JP6590510B2 - シリコンウエハの加工方法 - Google Patents

シリコンウエハの加工方法 Download PDF

Info

Publication number
JP6590510B2
JP6590510B2 JP2015085904A JP2015085904A JP6590510B2 JP 6590510 B2 JP6590510 B2 JP 6590510B2 JP 2015085904 A JP2015085904 A JP 2015085904A JP 2015085904 A JP2015085904 A JP 2015085904A JP 6590510 B2 JP6590510 B2 JP 6590510B2
Authority
JP
Japan
Prior art keywords
mask
etching
region
silicon wafer
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015085904A
Other languages
English (en)
Other versions
JP2016207774A (ja
Inventor
敦則 寺崎
敦則 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015085904A priority Critical patent/JP6590510B2/ja
Publication of JP2016207774A publication Critical patent/JP2016207774A/ja
Application granted granted Critical
Publication of JP6590510B2 publication Critical patent/JP6590510B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

本発明は、シリコンウエハの加工方法に関し、主に液体吐出ヘッドに用いるシリコンウエハ(基板)の加工方法に関する。
一般的なMEMS(Micro Electro Mechanical Systems)加工や、一部の半導体デバイス加工において、シリコン基板を貫通する、あるいはそれに準ずる深さの構造体を加工する例が多く存在する。そして、現在、半導体デバイスの微細加工技術を応用して、液体吐出ヘッドに用いるシリコン基板の加工が実施されている。液体吐出プリント方式に用いられる一般的な液体吐出ヘッドは、シリコン基板の上に流路形成部材が形成される。
流路形成部材は、液滴を吐出するための吐出口と、該吐出口に連結する液体流路と、を構成する。一般に、液体流路は複数個列状に配置される。また、シリコン基板上であって液体流路の一部に吐出エネルギー発生素子が設けられ、この吐出エネルギー発生素子により発生するエネルギーにより液滴が吐出口から吐出される。また、シリコン基板には、各液体流路と連結する複数の供給路と、これらの供給路に連通する共通液室が形成されている。
このような構成においては、例えば、吐出ヒータ等の吐出エネルギー発生素子からの熱エネルギーを利用して液体を加熱し発泡させることにより液滴を吐出口から吐出する。その際、供給路から液体流路に液体が供給され、供給路には共通液室から液体が供給される。
このような液体吐出ヘッドに用いるシリコン基板の加工方法として、密度向上等の観点からドライエッチングによる垂直加工を用いることがあり、特にボッシュプロセスはシリコンを高速で加工する方法として好適に用いられる。ボッシュプロセスを用いたドライエッチングは、図1で示すように、以下の3つの工程を順番に連続的に繰り返すサイクルで構成される技術である。
(1)フッ素系ラジカル4により、マスク2を介してシリコン基板1のエッチングによるエッチングパターン3の形成(図1(a))
(2)フルオロカーボン系のパッシベーション層5の形成(図1(b))
(3)イオン6によるパターン底部3Bのパッシベーション層5の除去(図1(c))
(1)の工程で形成されたエッチングパターン3の側壁を、(2)の工程で形成されるパッシベーション層5で保護し続けることにより、図1(d)に示すような垂直なエッチング形状を達成することができる。処理ガスとしては、(2)の工程はCを、(1)と(3)の工程はSFを通常用いる。
一般的なドライエッチングでは、プロセスの面内均一性を向上するために、プラズマ密度がウエハ表面で極力均一になるように装置を設計している。しかし、ボッシュプロセスに代表される、フッ素系のラジカルを用いたシリコンウエハの垂直加工においては、たとえプラズマ密度を均一に制御できたとしても、ウエハ周辺のパターンのエッチングレートがウエハ中心部よりも速くなってしまう、ローディング効果と呼ばれる現象が発生する。
一般的なドライエッチングにおいてエッチングに寄与するのは、電荷を有するイオンと、電気的に中性なラジカルである。しかし、フッ素系のガスを用いたシリコン高速エッチングでは、イオン衝撃がなくてもラジカルのみで反応が自発的に進む。すなわち、この系においてシリコンのエッチングレートを決定するのは、ラジカルの振舞いであると考えて良い。ここで、イオンとラジカルそれぞれの反応の特性からローディング効果のメカニズムを説明する。
イオン6は、バイアスによって加速され指向性を持っているため、マスク2の開口に到達するイオン6の数は単純に開口面積に比例する。例えば、あるパターンのエッチングに寄与するイオンは、そのマスク2の開口から垂直に延ばされた領域に存在するイオンがほとんどである(図2(a)参照)。よって、マスク開口内に入射するイオンの数は、プラズマ密度に比例すると考えて良いため、理想的にはプラズマ密度さえ均一にすれば、イオン主体のエッチングであれば結果は均一になる。
一方、ラジカル4には指向性がないため、パターン開口から垂直に延ばされた領域のみならず、パターン開口周囲に存在するラジカルもエッチングに寄与する。その際、孤立したマスク開口であれば、マスク開口周囲のラジカル4はそのマスク開口内のみで消費されるが(図2(b)参照)、周りに他のマスク開口があると、周囲のラジカル4を他のマスク開口と取り合うことになる(図2(c)参照)。すなわち、プラズマ密度が同じで同じ開口形状のパターン形成でも、周囲に存在する開口パターンの密度が異なればエッチングレートは大きく変化する。例えば、図3に示すように、ウエハ上に同じ開口パターンが規則的に並んでいた場合、ウエハ周辺領域ではウエハの外側の領域に存在するラジカルもエッチングに寄与してしまう。これは、パターン密度が低下した場合と同じ状況になる。このような現象が、ウエハ周辺領域でエッチングレートが上がってしまうメカニズムである。この現象は、特にパターンの開口率が大きい場合に顕著になる。例えば、開口率5%以下の場合は大きな影響はないが、開口率10%以上の場合は大きな問題となる。
エッチングレートが均一でないと、同じパターンを面内で深さの均一性良く作製することは困難である。そこで、シリコンとエッチング選択比の取れる材料をストッパー膜41として形成し高さを揃える方法が一般的に行われている。その際、エッチングレートの速い箇所では、ウエハ全面のエッチングが終了するまでの間、開口底部にはエッチングするシリコンのない状態で長時間プラズマにさらされることになる。その結果、余剰のラジカルにより壁面の保護膜がダメージを受け、シリコンの壁面を浸食してしまう場合がある(図4の42参照)。また、ストッパー膜41が絶縁膜であった場合、底部にチャージが溜まってイオンが反発力を受け、シリコンの壁に向かって飛跡が曲げられ底部の開口幅が広がる、ノッチングという現象がある(図4の43参照)。エッチングレートの速い箇所ではオーバーエッチングの時間が長くなり、このノッチングが起こり易くなる。
一方で、ウエハの外周域でプラズマ密度が下がるように装置を設計する方法もある。例えば図5(a)に示すように、プラズマ源51を極力点源52に近付け、発生したプラズマ53が周辺に向かって拡散するようにする。或いは、図5(b)に示すようにアパーチャー54等を用いて、プラズマ53の有効径を絞るという方法もある。しかし、これらの方法はエッチングレートを均一にするものの、イオンの密度は周辺に向かって減少する分布となる。その結果、イオンは濃度の高い方から低い方へ拡散する飛跡を描くことになる。即ち、ボッシュプロセスの(3)の、「イオンによるパターン底部のパッシベーション層の除去」の工程で、引きこまれるイオンの方向がウエハ外側に向かって傾斜した状態になり、その繰り返しにより、形成されるパターン自体も傾斜してしまう(図5参照)。
また、プロセス条件によってエッチングレート分布を改善する方法もある。例えば、プロセスガスであるSFの流量を増加させ、同時に圧力を下げるという方法である。この方法には、低圧化によりラジカル密度を下げ、できるだけ余剰ラジカルを発生させないことと、排出速度の向上により反応生成物の分圧を下げることの2つの効果がある。これら2つの効果により、ラジカル密度分布の影響を受けにくくするという発想である。この方法により若干の改善効果は得られるものの、低圧化によってラジカル密度が下がることにより全体のエッチングレートが下がって、生産効率が著しく低下するという弊害も生じる。
本発明は、上記のようなシリコンの高速エッチング加工において、エッチングレートの均一性と形状の均一性を両立できる方法を提供することを目的とする。
本発明の一形態は、
フッ素系のラジカルを用いたドライエッチングによってシリコンウエハの表面に複数の凹パターンを形成するシリコンウエハの加工方法であって、
前記シリコンウエハを第1番目から第N番目の領域の順番に前記シリコンウエハの中心から外周へ向けて同心円状にN分割(但し、Nは2以上の自然数)し、第1番目の領域から第N番目の領域まで順次前記ドライエッチングを行うドライエッチング工程を有し、
前記ドライエッチング工程において、第K番目(但し、Kは2以上N以下の自然数)の領域にエッチングを行う際には、第1番目から第K番目の領域にエッチングを行うことを特徴とするシリコンウエハの加工方法に関する。
本発明によれば、フッ素系のラジカルを用いたシリコン高速エッチングにおいて生じるローディング効果、即ちエッチングレートの不均一な面内分布を大幅に改善し、パターン形状の面内均一性を損なうことなく、パターンの深さの面内均一性を向上させることができる。
ボッシュプロセスによるシリコンエッチングの概念を説明するための模式図である。 イオン、ラジカルによるエッチングの特性を説明するための模式図である。 シリコンエッチングの面内均一性、ローディング効果の概念を説明するための模式図である。 ストッパーを用いたシリコンエッチングで発生する壁面の浸食発生の概念を説明するための模式図である。 プラズマ源の変更によりローディング効果を抑制する概念を説明するための模式図である。 ボッシュプロセスによるシリコンエッチングの面内分布の一例を示すための図である。 本発明の概念を説明するための断面工程図、及び平面図である。 本発明の概念を説明するためのシミュレーション結果を示した図表である。 本発明の実施形態を説明するための平面図である。 本発明の実施形態の領域分割を説明するための平面図である。 本発明の実施形態を説明するための工程断面図である。 本発明の実施形態を説明するための工程断面図である。 本発明の実施形態を説明するための工程断面図である。 本発明の実施形態を説明するための工程断面図である。 本発明の実施形態を説明するための工程断面図である。 本発明により液体吐出ヘッドを作製した実施例1を説明するための工程断面図である。 本発明により液体吐出ヘッドを作製した実施例2を説明するための工程断面図である。 本発明により液体吐出ヘッドを作製した実施例3を説明するための工程断面図である。
ボッシュプロセス等のフッ素系のラジカルを用いるエッチングにおいて、エッチングレートの面内分布が発生する概要は図3に示した通りである。その際の、エッチングレート分布の一例を図6に示す。エッチングレート、及び面内位置は、いずれもウエハ端で1となるように規格化してある。この事例では、開口率が30%のパターンにおいて、面内均一性は±17.6%となるプロセス条件である。また、ここでいう面内均一性とは、
(最大エッチングレート−最小エッチングレート)/(最大エッチングレート+最小エッチングレート)×100(%)
で定義している。
本発明に係るシリコンウエハのドライエッチング法は、(1)フッ素系のラジカルによるシリコンへのパターンの形成と、(2)前記パターンの内壁へのフルオロカーボン系のパッシベーション層の形成と、(3)イオンによる前記パターンの底部のパッシベーション層の除去と、を繰り返す方法を含むボッシュプロセスであることが好ましい。特に、ウエハ面内でのパターン開口率が10%以上である場合に好適である。
本発明では、フッ素系のラジカルを用いたドライエッチングによってシリコンウエハの表面に複数の凹パターンを形成するシリコンウエハの加工方法において、相対的なエッチングレートの面内均一性を高める、即ち上記値を小さくするため、ウエハにおけるエッチング領域を複数に分割している。エッチングレートが低い部分のエッチング機会を多くすることで、エッチングレートの低下分を補い、シリコンウエハに形成する凹パターンのパターン形状の面内均一性を損なうことなく、パターンの深さの面内均一性を向上させることができる。
具体的には、シリコンウエハをN分割(但し、Nは2以上の自然数)し、第1番目の領域から第N番目の領域まで順次前記ドライエッチングを行うドライエッチング工程を有し、前記ドライエッチング工程において、第K番目(但し、Kは2以上N以下の自然数)の領域にエッチングを行う際には、第1番目から第K番目の領域にエッチングを行う。
このように、N分割された領域は、第1番目から第N番目の領域の順番にシリコンウエハの中心から外周に向けて同心円状に配置されていることが好ましい。これは、図6に示すように、シリコンウエハの中心部が最もエッチングレートが低いためである。ここでの「同心円状」とは、分割されたエッチング領域が同心円上に配置されていればよく、各領域の境界は、同心円に限定されない。特に、1枚のシリコンウエハからチップを多数個取りする場合には、1つのチップは同じエッチング領域に属していることが好ましい。
エッチング領域の分割は、シリコンウエハ上に形成するエッチングマスクの形状を工夫することで対応できる。本発明の一実施形態では、凹パターン形状に対応した開口パターンを有する第一のマスクと、分割された後順番の領域の第一のマスクの開口パターンを閉塞(保護)する第二のマスクとを組み合わせて実施される。以下、本発明の第一の実施形態について説明する。
図7は、例えば、ウエハの径方向にエッチング領域を2分割したものを示す。シリコン基板1上に第一のマスク21が形成されており、第1番目の領域R1、即ちウエハの内側の領域は、第一のマスク21が露出している一方で、第2番目の領域R2、即ちウエハの外側の領域は第二のマスク22に覆われている(図7(a1)、(a2)参照)。この状態で第一のエッチング工程にて第1番目の領域R1のエッチングを行って凹パターン23a、23bを形成する(図7(b)参照)。この時、ウエハの内側の凹パターン23aと外側の凹パターン23bとではエッチングレートが異なり、外側ほど深くエッチングされる。第二のマスク22を除去し(図7(c1)、(c2)参照)、ウエハ全面で第一のマスク21が露出した状態で第二のエッチング工程を行い、第2番目の領域R2に凹パターン24を形成する(図7(d)参照)。この時、領域R1の凹パターン23a、23bもエッチングされるが、ウエハの内側より外側の方がエッチングレートが速くなるため、第二のエッチング工程では凹パターン24のエッチング量が最大となる。凹パターン23bは、第一のエッチング工程で深くエッチングされているため、合計のエッチング量は凹パターン24の第二のエッチング工程のエッチング量よりも多くなり、最も深くなっている。
これは、第一のエッチング工程において、エッチングレート分布は図6の内側の領域を切り取ったものにはならない。何故なら、第2番目の領域R2を隠して第1番目の領域R1をエッチングする場合、第1番目の領域R1の最外周が新たな最外周であるため、第2番目の領域R2が露出していた場合、即ち図6の分布から、第1番目の領域R1に該当する部分のみを切り取ったものにはならないからである。ここでは、図6の規格化された分布を、そのまま径方向に軸を縮めた分布を取ると仮定する。
上記前提で2分割エッチングを考えた場合、例えば、第1番目の領域R1を径方向に内側から70%とし、第一のエッチング工程を全体の16%実施した場合に、面内均一性±9.39%という値を取ることが分かった(図8参照)。
同様な方法を用いて、3分割では±6.47%、10分割では±1.2%を実現出来る。この時の面内分布比較を図8(a)に、分割領域の取り方の例を図8(b)に、各エッチング工程の時間配分例を図8(c)に示す。結果として、分割エッチングによる面内均一性は、2分割で約2倍、3分割で約3倍、10分割で約10倍程度まで改善することが分かった。
図8のシミュレーションでは、径方向を対象に境界を形成するようモデル化したが、実際のパターンは必ずしも同心円で境界が引けるようには配置されていない。よって、エッチングレートがほぼ一定となる領域をチップ単位で等高線として結ぶことにより適宜領域を設定することができる(図9参照)。図9では、図8(b)に示した3分割する場合を例として、図9(a)ではウエハサイズの50%の円C1、80%の円C2、100%の円C3(ウエハ最外周)の3つの同心円を想定し、実際のパターンでは、図9(b)に示すように同心円の内側となるように3つの領域R1、R2、R3に分けている。
また本発明は、開口幅の異なるパターンが混在する場合、更に細分化することによりパターン依存性を併せて改善するという応用も可能である。一般的に、シリコン高速エッチングでは、同じ開口率のパターンであれば、エッチングレートは開口幅が大きい方が高くなる。例えば隣接ウエハの内側の領域31と外側の領域32の各領域に開口幅の狭い開口パターン33と広い開口パターン34が存在する場合を想定する(図10(a)参照)。領域31の開口パターン33が含まれる領域を第1番目の領域R1とし、第一のエッチング工程を行う(図10(b)参照)。次に、領域31の開口パターン34と、領域32の開口パターン33が含まれる領域を第2番目の領域R2とし、領域R1とR2に対して第二のエッチング工程を行う(図10(c)参照)。最後に領域37の開口パターン34が含まれる領域を第3番目の領域R3とし、領域R1〜R3に第三のエッチング工程を行う(図10(d)参照)。これにより、異種開口幅のパターンが混在する場合でも、エッチング深さを揃えることが可能となる。
本実施形態の効果として、シリコン高速エッチングの深さのウエハ面内での均一性を高められることはもちろんであるが、元となるエッチング条件でのエッチングレート分布が大きくなっても、面内分布の不均一性を吸収できるという利点もある。シリコン高速エッチングでは、一般的にエッチング雰囲気の圧力が高くなるほどエッチングレートが速くなる傾向がある。一方で、エッチング雰囲気の圧力を高くするとラジカルの量が増えることと、反応生成物の排出が遅くなることにより、面内分布の不均一性をより拡大する傾向がある。そのため、従来の方法では、エッチング時間の短縮とエッチング深さの面内均一性はトレードオフの関係にあった。本実施形態の構成を用いることにより、元となるエッチング条件をエッチングレートが高く均一性の低下する方向に振ったとしても、面内均一性を良化することが可能となり、エッチング時間の短縮との両立が可能となる。
本実施形態を実施するための適例として、図11〜13に示す3種のマスク構造を挙げる。エッチング開始に時差を設けるためには、マスク設計が重要となるが、大きく分けて3つの方式がある。
(a)都度更新方式 (図11参照)
(b)積層方式 (図12参照)
(c)時間差方式 (図13参照)
まず、(a)の都度更新方式は、第一のマスク21以外の第二のマスク22は都度形成し、それぞれの回のエッチング後に除去し、次の回で第二のマスクを更新するという工程を繰り返すプロセスである。例えば、3分割エッチングの場合を考える。シリコン基板1上に第一のマスク21を形成し、次に第2番目の領域R2と第3番目の領域R3を覆うように、第二のマスク22aを形成する(図11(a)参照)。次に、第一のエッチング工程で、第1番目の領域R1のパターンのみをエッチングする(図11(b)参照)。次に、一旦、第二のマスク22aを除去した後、第3番目の領域R3を覆うように第二のマスク22bを形成する。第二のマスク22bは、第二のマスク22aを部分的に除去して形成してもよい。次に、第1番目の領域R1と第2番目の領域R2に第二のエッチング工程を行う(図11(c)参照)。最後に、第二のマスク22bを除去した後、第三のエッチング工程を、ウエハ全面に対して行う(図11(d)参照)。4分割以上であれば、上記工程を繰り返す。これは、最もシンプルで、多段分割への拡張性が高い。一方で、エッチングパターンが深くまた微細化されると、第二のマスクの更新の難度が高くなるという側面もある。
第一のマスクとしては、シリコン酸化膜、シリコン窒化膜、シリコン酸窒化膜、炭化シリコン等のシリコン系の化合物や、クロム、アルミニウム等の、フッ素系ラジカルによるエッチングに対して耐性の高い金属材料等が好適である。第二のマスクとしては、レジスト、有機膜の他、第一のマスクの材料候補に上がった材料同士で、相互に選択的に除去可能な材料の組み合わせを第二のマスクの材料に適用することもできる。例えばクロムとアルミニウムは、ウェットエッチング、ドライエッチングそれぞれで相互に選択除去が可能であり、またシリコン系の化合物とも選択除去が可能である。
(b)の積層方式は、必要となる全ての第二のマスクを積層構造としておくプロセスである。例えば、3分割エッチングの場合を考える。シリコン基板1上に第一のマスク21を形成し、第3番目の領域R3を覆うように下層マスク22cを形成する。更に第2番目の領域R2と第3番目の領域R3を覆うように、上層マスク22dを形成する(図12(a)参照)。つまり、第二のマスク22は下層マスク22cと上層マスク22dの積層構造となる。この状態から、第一のエッチング工程を行った後、上層マスク22dを除去する(図12(b)参照)。次に、領域R1、R2に第二のエッチング工程を行った後、下層マスク22cを除去する(図12(c)参照)。最後に、領域R1〜R3に第三のエッチング工程を行う(図12(d)参照)。4分割以上であれば、上記工程を繰り返す。
第一のマスクとしては、(a)の都度更新方式と同様の材料選択肢がある。一方、第二のマスクの積層構造では、少なくとも除去する上のマスクとその下のマスク間で選択除去可能な組み合わせで選ぶ必要がある。例えば、上層マスク22dをポジ型レジスト、下層マスク22cをネガ型レジストで形成し、上層マスク22dは上層マスク22dを溶解し下層マスク22cは溶解しない剥離液にて除去する。下層マスク22cは、アッシング、或いは下層マスク22cを溶解可能な剥離液で除去するといった方法を取ることができる。もちろん、この組み合わせの中に、第一のマスクの材料候補で、第一のマスクに使用しなかった材料を挿入することも可能である。例えば、第一のマスクにシリコン酸化膜、第二のマスクにレジストとクロムの積層構造などの組み合わせが挙げられる。このように、第二のマスクは、複数の層から構成されており、エッチングの進行とともに第K番目の領域の第二のマスクが第N番目まで順次に消失していくように構成されている。
上記都度更新方式(a)と積層方式(b)は共に、エッチングの開始前に、シリコンウエハ上に、複数の凹パターンに対応した開口パターンを有する第一のマスクと、第2番目以降の領域の第一のマスクの開口パターンを閉塞する第二のマスクを形成する工程を備え、第K−1回目のエッチング後に、第K番目の領域の第二のマスクが除去され、第K番目の領域の第一のマスクの開口パターンが露出される。一方、(c)の時間差方式は、エッチング開始前に、シリコンウエハ上に、複数の凹パターンに対応した開口パターンを備えたマスクであって、開口パターンは第1番目の領域のシリコンウエハ表面が開口パターン底に露出しており第2番目以降の領域のシリコンウエハ上に残膜を有するマスクを用いる。このマスクも便宜上第一のマスクと呼ぶ。第K−1回目のエッチングを行う工程においては、開口パターンの残膜をエッチングして第K番目の領域にシリコンウエハ表面を露出させており、第K+1番目以降の領域がある場合には、第K+1回目のエッチングを行う工程において、第K+1番目以降の領域の開口パターンは依然として残膜を有している。
(c)の時間差方式は、マスクのパターン内にエッチング時間差を設けてエッチングの進行とともに徐々にパターンが開口し、エッチング開始時期を領域毎に分ける方法である(図13参照)。エッチング時間差を設ける方法としては、マスクパターン内の深さを変える(段差を設ける)方法が挙げられる。例えば、3分割エッチングの場合を考える。図13(a)に示すように、シリコン基板1上にシリコン表面が露出した状態の第一のマスク21に第1パターン61を第1番目の領域R1に、第2番目の領域R2にシリコン表面が露出していない第2パターン62、第3番目の領域R3にさらにパターン深さの浅い第3パターン63という具合に形成する。1回目のエッチングでは、第1パターン61で開口している領域R1のシリコン基板1はエッチングされるが、第2パターン62及び第3パターン63が残膜している領域R2及びR3ではエッチングされない。エッチングが進行すると第2パターン62が開口し、領域R2のシリコンが露出する(図13(b))。そのままエッチングを続けると、領域R3のシリコン基板はエッチングされないが、領域R1とR2のシリコン基板がエッチングされる。エッチングの進行に伴って第3パターン63が開口し、領域R3のシリコンが露出する(図13(c))。その後は全面エッチングされ、図13(d)のように第一のマスクに対応したパターンが形成される。なお、エッチングはシームレスに実施されるため、1回目、2回目、3回目のエッチングがそれぞれ別に行われるわけではないが、本発明では第2パターン62が開口するまでを1回目のエッチング、第3パターン63が開口するまでを2回目のエッチング、全面エッチングを3回目のエッチングのように定義する。
図13(a)に示すような多段マスクは、同種材料を用いて形成してもよく、領域毎に異種材料を用いて形成してもよい。多段マスクを同種材料で形成するプロセスとしては、例えば図14のように実施される。シリコン基板1に、マスク材料21sを形成し、まず第1番目の領域R1のマスク材料21sをエッチングするためのマスク71を形成する。このマスク71を用いて、マスク材料21sをシリコンの表面が露出するまでエッチングして、第一パターン61を作製する(図14(a)参照)。次に、第2番目の領域R2に、マスク材料21sをエッチングするためのマスク72を形成する。このマスク72を用いて、マスク材料21sをシリコンの表面が露出しない所望の残膜までエッチングし、第2パターン62を作製する(図14(b)参照)。同様の方法で、さらに浅い第3パターン63をマスク73を用いて作製する(図14(c)参照)。例えば、マスク材料21sがシリコン酸化膜で、それをエッチングするためのマスク71〜73がフォトレジストや有機膜という組み合わせが挙げられる。
或いは、マスク材料21sのエッチングを、最初全面で実施し、パターンが所望の深さになったところから隠して行くという方法もある(図15参照)。例えば、3分割エッチングの場合を考える。まず、マスク材料21sにマスク81を形成し、ウエハ全面で第3パターン63となる所望の深さまでエッチングを行う(図15(a)参照)。次に、第3番目の領域R3をマスク82で覆い、第1番目の領域R1及び第2番目の領域R2を更に第2パターン62となる所望の深さまでエッチングする(図15(b)参照)。最後に第3番目の領域R3、第2番目の領域R2をマスク83で覆い、シリコンの表面が露出するまで第1番目の領域R1のエッチングを行い、第1パターン61を形成する。この時、マスク81は残しておいてもよいし(図15(c)参照)、マスク81を除去して新たにマスク83を形成しても良い。マスク81とマスク82、83の材料の組み合わせとしては、例えばマスク82、83がフォトレジストで、マスク81が、クロムやアルミニウム等の金属材料、或いはマスク82、83の剥離液では除去されない有機膜が挙げられる。
以上のようなマスク構成を用いることにより、シリコン高速エッチングを多段分割した加工が可能となる。
以下、本発明を実施例を参照して説明する。ここでは、液体吐出ヘッドの製造方法において、シリコン基板を貫通する液体供給路の一部である共通液室の形成方法として、本発明のウエハ加工方法を適用した例を説明するが、本発明は液体吐出ヘッドの製造方法のみに限定されるものではない。
(実施例1)
実施例1として、実施形態にて説明したマスク構成(b)の積層方式を用いて、液体吐出ヘッドを製造した。その製造方法を図16に示す。表面に(100)面を持ち、液体吐出エネルギー発生素子101が形成されているヘッド用基板(シリコンウエハ)100を用意する。シリコンウエハの厚みは725μmとし、液体吐出エネルギー発生素子101の対向面(裏面)に図9に示すように領域を3分割した。
次いで、ヘッド用基板100の裏面に第一のマスク102の材料として厚み1.5μmのシリコン酸化膜をCVD法によって形成した。シリコン酸化膜上に感光性ポジ型レジスト(東京応化製「OFPR−800」(商品名))を全面に塗布した。塗布したポジ型レジストに対してウシオ電機製Deep−UV露光装置「UX−3000」(商品名)を用いてスリット状のパターンを有するマスク103を形成した。次に、シリコン酸化膜をCとCFとArの混合ガスを用いたドライエッチングにより第一のマスク102に加工した(図16(a)参照)。このマスクの開口率は30%であった。その後、マスク103は除去した。
次に、ポリエーテルアミド樹脂(日立化成製「HIMAL」(商品名))からなる膜を形成し、感光性ポジ型レジスト(東京応化製「OFPR−800」(商品名))を全面に塗布した。塗布したポジ型レジストに対して上記のDeep−UV露光装置を用いて第1番目の領域R1、第2番目の領域R2を露光し、露光部を溶出することで第3番目の領域R3のみが隠れたマスク104を形成した。このマスク104を用いてポリエーテルアミド樹脂膜をエッチングして第二のマスクの下層105を形成した(図16(b)参照)。一旦マスク104を剥離した後、再度感光性ポジ型レジスト(東京応化製「OFPR−800」(商品名))を全面に塗布した。塗布したポジ型レジストに対して上記のDeep−UV露光装置を用いて第1番目の領域R1を露光し、露光部を溶出することで第二のマスクの下層105上に第3番目の領域R3と第2番目の領域R2を隠す第二のマスクの上層106を形成した(図16(c)参照)。ここで、第1番目の領域R1、第2番目の領域R2、第3番目の領域R3は、領域R1がウエハの径方向に50%の同心円、領域R2は50%の同心円と80%の同心円で囲まれた領域、領域R3は80%の同心円より外側の領域とした。ただし、境界がチップ内を通る場合は、該当チップがより大きな面積が入っている方の領域に属するものとした。
続いて、深さのターゲット575μmの共通液室を形成するシリコン高速エッチングを、ボッシュプロセス対応のSPPテクノロジーズ社製シリコン深掘り装置「ASE−Pegasus」(商品名)を用いて行った。この装置では上述のボッシュプロセスにおける(1)及び(3)の処理ガスとしてSFを含み、(2)の処理ガスとしてCを含む。またこの装置でのエッチングレートは、ウエハ周辺が15μm/min、中心が9.72μm/minで、面内均一性が±17.6%となる条件である。
まず、第1番目の領域R1に対して、全体の11%、ウエハ中心に対して深さ61.8μm相当のエッチングを行った(図16(d)参照)。この時に要する時間は、6分22秒である。
次に、感光性ポジ型レジストである第二のマスク上層106を、剥離液を用いて除去し、第2番目の領域R2の第一のマスク103を露出させた。この際、第二のマスク下層105は、剥離液では除去されない。続いて、第1番目の領域R1と第2番目の領域R2を、全体の12%、ウエハ中心に対して深さ67.9μm追加相当のエッチングを行った(図16(e)参照)。この時に要する時間は、6分59秒である。
次に、ポリエーテルアミド樹脂である第二のマスク下層105を、酸素を含むガス系によるアッシングで除去し、第3番目の領域R3の第一のマスク103を露出させた。続いて、領域R1、R2、R3、即ちウエハ全面で残りの77%、ウエハ中心に対して深さ429.3μm追加相当のエッチングを行った(図16(f)参照)。この時に要する時間は、44分10秒である。これらの処理により、平均深さ575μm、最大深さ612μm、最小深さ538μm、面内均一性±6.47%の共通液室107が形成された。この時の深さの最大ばらつきは74μmである。
本発明を適用せずに、第一のマスク103のみを利用する補正前は面内均一性±17.6%であるので、平均深さ575μm、最大深さ676μm、最小深さ474μmとなり、深さの最大ばらつきは202μmである。本発明のウエハ加工方法を適用することにより、深さの分布は大幅に改善された。
次に、ヘッド用基板100の表面から個別供給路108を形成した。まず、エネルギー発生素子101を作製時に形成された基板100の表面の絶縁膜を、個別供給路108のパターン形状に除去した。面内で共通液室107が最も浅い点にて深さ相当192μmまで、シリコンの高速エッチングを用いて形成した(図16(g)参照)。このパターンの開口率は5%以下であり、本発明で課題とするエッチング深さの面内均一性向上の補正を必要としない領域である。エッチング装置は、同じSPPテクノロジーズ社製のシリコン深掘り装置を用いた。この地点において5μmのオーバーエッチングを行っている計算となり、ウエハ全面において表裏面のパターンを連通した液体供給路を形成することができた。
次に、ヘッド用基板100の表面側に流路型構造(不図示)、液体流路壁109を用いて形成された吐出口110と撥液層(不図示)を形成し、最後に流路型構造を除去して、図16(h)の構造を得た。その後は、チップ毎に分割し、液体吐出ヘッドが完成する。
(実施例2)
本実施例は、実施形態にて説明したマスク構成(c)の時間差方式を用いて、実施例1と同じ液体吐出ヘッドを製造した。その製造方法を図17に示す。ヘッド用基板100は実施例1と同じものであり、厚みは725μmとした。
まず、ヘッド用基板100の裏面に第一のマスク102の材料として厚み1.5μmのシリコン酸化膜をCVD法によって形成した。次に、シリコン酸化膜上に感光性ポジ型レジスト(東京応化製「OFPR−800」(商品名))を全面に塗布した。塗布したポジ型レジストに対してウシオ電機製Deep−UV露光装置「UX−3000」(商品名)を用いて、第1番目の領域R1にシリコン酸化膜をエッチングするためのスリット状の共通液室パターンであるマスク111を形成する。このマスク111を用いて、シリコン酸化膜をCとCFとArの混合ガスで、シリコンの表面が露出するまでドライエッチングして、第1パターン112を作製する(図17(a)参照)。次に、第2番目の領域R2に、シリコン酸化膜をエッチングするためのマスク113を同様にポジ型レジストで形成する。このマスク113を用いて、シリコン酸化膜の残膜量が0.15μmとなるようにドライエッチングし、第2パターン114を作製する(図17(b)参照)。同様の方法で、第3番目の領域R3にシリコン酸化膜をエッチングするためのマスク115を形成し、このマスク115を用いて、シリコン酸化膜の残膜量が0.31μmとなるようにドライエッチングし、第3パターン116を作製する(図17(c)参照)。このようにして、第1〜第3パターンを有する第一のマスク102が形成される。領域の区切り方、マスクの開口率は、実施例1と同様である。
続いて、深さのターゲット575μmの共通液室を形成するシリコン高速エッチングを、実施例1と同じ条件で実施した。その際、第一のマスク102であるシリコン酸化膜のエッチングレートは0.02μm/minであった。まず、エッチング時間6分22秒、即ちウエハ中心に対して深さ61.8μm相当のエッチングを実施した時点で、第2パターン114の残膜が無くなり、シリコン表面が露出する(図17(d)参照)。そこから、第2番目の領域R2のエッチングが開始される。更に6分59秒のエッチングを追加、即ちウエハ中心に対して深さ67.9μm追加相当のエッチングを実施した時点で、第3パターン116の残膜が無くなり、シリコン表面が露出する(図17(e)参照)。即ち、ウエハ全面でパターン部のシリコン表面が露出した状態になる。ここから更に44分10秒、即ちウエハ中心に対して深さ429.3μm追加相当のエッチングを行った(図17(f)参照)。これにより、共通液室の深さの面内分布は、実施例1と同じ状態になり、平均深さ575μm、最大深さ612μm、最小深さ538μm、面内均一性±6.47%の共通液室107が形成できた。
その後のプロセスは実施例1と同様に行い、図17(g)の構造を得た。その後は、チップ毎に分割し、液体吐出ヘッドが完成する。
(実施例3)
本実施例は、共通液室107を、エッチングストッパーを用いて構成する方式で液体吐出ヘッドを製造した。その製造方法を図18に示す。
まず、実施例1と同様に液体吐出エネルギー発生素子101が形成された厚みは725μmのヘッド用基板100の表面と反対側の面からバックグラインドにて厚み150μmに薄化した後、CMPにて研磨を行い、表面粗さ1nm以下の鏡面を有する第一基板121を得た。
次に、厚み500μm、両面に熱酸化により2.0μmのシリコン酸化膜が形成されたシリコンウエハからなる第二基板123を用意した。その片側の表面に感光性ポジ型レジスト(東京応化製、「OFPR−PR8−PM」(商品名))を塗布した。そして、ウシオ電機製Deep−UV露光装置「UX−4258」(商品名)を用いて露光し、続いて現像することにより、塗布したポジ型レジストをインク個別供給路108のパターン形状に加工した。そして、バッファードフッ酸「110U」(ダイキン工業社製、商品名)によりシリコン酸化膜のウェットエッチングを行い、個別供給路108を形成する際のマスクパターン124を形成した(図18(a))。残ったポジ型レジストは除去した。このマスクパターン124が、共通液室107をエッチングする際のストッパーとなり、またインク個別供給路108をエッチングするためのマスクとなる。
次に、第一基板121の研磨面と第二基板123のマスクパターン124を形成した側の面をEVG製のプラズマ活性化装置(商品名:「EVG810LT」)を用いて、Nプラズマによって活性化した。その後、EVG製のアライナー(商品名:「EVG6200BA」)で位置合わせを行った。そして、マスクパターン124を有するシリコン酸化膜を介して、EVG製の接合装置(商品名:「EVG520IS」)にてフュージョン接合により第一基板121と第二基板123との接合基板125を形成した(図18(b))。
次に、第一基板121の、接合面とは反対の表面に、流路型構造126、液体流路壁127を用いて形成された吐出口128と撥液層(不図示)を形成して、液体吐出用ノズルを構成する流路形成層を形成した。撥液層上に、表面保護層129として「OBC」(商品名、東京応化工業製)を全面に塗布した(図18(c))。
次に、第二基板123の接合面とは反対の面に、エッチング工程を3分割するためのマスクを作製した(図18(d))。マスクの作製方法は、実施例1に準ずる。続いて、第二基板123を貫通させて、共通液室107を形成するシリコン高速エッチングを、実施例1で使用したSPPテクノロジーズ社製シリコン深掘り装置を用いて行った。ターゲット深さは、最も浅くなる点において第二基板123の基板厚の500μmになるように設定するものとする。エッチングレート、分布は実施例1と同様、ウエハ周辺が15μm/min、中心が9.72μm/minで、面内均一性が±17.6%となる条件である。
シリコン高速エッチング工程のフロー、即ち各エッチング工程とマスクの除去のフローに関しては、実施例1に準ずる。エッチングの時間としては、第一のエッチング工程は全体の11%、5分55秒であり、ウエハ中心に対して深さ57.5μm相当である。第二のエッチング工程は全体の12%、6分30秒であり、ウエハ中心に対して深さ63.2μm追加相当である。第三のエッチング工程は残りの77%、41分3秒であり、ウエハ中心に対して深さ399.0μm追加相当である。これらの処理により、最小深さ500μm、最大深さ569μm、面内均一性±6.47%の共通液室107が形成された(図18(e)参照)。この時の深さの最大ばらつきは71.4μmである。
補正前は面内均一性±17.6%であるので、最大深さ714μm、最小深さ500μmとなり、深さの最大ばらつきは214μmである。即ち、上記3分割エッチングと比較して、エッチングレートが最も速い点において142.6μmも余分にオーバーエッチングが必要となってしまう。本実施例の構成を用いることにより、過剰なオーバーエッチングを抑制でき、図4に示したようなシリコンの壁面の浸食42やノッチング43を大幅に低減することが出来た。
続いて、マスクパターン124を用いて、個別供給路108をエッチングした(図18(f)参照)。このエッチングにおいて、第一基板121の液体吐出エネルギー発生素子101が形成された表面側のシリコン酸化膜122がエッチングストップ層となる。次いで、個別供給路108底のエッチングストップ層であるシリコン酸化膜122を、バッファードフッ酸「110U」(ダイキン工業社製、商品名)によりウェットエッチングし、除去した。続いて、表面保護層129を除去した後、最後に流路型構造126を除去して、図18(g)に示す構造を得た。その後は、チップ毎に分割し、液体吐出ヘッドが完成する。
1 シリコン基板(ウエハ)
2 エッチングマスク
21 第一のマスク
22 第二のマスク
22a 第二のマスク(1回目エッチング)
22b 第二のマスク(2回目エッチング)
22c 下層マスク
22d 上層マスク
23a、23b、24 凹パターン
61、112 第1パターン
62、114 第2パターン
63、116 第3パターン
71〜73、81〜83、103、104、111、113、115 マスク
100 シリコンウエハ(ヘッド用基板)
101 液体吐出エネルギー発生素子
102 第一のマスク
105 第二のマスク下層
106 第二のマスク上層
107 共通液室
108 個別供給路
109 液体流路壁
110 吐出口
R1 第1番目の領域
R2 第2番目の領域
R3 第3番目の領域
C1、C2、C3 同心円

Claims (10)

  1. フッ素系のラジカルを用いたドライエッチングによってシリコンウエハの表面に複数の凹パターンを形成するシリコンウエハの加工方法であって、
    前記シリコンウエハを第1番目から第N番目の領域の順番に前記シリコンウエハの中心から外周へ向けて同心円状にN分割(但し、Nは2以上の自然数)し、第1番目の領域から第N番目の領域まで順次前記ドライエッチングを行うドライエッチング工程を有し、
    前記ドライエッチング工程において、第K番目(但し、Kは2以上N以下の自然数)の領域にエッチングを行う際には、第1番目から第K番目の領域にエッチングを行うことを特徴とするシリコンウエハの加工方法。
  2. 前記第1番目の領域に対してエッチングを行う前に、前記シリコンウエハ上に、前記複数の凹パターンに対応した開口パターンを有する第一のマスクと、第2番目以降の領域の前記第一のマスクの開口パターンを閉塞する第二のマスクを形成する工程を備え、第K−1回目のエッチング後に、前記第K番目の領域の前記第二のマスクが除去され、前記第K番目の領域の前記第一のマスクの開口パターンが露出される請求項1に記載のシリコンウエハの加工方法。
  3. 前記第一のマスクが、前記フッ素系のラジカルによるエッチングに対して前記シリコンウエハよりも耐性の高いシリコン系の化合物又は金属から選択される請求項に記載のシリコンウエハの加工方法。
  4. 前記第二のマスクが、前記第一のマスクに選んだ材料に対して選択除去が可能な材料から選択される請求項に記載のシリコンウエハの加工方法。
  5. 前記第二のマスクは、前記第N番目の領域から前記第2番目の領域に向かって、前記第一のマスクの各領域の開口パターンを閉塞する層が順次下層を上層で覆うように積層されて構成されており、エッチングの進行とともに第二のマスクの各層を上層から順次除去して、前記第K番目の領域のエッチングの際に前記第1番目から第K番目までの前記第一のマスクの開口パターンが露出されている請求項2乃至4のいずれか1項に記載のシリコンウエハの加工方法。
  6. 前記第1番目の領域に対してエッチングを行う前に、前記シリコンウエハ上に、前記複数の凹パターンに対応した開口パターンを備えたマスクであって、前記開口パターンは第1番目の領域のシリコンウエハ表面が前記開口パターン底に露出しており第2番目以降の領域のシリコンウエハ上に残膜を有するマスクを用いて、前記第K−1回目のエッチングを行う工程において、前記開口パターンの残膜をエッチングして第K番目の領域に前記シリコンウエハ表面を露出させる請求項に記載のシリコンウエハの加工方法。
  7. 前記フッ素系のラジカルを用いたドライエッチングは、(1)フッ素系のラジカルによるシリコンへのパターンの形成と、(2)前記パターンの内壁へのフルオロカーボン系のパッシベーション層の形成と、(3)イオンによる前記パターンの底部のパッシベーション層の除去と、を繰り返す方法を含む請求項1乃至のいずれか1項に記載のシリコンウエハの加工方法。
  8. 前記(1)及び(3)の処理ガスがSFを含み、前記(2)の処理ガスがCを含む請求項に記載のシリコンウエハの加工方法。
  9. ウエハ面内でのパターン開口率が10%以上である請求項1乃至のいずれか1項に記載のシリコンウエハの加工方法。
  10. シリコン基板を貫通する液体供給路を備えた液体吐出ヘッドの製造方法であって、前記液体供給路を、請求項1乃至のいずれか1項に記載のシリコンウエハの加工方法で形成することを特徴とする液体吐出ヘッドの製造方法。
JP2015085904A 2015-04-20 2015-04-20 シリコンウエハの加工方法 Expired - Fee Related JP6590510B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015085904A JP6590510B2 (ja) 2015-04-20 2015-04-20 シリコンウエハの加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015085904A JP6590510B2 (ja) 2015-04-20 2015-04-20 シリコンウエハの加工方法

Publications (2)

Publication Number Publication Date
JP2016207774A JP2016207774A (ja) 2016-12-08
JP6590510B2 true JP6590510B2 (ja) 2019-10-16

Family

ID=57490325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015085904A Expired - Fee Related JP6590510B2 (ja) 2015-04-20 2015-04-20 シリコンウエハの加工方法

Country Status (1)

Country Link
JP (1) JP6590510B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018110156A (ja) 2016-12-28 2018-07-12 キヤノン株式会社 半導体装置、その製造方法およびカメラ
CN114229787B (zh) * 2022-02-23 2022-07-08 绍兴中芯集成电路制造股份有限公司 改善深硅刻蚀晶圆硅柱缺陷的方法、结构及半导体器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3501872B2 (ja) * 1995-04-24 2004-03-02 株式会社デンソー 半導体基板のプラズマエッチング方法
JP2011091127A (ja) * 2009-10-21 2011-05-06 Konica Minolta Holdings Inc Si基板加工方法
JP5915027B2 (ja) * 2011-08-29 2016-05-11 大日本印刷株式会社 パターン成形用構造体および微細パターン形成方法
CN102602881B (zh) * 2012-04-01 2014-04-09 杭州士兰集成电路有限公司 Mems封帽硅片的多硅槽形成方法及其刻蚀掩膜结构
CN103663357B (zh) * 2012-09-18 2017-07-07 无锡华润上华半导体有限公司 硅的刻蚀方法
GB2540893A (en) * 2013-07-22 2017-02-01 Atlantic Inertial Systems Ltd DRIE lead silicon etching process

Also Published As

Publication number Publication date
JP2016207774A (ja) 2016-12-08

Similar Documents

Publication Publication Date Title
US7361524B2 (en) Method of manufacturing floating structure
JP4638499B2 (ja) インクジェットプリンタヘッド集積回路を製造する方法
TWI505324B (zh) 形成高密度圖案的方法
JPH04261862A (ja) シリコンウェーハから精密エッチング3次元装置を製作する方法
KR20110028506A (ko) 다단형 기판의 제조 방법
US9552984B2 (en) Processing method of substrate and manufacturing method of liquid ejection head
US9205443B2 (en) Metal mask manufacturing method and metal mask
CN101779276A (zh) 掩模修整
CN104658962A (zh) 通孔的形成方法
JP6590510B2 (ja) シリコンウエハの加工方法
CN108701587A (zh) 旋涂沉积金属氧化物的方法
TW201604993A (zh) 高深寬比結構的蝕刻方法及mems裝置的製作方法
JP6128972B2 (ja) 液体吐出ヘッド用基板の製造方法
US9676193B2 (en) Substrate processing method and method of manufacturing substrate for liquid discharge head including forming hole in substrate by dry etching
JP2016117174A (ja) シリコン基板の加工方法、及び液体吐出ヘッド
KR101310668B1 (ko) 다단계 기판 식각 방법 및 이를 이용하여 제조된테라헤르츠 발진기
JP4356515B2 (ja) 回折光学格子の形成方法
US7045463B2 (en) Method of etching cavities having different aspect ratios
JP2007144915A (ja) 液滴吐出ヘッドの製造方法およびパターン形成方法
CN114361099A (zh) 一种深硅刻蚀方法
KR101533781B1 (ko) 패터닝된 사파이어기판을 에칭하기 위한 가스초핑 프로세스
JP2009262258A (ja) シリコン構造体の製造方法
JP6346786B2 (ja) エッチング方法
JP6171453B2 (ja) ナノインプリントモールドの製造方法
KR101064555B1 (ko) 반도체 소자의 게이트 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190917

R151 Written notification of patent or utility model registration

Ref document number: 6590510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees