では、工作機械2の機械精度に関する測定の一例として、主軸20の移動方向のテーブルの載置面の基準方向に対する傾斜角度を検出する場合を例にとって説明する。本実施形態では、ワークWをテーブル10上に固定し、主軸20の移動によりセンサ30を移動させて測定を行う。図1では、主軸20がX軸方向に移動する場合を示す。
ただし、これに限られるものではなく、センサ側を固定して、ワーク側を移動させることもできる。例えば、センサが取り付けられた部材は動かさずに、ワークが載置されたテーブルを移動させることもできる。更に、センサ及びワークの両方を移動させることもできる。センサ及びワークを相対的に並進移動させることができれば、任意の態様を採用することができる。
<主軸の移動方向がテーブルの載置面の基準方向に対して平行な場合>
図1では、センサ30の光軸(主軸20の軸)がテーブル10の載置面10aに対して直交し、主軸20の移動方向がテーブル10の載置面10aの基準方向に対して平行になっている場合を示す。つまり、所定の機械精度が得られている場合を示す。
センサ30を主軸20にセットした後、測定用マークであるワークWの加工面に設けられた点Aを、センサ30の視野32内における2つの測定点S1、S2で測定する。具体的には、図1の実線で示す位置で点Aを測定して、視野32内に測定点S1を得た後、センサ30が取り付けられた主軸20を距離Lだけ移動させて(太矢印参照)、図1の破線で示す位置で再び点Aを測定する。これにより、視野内に測定点S2を得る。
測定用マークとなるワークW上の点Aとしては、ワークにポンチやマーキングが付けられていれば、これを用いることができる。また、機械加工でワークWに形成された凸部、凹部、エッジ部、コーナー部等を測定用マークとして用いることもできる。
センサ30により三次元のプロファイルが得られる場合において、測定点S1のZ軸方向の座標Z1及び測定点S2のZ軸方向の座標Z2を計測し、その偏差ΔZ(=Z2−Z1)に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。図1に示す場合には、偏差ΔZ=0となるので、主軸20の移動方向がテーブル10の載置面10aの基準方向に対して平行である(傾斜していない)と判断することができる。
<主軸の移動方向がテーブルの載置面の基準方向に対して傾斜を有する場合>
次に、図2を参照しながら、センサ30の光軸はテーブル10の載置面10aに対して直交し、主軸20の移動方向がテーブル10の載置面100aの基準方向に対して、角度θだけ傾斜している場合について説明する。図2は、主軸に取り付けられたセンサを移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する場合を模式的に示す側面図であって、特に、主軸の移動方向がテーブルの載置面の基準方向に対して傾斜角を有する場合を示す図である。
センサ30を主軸20にセットした後、図2の実線で示す位置で点Aを測定して、視野内に測定点S1を得た後、センサ30が取り付けられた主軸を距離Lだけ移動させて(太矢印参照)、図2の破線で示す位置で再び点Aを測定する。これにより、視野内に測定点S2を得る。
センサ30により三次元のプロファイルが得られる場合において、測定点S1のZ軸方向の座標Z1及び測定点S2のZ軸方向の座標Z2を計測し、その偏差ΔZ(=Z2−Z1)に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。図2に示す場合には、偏差ΔZがゼロ以外の所定の値となるので、主軸20の移動方向がテーブル10の載置面10aの基準方向に対して平行ではない(傾斜している)と判断することができる。そして、偏差ΔZの値に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。具体的には、角度θ=ARCSIN(ΔZ/L)で傾斜角度θを算出することができる。
以上のように、第1の実施形態においては、センサ30及びワークWを相対的に並進移動させることにより、ワークWの加工面の同一点を、センサ30の視野内における2つの測定点S1、S2で測定し、この測定結果に基づいて、工作機械2の精度として、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを検出することができる。
(本開示の第2の実施形態に係る測定方法)
次に、図3を参照しながら、本開示の第2の実施形態に係る測定方法の説明を行う。図3は、主軸に取り付けられたセンサを回転及び移動させて、テーブルに載置されたワークの加工面の同一点をセンサの視野内における2つの測定点で測定する場合を模式的に示す側面図である。
上記の第1の実施形態では、センサ30及びワークWを相対的に並進移動させることにより、
センサ30の視野32内に測定点S1及び測定点S2を得て、工作機械2の精度を検出している。本実施形態では、センサ30及びワークWを相対的に回転移動及び並進移動させることにより、センサ30の視野32内に測定点S1及び測定点S1’を得て、工作機械2の精度を検出する。
センサ30の視野32内において、測定点S1は、センサ30(主軸20)の回転中心CLと結ぶ線が主軸20の移動方向に一致するように配置されている。また、測定点S1は、センサ30の回転中心CLから距離Mだけ離間して配置されている。
この状態において、図3の実線で示す位置で点Aを測定して、視野内に測定点S1を得た後、センサ30が取り付けられた主軸32を180度回転させるとともに、主軸32を距離2×Mだけ移動させて(太矢印参照)、図3の破線で示す位置で再び点Aを測定する。これにより、視野内に測定点S1’を得る。
センサ30により三次元のプロファイルが得られる場合において、測定点S1のZ軸方向の座標Z1及び測定点S1’のZ軸方向の座標Z1’を計測し、その偏差ΔZ(=Z1’−Z1)に基づいて、主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角度θを求めることができる。具体的には、角度θ=ARCSIN(ΔZ/L)で傾斜角度θを算出することができる。
その他の点については、第1の実施形態と同様なので、更なる説明は省略する。
以上のように、上記の第1及び第2の実施形態に係る測定方法では、
センサ30が主軸20に取り付けられ、
ワークWがテーブル10に載置され、
センサ30の視野内における2つの測定点S1、S2(S1、S1’)における測定結果の差分に基づいて、主軸20の移動方向及びテーブル10の載置面10aの基準方向に対する傾斜角θを検出することができる。
これにより、基準器等を工作機械2の機内に設置することなく、加工したワークWを用いて、少ない工数で確実に傾斜に関する精度を測定することができる。
特に、センサ30及びワークWを相対的に並進移動させることにより、ワークWの加工面の同一点Pを、センサ30の視野32内における少なくとも2つの測定点S1、S2で測定して、工作機械2の精度を検出することができる(第1の実施形態)。更に、センサ30及びワークWを相対的に回転及び並進移動させることにより、ワークWの加工面の同一点Pを、センサ30の視野32内における少なくとも2つの測定点S1、S1’で測定して、工作機械2の精度を検出することができる(第2の実施形態)。何れにおいても、工作機械2の機能を有効利用して、工作機械2の精度を効率的に検出することができる。
また、センサ30及びワークWを相対的に回転移動及び並進移動させることにより、ワークWの加工面の同一点を、センサ30の視野内における少なくとも2つの測定点で測定することにより、工作機械2の精度を検出することができる。この場合においても、工作機械2の機能を有効利用して、工作機械2の精度を効率的に検出することができる。
特に、2つの測定点の偏差に基づいて並進移動における誤差を検出し、2つの測定点の和に基づいて回転移動における誤差を検出することができるので、回転移動誤差及び並進移動誤差の分離推定が容易になる。
なお、ここではセンサ30を取り付けた主軸20を回転させているが、これに限られるものではなく、テーブル10側を回転させることもできる。このとき、研削により平面に加工されたワークWの表面は、テーブル10ではなく、主軸20の移動方向に沿って加工されている。このため、テーブル10の180°回転により、ワークWの表面は逆方向に傾斜することとなり、基準器を使った場合より高感度でX軸の傾斜を検出することができる。
上記においては、主軸20の移動方向の傾斜角度θの検出を例にとって説明したが、検出する機械精度はこれに限られるものではない。例えば、ワークWの加工面の同一点Pを、センサ30の視野32内における少なくとも2つの測定点S1、S2で測定して、センサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を検出することもできる。具体的には、測定点2の座標と、センサ30の光軸(主軸20の軸)がテーブル10の載置面10aに対して直交している場合の座標との偏差に基づいて、センサ30の光軸(主軸20の軸)の傾斜角度を求めることができる。
(本開示の第3の実施形態に係る測定方法)
次に、図4を参照しながら、本開示の第3の実施形態に係る測定方法の説明を行う。図4は、
センサの視野内における3つの測定点を模式的に示した図である。
上記の第1または第2の実施形態に係る測定方法を、X軸方向だけでなく、Y軸方向にも行うことにより、図4に示すようなセンサの視野内における3つの測定点T1〜T3を得ることができる。これにより、センサ30の視野32内における2つの測定点における測定結果の差分に基づいて、X軸方向及びY軸方向における主軸20の移動方向のテーブル10の載置面10aの基準方向に対する傾斜角θを検出することができる。同様に、センサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を検出することもできる。
(本開示の第4の実施形態に係る測定方法)
本開示の第4の実施形態に係る測定方法では、センサ30及びワークWを相対的に回転移動させて、ワークWの加工面の同一点を、センサの視野内における少なくとも2つの測定点で測定する。この測定方法を用いて、機械精度として、例えば、センサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を検出することができる。
センサ30及びワークWを相対的に360度回転移動させた場合、仮に、センサ30(主軸20)の回転軸がテーブル10の載置面10aに対して垂直であれば、視野32上の点のワークWへの投影像は真円を描くことになる。一方、仮に、センサ30(主軸20)の回転軸がテーブル10の載置面10aに対して傾斜している場合には、上記の真円の投影像に対して偏差が生じる。よって、この偏差に基づいて、センサ30(主軸20)の回転軸、つまりセンサ30の光軸(主軸20の軸)のテーブル10の載置面10aに対する傾斜角度を求めることができる。少なくとも、ワーク上の3点で測定を行えば、センサ30(主軸20)の回転軸のテーブル10の載置面10aに対する傾斜角度を求めることができる。
また、センサ30でワーク上の点Aを測定して、視野32内に測定点S1を得た後、センサ30を所定の角度だけ回転させる。そして、センサ30(主軸20)の回転軸CLがテーブル10の載置面10aに対して垂直な場合に、回転後の測定点S1’が点Aの位置に戻るような移動量でセンサ30移動させる。このとき、得られた測定点S1及びS1’の間の座標の偏差に基づいて、センサ30の光軸の傾斜角度を求めることができる。ワークWの加工面の同一点Aを、センサ30の視野内における少なくとも3つの測定点(3つの回転角度)で測定することにより、センサ30の光軸のテーブル10の載置面10aに対する傾斜角度を求めることができる。
テーブル10
(本開示の第5の実施形態に係る測定方法)
次に、図5及び図6を参照しながら、本開示の第5の実施形態に係る測定方法の説明を行う。図5は、工作機械のX、Y、Z軸ごとに存在する機械精度を模式的に示した図である。図6は、同一の測定点が同一視野に入るようにしながら、主軸に取り付けられたセンサを順次移動させて、X軸方向における傾斜角を求める工程を示す図である。
図5に示すように、工作機械2の機械精度として、各軸ごとに、軸方向における位置、水平方向の真直度、垂直方向の真直度、軸周りのローリング、ヨーイング及びピッチングがある。更に、各軸間の直角度(XY軸、XZ軸及びYZ軸間の直角度)がある。よって、工作機械2の機械精度として、6要素×3軸+3要素(軸間)=21個の要素がある。
これらの機械精度の各要素は、ワークW上の所定の箇所を基準にすることにより、上記の実施形態で説明した測定方法を用いて算出することができる。
上記の要素を求めるため、図6に示すように、同一の測定点が同一視野に入るようにしながら、主軸20に取り付けられたセンサ30を順次移動させて、X軸方向における傾斜角を求めるステップを繰り返す。つまり、視野内の精度を頼りに、全体の測定を尺取り虫状につないでいく所謂逐次三点法を採用することができる。図6では、視野内の測定点のうち、少なくとも2点を視野内の同一の位置で測定するように、ステップ1からステップ2を行ったところを示す。
例えば、視野の2/3(以下2/3FOV)の距離だけ離間した測定マークT1、T2がある場合(ステップ1参照)に、ステージを2/3FOVずつ動かして、ステップ2では、測定マークT2がステップ1における測定マークT1の位置に来るようにして測定する。このように、予めキャリブレーションされた視野内で同じ点を2か所で測ることによって、センサ30の精度を尺取虫状につないでいき、ワークW全体の測定を行うことができる。
このとき、ワークWには、センサ30の視野内に複数入る間隔で多数の測定用マークを作り込む必要がある。例えば、ワークWがラックアンドピニオンのラックであれば、ラックの長手方向に沿って、多数の測定用マークを得ることができる。この共通のマークを仲介として、長ストロークの相対座標変化を検出することができる。
これをX軸だけでなく、Y軸方向に行うことにより、上記の機械精度の各要素を検出することができ、適正なキャリブレーションを行うことができる。なお、測定に用いるワークWの形状としては、測定用マークとしての点が特定できる形状が望ましいので、多面錐体、円錐、凸球、凹球の一部が好ましいといえる。
上記の実施形態においては、センサ30を工作機械2の主軸20に取り付ける場合を例にして説明したが、これに限られるものではない。センサ30をワークWに対して相対的に移動可能であれば、センサ30を工作機械2のその他の任意の部材に取り付けることができる。
以上のように、上記の実施形態に係る測定方法では、
ワークWを工作機械2にセットして加工を行う工程と、
センサ30を工作機械2にセットする工程と、
ワークWの加工面の同一点を、センサ30の視野内における少なくとも2つの測定点で測定する工程と、
少なくとも2つの測定点における測定結果に基づいて、工作機械2の精度を検出する工程と、
を含む。
これにより、基準器等を工作機械2の機内に設置することなく、加工したワークWを用いて、工作機械2の精度を測定するので、少ない工数かつ低コストで工作機械の精度の測定を行うことができる。特に、ワークの加工面の同一点を、センサの視野内における少なくとも2つの測定点で測定することにより、効率的に確実に工作機械の精度を測定することができる。
基準器は、毎年検定が必要であり、1回の検定に多額の費用がかかる。また、何かの事故で変形してしまうと、使用不能な状態に陥る。また、基準器が基準として使えるのは、温度条件が一定(例えば、20℃±0.5℃)である必要があり、工作機上で使用するのが困難な場合もある。よって、基準器を用いないことにより、大きな利点がもたらされる。
センサ30が光学切断式センサであっても、ライン光の長手方向に対して垂直な方向に走査することにより、三次元のプロファイルを得ることもできる。
また、センサ30として、縞投影エリアセンサのような三次元センサを用いる場合には、より短かい時間で測定を完了することが期待できる。
本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。
2 工作機械
10 テーブル
10a 載置面
30 センサ
32 視野
W ワーク

Claims (7)

  1. ワークを工作機械にセットして加工を行う工程と、
    センサを前記工作機械の加工に用いる機械構成体にセットする工程と、
    前記加工を行う工程で形成された前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定する工程と、
    前記少なくとも2つの測定点における測定結果に基づいて、前記工作機械の精度を検出する工程と、
    を含むことを特徴とする工作機械の精度の測定方法。
  2. 前記センサ及び前記ワークを相対的に並進移動させることにより、前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定することを特徴とする請求項1に記載の工作機械の精度の測定方法。
  3. 前記センサ及び前記ワークを相対的に回転移動及び並進移動させることにより、前記ワークの加工面の同一点を、前記センサの視野内における少なくとも2つの測定点で測定することを特徴とする請求項1に記載の工作機械の精度の測定方法。
  4. 前記センサが光学切断式センサであることを特徴とする請求項1から3の何れか1項に記載の工作機械の精度の測定方法。
  5. 前記センサが縞投影エリアセンサであることを特徴とする請求項1から3の何れか1項に記載の工作機械の精度の測定方法。
  6. 前記センサが主軸に取り付けられ、
    前記ワークがテーブルに載置され、
    前記センサの視野内における2つの測定点における測定結果の差分に基づいて、前記主軸の移動方向及び前記テーブルの載置面の基準方向に対する傾斜角を検出することを特徴とする請求項4または5に記載の工作機械の精度の測定方法。
  7. 予めキャリブレーションされた前記センサを用いて、少なくとも2点を視野内の同一の位置で測定する工程を繰り返して、前記ワークの全体を測定することを特徴とする請求項1から6の何れか1項に記載の工作機械の精度の測定方法。
JP2018216261A 2018-11-19 2018-11-19 測定方法 Active JP6757391B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018216261A JP6757391B2 (ja) 2018-11-19 2018-11-19 測定方法
PCT/JP2019/027111 WO2020105218A1 (ja) 2018-11-19 2019-07-09 測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018216261A JP6757391B2 (ja) 2018-11-19 2018-11-19 測定方法

Publications (2)

Publication Number Publication Date
JP2020082231A JP2020082231A (ja) 2020-06-04
JP6757391B2 true JP6757391B2 (ja) 2020-09-16

Family

ID=70773979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018216261A Active JP6757391B2 (ja) 2018-11-19 2018-11-19 測定方法

Country Status (2)

Country Link
JP (1) JP6757391B2 (ja)
WO (1) WO2020105218A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7080507B2 (ja) * 2020-07-21 2022-06-06 株式会社トキワシステムテクノロジーズ キャリブレーション装置、キャリブレーションプログラム、キャリブレーション方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789058B2 (ja) * 1986-06-11 1995-09-27 キヤノン株式会社 距離測定装置
JPH0493705A (ja) * 1990-08-09 1992-03-26 Topcon Corp 3次元位置測定装置及び測定方法
JPH04146043A (ja) * 1990-10-08 1992-05-20 Toshiba Corp 3次元表面切削用工作機械のnc制御装置
JPH04176543A (ja) * 1990-11-08 1992-06-24 Fanuc Ltd デジタイジング制御装置
JPH0778252A (ja) * 1993-06-30 1995-03-20 Kobe Steel Ltd 物体認識方法
JPH1069543A (ja) * 1996-08-29 1998-03-10 Oki Electric Ind Co Ltd 被写体の曲面再構成方法及び被写体の曲面再構成装置
JPH11325869A (ja) * 1998-05-11 1999-11-26 Mitsutoyo Corp ワーク形状測定方法、装置及び座標測定機
JP4571256B2 (ja) * 1999-11-30 2010-10-27 佐藤 ▼壽▲芳 逐次2点法による形状精度測定装置および逐次2点法による形状精度測定用レーザ変位計間隔測定方法
EP1128156A1 (en) * 2000-02-10 2001-08-29 General Electric Company Method and apparatus for automatically compensating for measurement error
JP2001241928A (ja) * 2000-03-01 2001-09-07 Sanyo Electric Co Ltd 形状測定装置
JP2002197463A (ja) * 2000-12-26 2002-07-12 Matsushita Electric Ind Co Ltd 挙動検出装置および挙動検出システム
JP2003177019A (ja) * 2001-10-03 2003-06-27 Mamoru Otsuki 自由撮影によるカメラの姿勢算出方法
JP2003136370A (ja) * 2001-10-31 2003-05-14 Tokyo Seimitsu Co Ltd Nc工作機械
JP2003211346A (ja) * 2002-01-15 2003-07-29 Mori Seiki Co Ltd 工作機械の精度解析装置
JP2003285249A (ja) * 2002-03-27 2003-10-07 Mori Seiki Co Ltd 工作機械の精度解析装置
JP4614337B2 (ja) * 2005-03-31 2011-01-19 国立大学法人広島大学 工具の先端位置検出方法、ワークの加工方法および摩耗状態検出方法
JP5184046B2 (ja) * 2007-10-24 2013-04-17 株式会社ミツトヨ 基準器
JP2011058854A (ja) * 2009-09-07 2011-03-24 Sharp Corp 携帯端末
JP2012093258A (ja) * 2010-10-27 2012-05-17 Nikon Corp 形状測定装置
US9188973B2 (en) * 2011-07-08 2015-11-17 Restoration Robotics, Inc. Calibration and transformation of a camera system's coordinate system
JP5896844B2 (ja) * 2012-07-02 2016-03-30 国立大学法人名古屋大学 ワーク径計測機能付き工作機械
JP6435750B2 (ja) * 2014-09-26 2018-12-12 富士通株式会社 3次元座標算出装置、3次元座標算出方法および3次元座標算出プログラム
JP2016070762A (ja) * 2014-09-29 2016-05-09 ファナック株式会社 対象物の三次元位置を検出する検出方法および検出装置
US20180050433A1 (en) * 2015-03-17 2018-02-22 Toshiba Kikai Kabushiki Kaisha Machine tool
JP2018030195A (ja) * 2016-08-24 2018-03-01 株式会社ニイガタマシンテクノ 工作機械の熱変位補正方法及び基準ゲージ
JP6599832B2 (ja) * 2016-09-16 2019-10-30 ファナック株式会社 工作機械及びワーク平面加工方法

Also Published As

Publication number Publication date
WO2020105218A1 (ja) 2020-05-28
JP2020082231A (ja) 2020-06-04

Similar Documents

Publication Publication Date Title
US20200055191A1 (en) Robot system with supplementary metrology position coordinates determination system
JP4791118B2 (ja) 画像測定機のオフセット算出方法
US10578414B2 (en) Inner-wall measuring instrument and offset-amount calculation method
CN101298984A (zh) 坐标测量方法及装置
JPH1183438A (ja) 光学式測定装置の位置校正方法
US11454498B2 (en) Coordinate measuring system
CN107091608B (zh) 一种基于曲面基准件的五自由度参数测量方法
TWM516714U (zh) 工具機旋轉軸定位精度檢測裝置
CN109269422A (zh) 一种点激光位移传感器测量误差校对的实验方法及装置
CN101451825A (zh) 图像测量装置的校正方法
JP4964691B2 (ja) 被測定面の測定方法
JP5270138B2 (ja) 校正用治具及び校正方法
CN113624136B (zh) 零件检测设备和零件检测设备标定方法
JP2006258612A (ja) 軸間角度補正方法
JP4890188B2 (ja) 運動誤差測定基準体及び運動誤差測定装置
JP6757391B2 (ja) 測定方法
JP4571256B2 (ja) 逐次2点法による形状精度測定装置および逐次2点法による形状精度測定用レーザ変位計間隔測定方法
JP2006145560A (ja) 倣いプローブの校正プログラムおよび校正方法
JP2000249540A (ja) 円筒物の形状測定装置及び測定方法
CN112894490B (zh) 基于旋转l型阵列实现数控机床垂直度误差检测的方法
EP3189302B1 (en) Coordinate measuring method and apparatus for inspecting workpieces, comprising generating measurement correction values using a reference shape that is known not to deviate substantially from a perfect form
JP7321067B2 (ja) 工作機械の反転誤差計測方法
JP6181935B2 (ja) 座標測定機
JP4922905B2 (ja) 回転中心線の位置変動測定方法および装置
CN113375590B (zh) 一种基于立体偏折束的超精密加工原位测量装置和方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200828

R150 Certificate of patent or registration of utility model

Ref document number: 6757391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250