JP5845515B2 - Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes - Google Patents

Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes Download PDF

Info

Publication number
JP5845515B2
JP5845515B2 JP2012056580A JP2012056580A JP5845515B2 JP 5845515 B2 JP5845515 B2 JP 5845515B2 JP 2012056580 A JP2012056580 A JP 2012056580A JP 2012056580 A JP2012056580 A JP 2012056580A JP 5845515 B2 JP5845515 B2 JP 5845515B2
Authority
JP
Japan
Prior art keywords
catalyst
carbon nanotube
carbon
aggregate
nanotube synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012056580A
Other languages
Japanese (ja)
Other versions
JP2013166140A (en
Inventor
正実 山田
正実 山田
信之 名畑
信之 名畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Toyocolor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd, Toyocolor Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2012056580A priority Critical patent/JP5845515B2/en
Publication of JP2013166140A publication Critical patent/JP2013166140A/en
Application granted granted Critical
Publication of JP5845515B2 publication Critical patent/JP5845515B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、カーボンナノチューブ合成用触媒と、この触媒を用いて製造されるカーボンナノチューブが絡まって集合した集合体(以下、カーボンナノチューブ集合体と称する)に関し、特に、炭素出力(触媒の単位重量当たりに対するカーボンナノチューブ集合体の生成重量比、生成効率ともいう)に優れ、膨潤性に優れ、分散性に優れ、且つ導電性に優れるカーボンナノチューブ集合体を合成するための触媒の製造方法と、この触媒を用いて製造されるカーボンナノチューブ集合体の製造方法およびカーボンナノチューブ集合体に関する。   The present invention relates to a catalyst for synthesizing carbon nanotubes and an aggregate in which carbon nanotubes produced using the catalyst are entangled and gathered (hereinafter referred to as a carbon nanotube aggregate), and more particularly to carbon output (per unit weight of catalyst). The production method of the catalyst for synthesizing the carbon nanotube aggregate that is excellent in the production weight ratio of carbon nanotube aggregates, also referred to as production efficiency), excellent in swelling properties, dispersibility, and electrical conductivity, and the catalyst The present invention relates to a method for producing a carbon nanotube aggregate and a carbon nanotube aggregate.

気相成長法によりカーボンナノチューブを得る際に使用される触媒(以下、カーボンナノチューブ合成用触媒と称する)は、例えばシリカ、アルミナ、マグネシア、ゼオライト等の担体成分に、鉄、コバルト、ニッケル等の活性成分の金属を担持させたもの、さらにはこれらに加えてモリブテンを含むもの等が提案されている。(例えば特許文献1等参照)   Catalysts used to obtain carbon nanotubes by vapor phase growth (hereinafter referred to as carbon nanotube synthesis catalyst) are, for example, carrier components such as silica, alumina, magnesia, and zeolite, and activities such as iron, cobalt, and nickel. Proposals have been made of supporting metal components and those containing molybdenum in addition to these. (See, for example, Patent Document 1)

また、硝酸金属塩とクエン酸を含む混合物を乾燥した後、700℃で焼成して得られたカーボンナノチューブ合成用触媒を用いて、マルチウォール型のカーボンナノチューブを得る方法が提案されているが、しかしながらこの方法では、高温での焼成条件のため触媒粒子の焼結が進行してしまい、その結果、カーボンナノチューブの析出効率が低く、生成したカーボンナノチューブ中に触媒由来の不純物が多量に残留し、生産性が著しく低くなってしまうのが現状である。(例えば非特許文献1等参照)。   Further, a method for obtaining multiwall-type carbon nanotubes using a catalyst for carbon nanotube synthesis obtained by drying a mixture containing a metal nitrate and citric acid and firing at 700 ° C. has been proposed. However, in this method, sintering of the catalyst particles proceeds due to the firing conditions at a high temperature. As a result, the carbon nanotube deposition efficiency is low, and a large amount of catalyst-derived impurities remain in the generated carbon nanotubes. The current situation is that productivity is significantly reduced. (For example, refer nonpatent literature 1 etc.).

触媒粒子の焼結の進行による析出効率の低下を抑制することにより、カーボンナノチューブの製造効率を改善する技術も提案されているが、析出効率は十分ではなく、カーボンナノチューブ集合体中の残存触媒が多いため、本来のカーボンナノチューブの導電性を付与する機能が得られないのが現状である。(例えば特許文献2等参照)   A technique for improving the production efficiency of carbon nanotubes by suppressing the decrease in the precipitation efficiency due to the progress of sintering of the catalyst particles has also been proposed, but the precipitation efficiency is not sufficient, and the remaining catalyst in the aggregate of carbon nanotubes is not sufficient. Since there are many, the function which provides the electroconductivity of the original carbon nanotube cannot be obtained now. (See, for example, Patent Document 2)

一方、ゼオライト担持型触媒を粒径10μm以下に粉砕処理することにより、1〜2層のカーボンナノチューブの生成量を増加させる方法も提案されているが、乾燥ゼオライトを担持体として直接使用する方法では焼成時にコバルト金属を均一にゼオライト表面に担持させることが困難であり、炭素出力が非常に低く、量産性に優れているとはいえず、フィラー材料としてカーボンナノチューブを使用するためには触媒成分の除去が必要となる。(例えば特許文献3等参照)   On the other hand, a method of increasing the production amount of carbon nanotubes of one or two layers by pulverizing a zeolite-supported catalyst to a particle size of 10 μm or less has been proposed, but in a method of directly using dry zeolite as a support, It is difficult to uniformly support cobalt metal on the zeolite surface at the time of firing, the carbon output is very low, and it cannot be said that mass production is excellent. Removal is required. (For example, see Patent Document 3 etc.)

カーボンナノチューブ集合体において、樹脂や溶媒等の媒体に対する分散性は、少ない配合量で優れた導電性を得る上で極めて重要な特性である。カーボンナノチューブ集合体の配合量を多くすることにより、導電性を高めることができるが、カーボンナノチューブ集合体の配合量を多くすることは、コストの増加のみならず、成形樹脂への配合においては、樹脂の成形性などが損なわれてしまうこと、またインキ、導電塗料などの樹脂組成物などへ適用では高粘度となり、印刷適正、塗装適正に劣り、好ましいことではない。   In the aggregate of carbon nanotubes, dispersibility in a medium such as a resin or a solvent is a very important characteristic for obtaining excellent conductivity with a small blending amount. By increasing the amount of the carbon nanotube aggregate, the conductivity can be increased, but increasing the amount of the carbon nanotube aggregate not only increases the cost, It is not preferable because the resin moldability is impaired, and when it is applied to a resin composition such as ink or conductive paint, the viscosity becomes high and printing and coating are inferior.

炭素出力の低い触媒も同様であり、不純物である触媒を多量に含む場合、その影響を取り除くためには触媒の洗浄による不純物の除去といった多くの工程を必要とし、好ましいものではない。   The same applies to a catalyst having a low carbon output. When a large amount of an impurity catalyst is contained, many steps such as removal of the impurity by washing the catalyst are required to remove the influence, which is not preferable.

また、カーボンナノチューブ集合体を粉砕してその粒径を小さくすることにより、樹脂に対する分散性、導電性発現性を高める技術も提案されているが、カーボンナノチューブ集合体本来の分散性や導電性発現性を改善できるものではないのが現状である。(例えば特許文献4等参照)   In addition, technology has been proposed to improve the dispersibility and conductivity of the resin by crushing the carbon nanotube aggregate and reducing its particle size, but the original dispersibility and conductivity of the carbon nanotube aggregate have been proposed. At present, it is not possible to improve the performance. (For example, see Patent Document 4)

特表2010−540220号公報Special table 2010-540220 gazette 特開2006−181477号公報JP 2006-181477 A 特開2005−314204号公報Japanese Patent Laying-Open No. 2005-314204 特開平7−102112号公報JP-A-7-102112

Carbon,41,2949−2959(2002)Carbon, 41, 2949-2959 (2002)

本発明は上記従来の実状に鑑みてなされたものであって、炭素出力に優れ、膨潤性に優れ、分散性に優れ、且つ導電性に優れるカーボンナノチューブ集合体を合成するための触媒の製造方法と、この触媒を用いて製造されるカーボンナノチューブ集合体の製造方法およびカーボンナノチューブ集合体を効率的に製造するための技術を提供することを目的とする。   The present invention has been made in view of the above-described conventional situation, and a method for producing a catalyst for synthesizing an aggregate of carbon nanotubes having excellent carbon output, excellent swellability, excellent dispersibility, and excellent conductivity. Another object of the present invention is to provide a method for producing a carbon nanotube aggregate produced using this catalyst and a technique for efficiently producing the carbon nanotube aggregate.

本発明者らは、上記課題を解決すべく鋭意検討した結果、水溶性の活性成分の金属元素を含む有機酸塩と、水溶性の担体成分の金属元素を含む有機酸塩および/または、担体成分の金属元素の水酸化物と、必要に応じて、モリブデンを含む水溶性の金属塩とを、水溶液中に溶解、ないし担体成分の金属元素の水酸化物は、水に分散して混合し、100〜200℃の温度で、溶媒を除去、固形化した後、さらに微細化処理して触媒前駆体を作製し、前記触媒前駆体を焼成した後、微細化処理して得られるカーボンナノチューブ合成用触媒を用いることにより、気相成長時のカーボンナノチューブの絡み合いを抑制することが可能となり、カーボンナノチューブ集合体構造内部の空隙を広げ、これにより炭素出力に優れ、容易にほぐれ易く、また分散性に優れ、少ない配合量で高い導電性を有する材料を提供できるカーボンナノチューブ集合体を効率的に製造することができることを見いだしたものである。   As a result of diligent studies to solve the above problems, the present inventors have found that an organic acid salt containing a metal element as a water-soluble active ingredient and an organic acid salt and / or a carrier containing a metal element as a water-soluble carrier ingredient The metal element hydroxide of the component and, if necessary, a water-soluble metal salt containing molybdenum are dissolved in an aqueous solution, or the metal element hydroxide of the carrier component is dispersed and mixed in water. After the solvent is removed and solidified at a temperature of 100 to 200 ° C., further refinement treatment is performed to prepare a catalyst precursor, and the catalyst precursor is baked and then refined to obtain carbon nanotubes. By using the catalyst, it becomes possible to suppress the entanglement of the carbon nanotubes during the vapor phase growth, and widen the voids inside the carbon nanotube aggregate structure, thereby improving the carbon output and easily unraveling. Excellent dispersibility, in which found that it is possible to efficiently produce carbon nanotube aggregate can provide a material having a high conductivity with a small amount.

すなわち本発明は、以下(1)〜(3)の工程を備えたカーボンナノチューブ合成用触媒の製造方法に関する。
(1)鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩と、マグネシウムおよびアルミニウムの少なくともいずれか1つ以上の担体成分の金属元素を含む水溶性の有機金属塩、または前記担体成分の金属元素を含む水酸化物と、を、水溶媒中に溶解および/または分散し、混合する工程。
(2)前記(1)の工程で得られた溶液および/または分散液を、乾燥温度100〜200℃の範囲で水溶媒を除去し、固形化した後、得られた固形物を粉砕し平均粒径(D50)が50μm以下の触媒前駆体を得る工程。
(3)前記(2)の工程で得られた前記触媒前駆体を、酸素の存在下、焼成温度350〜550℃の範囲で加熱し、冷却した後、得られた焼成物を粉砕して平均粒径(D50)が5μm以下のカーボンナノチューブ合成用触媒を得る工程。
That is, this invention relates to the manufacturing method of the catalyst for carbon nanotube synthesis | combination provided with the process of the following (1)-(3).
(1) A water-soluble organometallic salt containing a metal element of at least one active component of iron, cobalt, and nickel, and a metal element of at least one carrier component of magnesium and aluminum A step of dissolving and / or dispersing and mixing a water-soluble organic metal salt or a hydroxide containing a metal element of the carrier component in an aqueous solvent.
(2) After removing the aqueous solvent from the solution and / or dispersion obtained in the step (1) at a drying temperature of 100 to 200 ° C. and solidifying, the obtained solid is pulverized and averaged. A step of obtaining a catalyst precursor having a particle size (D50) of 50 μm or less.
(3) The catalyst precursor obtained in the step (2) is heated in the range of 350 to 550 ° C. in the presence of oxygen and cooled, and then the obtained calcined product is pulverized and averaged. A step of obtaining a carbon nanotube synthesis catalyst having a particle size (D50) of 5 μm or less.

また本発明は、(1)の工程に、さらにモリブデンを含む水溶性の金属塩を、水溶媒中に含有することを特徴とする上記カーボンナノチューブ合成用触媒の製造方法に関する。   The present invention also relates to the above-mentioned method for producing a catalyst for carbon nanotube synthesis, wherein the water-soluble metal salt containing molybdenum is further contained in an aqueous solvent in the step (1).

また本発明は、カーボンナノチューブ合成用触媒中の活性成分の金属元素と担体成分の金属元素との合計100モル%に対する、活性成分の金属元素の含有割合が、50〜80モル%であることを特徴とする上記カーボンナノチューブ合成用触媒の製造方法に関する。   In the present invention, the content ratio of the active element metal element to the total of 100 mol% of the active element metal element and the support element metal element in the carbon nanotube synthesis catalyst is 50 to 80 mol%. The present invention relates to a method for producing the carbon nanotube synthesis catalyst.

また本発明は、カーボンナノチューブ合成用触媒中のモリブデンの割合が、活性成分の金属元素100モル%に対して1モル%〜20モル%であることを特徴とする上記カーボンナノチューブ合成用触媒の製造方法に関する。   The present invention also provides the above-mentioned catalyst for synthesizing carbon nanotubes, characterized in that the proportion of molybdenum in the catalyst for carbon nanotube synthesis is 1 mol% to 20 mol% with respect to 100 mol% of the metal element as the active ingredient. Regarding the method.

また本発明は、(2)の工程の乾燥温度が120〜170℃の範囲であることを特徴とする上記カーボンナノチューブ合成用触媒の製造方法に関する。   The present invention also relates to the above-described method for producing a carbon nanotube synthesis catalyst, wherein the drying temperature in the step (2) is in the range of 120 to 170 ° C.

また本発明は、(2)の工程の触媒前駆体の平均粒径(D50)が1μm以上30μm以下であることを特徴とする上記カーボンナノチューブ合成用触媒の製造方法に関する。   The present invention also relates to the above-mentioned method for producing a catalyst for carbon nanotube synthesis, wherein the average particle size (D50) of the catalyst precursor in the step (2) is from 1 μm to 30 μm.

また本発明は、(3)の工程の焼成温度が370〜470℃の範囲であることを特徴とする上記カーボンナノチューブ合成用触媒の製造方法に関する。
The present invention relates to a method of manufacturing the carbon nanotube synthesis catalyst, which is a range firing temperature of 370-470 ° C. in step (3).

また本発明は、(3)の工程のカーボンナノチューブ合成用触媒の平均粒径(D50)が0.1〜5μmの範囲であることを特徴とする上記カーボンナノチューブ合成用触媒の製造方法に関する。   The present invention also relates to the above-mentioned method for producing a catalyst for carbon nanotube synthesis, wherein the average particle diameter (D50) of the catalyst for carbon nanotube synthesis in step (3) is in the range of 0.1 to 5 μm.

また本発明は、酸素濃度が0.1体積%以下の雰囲気で、合成温度500〜1000℃の条件下に前記の製造方法で製造されてなるカーボンナノチューブ合成用触媒と、炭化水素および/またはアルコールを含んでなる炭素源とを接触させることを特徴とする上記カーボンナノチューブの製造方法に関する。   The present invention also provides a carbon nanotube synthesis catalyst produced by the above-described production method under conditions of an oxygen concentration of 0.1% by volume or less and a synthesis temperature of 500 to 1000 ° C., a hydrocarbon and / or an alcohol. It is related with the manufacturing method of the said carbon nanotube characterized by making it contact with the carbon source containing.

また本発明は、 式(2)により算出した膨潤率が10上、50未満であるカーボンナノチューブ集合体に関する。。
膨潤率=超音波分散処理後の高さ÷分散処理前の高さ ・・・・式(2)
(但し、分散処理前の高さは、直径35mm×高さ78mmのガラス瓶に、メタノール40ccと評価用のカーボンナノチューブ粉体0.2gを量り取り、室温で60分放置後に測定した溶媒中のカーボンナノチューブ集合体の高さであり、超音波分散処理後の高さは、超音波分散機を用いて、出力5Wで30分処理し、60分静置した後、測定した溶媒中のカーボンナノチューブ集合体の高さである。)
The present invention, swelling of 10 or more on calculated by Equation (2) relates to a carbon nanotube aggregate is less than 50. .
Swell ratio = height after ultrasonic dispersion treatment / height before dispersion treatment (2)
(However, the height before the dispersion treatment was determined by measuring 40 cc of methanol and 0.2 g of the carbon nanotube powder for evaluation in a glass bottle having a diameter of 35 mm and a height of 78 mm, and measuring the carbon in the solvent after standing for 60 minutes at room temperature. The height of the aggregate of the nanotubes. The height after the ultrasonic dispersion treatment is treated with an ultrasonic disperser for 30 minutes at an output of 5 W, left standing for 60 minutes, and the aggregate of carbon nanotubes in the measured solvent. Body height.)

本発明の製造方法により提供されるカーボンナノチューブ合成用触媒は、炭素出力に優れ、この触媒を用いて製造されるカーボンナノチューブ集合体は容易にほぐれ易く、またその優れた分散性により、少ない配合量で高い導電性を有する材料を提供できるカーボンナノチューブ集合体を効率的に製造することができる。   The carbon nanotube synthesis catalyst provided by the production method of the present invention is excellent in carbon output, and the aggregate of carbon nanotubes produced using this catalyst is easily unraveled. Thus, it is possible to efficiently produce an aggregate of carbon nanotubes that can provide a material having high conductivity.

以下に本発明のカーボンナノチューブ合成用触媒及びそれを用いたカーボンナノチューブを製造するための実施の形態を詳細に説明する。   Embodiments for producing a carbon nanotube synthesis catalyst of the present invention and carbon nanotubes using the same will be described in detail below.

[カーボンナノチューブ合成用触媒の製造方法]
本発明のカーボンナノチューブ合成用触媒は、以下(1)〜(3)の工程を経て得られるものである。
[Method for producing catalyst for carbon nanotube synthesis]
The catalyst for carbon nanotube synthesis of the present invention is obtained through the following steps (1) to (3).

本発明の工程(1)は、鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩と、マグネシウムおよびアルミニウムの少なくともいずれか1つ以上の担体成分の金属元素を含む水溶性の有機金属塩、または前記担体成分の金属元素を含む水酸化物とを、水溶媒中に溶解および/または分散し、混合する工程である。   Step (1) of the present invention includes a water-soluble organometallic salt containing a metal element of at least one of iron, cobalt, and nickel, and at least one carrier of magnesium and aluminum. This is a step of dissolving and / or dispersing and mixing a water-soluble organometallic salt containing a component metal element or a hydroxide containing a metal element of the carrier component in an aqueous solvent.

工程(1)において、鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩は、触媒の活性成分としての、それぞれ酸化鉄、酸化コバルト、および、酸化ニッケルの原料となる。また、水溶性のマグネシウムの有機金属塩や水分散性のマグネシウム、および、アルミニウムの水酸化物は、前記活性成分の担体としてのマグネシア、および、アルミナの原料となる。   In the step (1), the water-soluble organometallic salt containing the metal element of at least one of active components of iron, cobalt, and nickel is iron oxide, cobalt oxide, and The raw material for nickel oxide. Further, water-soluble magnesium organic metal salt, water-dispersible magnesium, and aluminum hydroxide serve as raw materials for magnesia and alumina as the active ingredient carrier.

活性成分の金属元素を含む有機金属塩が水溶性であることは、後述の活性成分の担体としてのマグネシア、および、アルミナの原料となる、水溶性のマグネシウムの有機金属塩と均一に混合すること、あるいは、水分散性のマグネシウムおよびアルミニウムの水酸化物の分散体表面に均一に存在することができるため、乾燥して水分を除去して固形化した時に、触媒の活性成分が微細に均一に存在することができるためである。   The fact that the organic metal salt containing the metal element of the active ingredient is water-soluble means that it is uniformly mixed with magnesia as the carrier of the active ingredient described later and the water-soluble organometallic salt of magnesium that is the raw material of alumina. Or, it can exist uniformly on the surface of the water-dispersible magnesium and aluminum hydroxide dispersion, so that when dried and solidified by removing moisture, the active component of the catalyst is finely and uniformly This is because it can exist.

本発明のカーボンナノチューブを製造するための触媒は、後述の説明のように乾燥して水分を除去して固形化し、さらに微細化処理して触媒前駆体を作製し、前記触媒前駆体を焼成した後、所定の粒子径になるように微粉砕することにより製造される。   The catalyst for producing the carbon nanotube of the present invention was dried and solidified by removing moisture as described below, and further refined to prepare a catalyst precursor, and the catalyst precursor was calcined. Thereafter, it is manufactured by pulverizing to a predetermined particle size.

活性成分の原料である鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩は、焼成によりそれぞれ酸化鉄、酸化コバルト、および、酸化ニッケルとなるが、有機金属塩の有機化合物部位は焼成により分解して消失し、焼成により生成した活性成分である酸化鉄、酸化コバルト、および、酸化ニッケル成分が、焼成により生成した担体成分であるマグネシアおよび/またはアルミナの表面に、微細粒子として均一に存在することが出来るためである。この時、活性成分である酸化鉄、酸化コバルト、酸化ニッケルの微細粒子は、有機化合物部位が燃焼により分解して消失する時、活性成分の微細粒子が適度な距離を保ち担体成分上に均一に存在することが出来るようになる。その為、気相成長時のカーボンナノチューブの絡み合いを抑制することができ、カーボンナノチューブ凝集体構造内部の空隙を広げ、これにより分散性及び導電性発現性に優れたカーボンナノチューブを得ることができる。   The water-soluble organometallic salt containing at least one of the active ingredient metal elements of iron, cobalt, and nickel, which are raw materials of the active ingredient, becomes iron oxide, cobalt oxide, and nickel oxide, respectively, by firing. However, the organic compound portion of the organometallic salt is decomposed and disappeared by firing, and iron oxide, cobalt oxide, and nickel oxide components, which are active components produced by firing, are magnesia and / or carrier components produced by firing. Or it is because it can exist uniformly as fine particles on the surface of alumina. At this time, the fine particles of iron oxide, cobalt oxide, and nickel oxide, which are active components, are uniformly dispersed on the carrier component while maintaining a proper distance when the organic compound portion decomposes and disappears by combustion. Be able to exist. Therefore, the entanglement of the carbon nanotubes during vapor phase growth can be suppressed, and the voids inside the carbon nanotube aggregate structure can be widened, thereby obtaining carbon nanotubes excellent in dispersibility and conductivity.

一方、鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩の代わりに、無機金属塩を用いた場合、活性成分の微細粒子は、無機酸部位が燃焼により分解して消失しても、活性成分の微細粒子同士が接近し易く、適度な距離を保つことが難しいと考えられる。その為、気相成長時のカーボンナノチューブが絡み合いを起こしやすく、カーボンナノチューブ凝集体構造内部の空隙を広げられなく、分散性に優れた気相成長カーボンナノチューブを得ることが難しい。   On the other hand, when an inorganic metal salt is used instead of a water-soluble organic metal salt containing at least one of the active ingredient metal elements of iron, cobalt, and nickel, the fine particles of the active ingredient are inorganic acids. Even if the site decomposes and disappears due to combustion, the fine particles of the active ingredient are likely to approach each other and it is considered difficult to maintain an appropriate distance. For this reason, the carbon nanotubes during vapor phase growth tend to be entangled, the voids inside the carbon nanotube aggregate structure cannot be expanded, and it is difficult to obtain vapor phase grown carbon nanotubes with excellent dispersibility.

また、鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩の代わりに、無機金属塩を用い、第3成分としてグリシン等の有機物を原料として用いた場合でも、乾燥して水分を除去して固形化し、さらに微細化処理して触媒前駆体を作製したときに、無機金属塩と有機物を均一に混合することが困難であり、有機物を原料として用いない場合と同様に、活性成分の微細粒子同士が接近し易く、適度な距離を保つことが難しい。その為、気相成長時のカーボンナノチューブが絡み合いを起こしやすく、カーボンナノチューブ凝集体構造内部の空隙を広げられなく、分散性に優れた気相成長カーボンナノチューブを得ることが難しい。   Also, instead of a water-soluble organometallic salt containing at least one active element metal element of iron, cobalt, and nickel, an inorganic metal salt is used, and an organic substance such as glycine is used as a raw material as a third component. Even when it is used, it is difficult to mix the inorganic metal salt and the organic substance uniformly when the catalyst precursor is prepared by drying and removing water to solidify and further refinement treatment. As in the case where it is not used as an active ingredient, the fine particles of the active ingredient are easy to approach each other and it is difficult to maintain an appropriate distance. For this reason, the carbon nanotubes during vapor phase growth tend to be entangled, the voids inside the carbon nanotube aggregate structure cannot be expanded, and it is difficult to obtain vapor phase grown carbon nanotubes with excellent dispersibility.

活性成分の鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩は、例えば酢酸塩、クエン酸塩等を例示できる。これらは1種を単独で用いてもよく、2種以上を混合して用いても良い。中でも、コバルト化合物塩とニッケル化合物塩については無水酢酸塩、酢酸塩水和物、クエン酸塩が、鉄化合物塩についてはクエン酸塩、クエン酸鉄アンモニウム塩が水溶性の点において好ましい。   Examples of the water-soluble organometallic salt containing at least one of the active ingredient metal elements of iron, cobalt, and nickel as active ingredients include acetates and citrates. These may be used alone or in combination of two or more. Among them, anhydrous cobalt acetate, acetate hydrate and citrate are preferable for the cobalt compound salt and nickel compound salt, and citrate and iron ammonium citrate are preferable for the iron compound salt in terms of water solubility.

担体成分の原料であるマグネシウムおよびアルミニウムの少なくともいずれか1つ以上の担体成分の金属元素を含む水溶性の有機金属塩、または前記担体成分の金属元素を含む水酸化物としては、例えば酢酸マグネシウム、水酸化マグネシウム、水酸化アルミニウムを例示できる。   Examples of the water-soluble organometallic salt containing a metal element of at least one carrier component of magnesium and aluminum, which are raw materials of the carrier component, or the hydroxide containing the metal element of the carrier component include, for example, magnesium acetate, Examples thereof include magnesium hydroxide and aluminum hydroxide.

触媒の製造に用いる前記活性成分の水溶性の有機金属塩と、前記担体成分の水溶性の有機金属塩は、水に溶解させて混合する。また、活性成分の有機金属塩と担体成分の有機金属塩は、所定量を混合してから水に溶解させてもよく、また、それぞれを単独で水に溶解させてから、所定量を混合しても良い。また、水に溶解させる時に、溶解性を向上させるために、水が沸騰しない範囲で加熱しても良い。   The water-soluble organometallic salt of the active ingredient used for the production of the catalyst and the water-soluble organometallic salt of the carrier ingredient are dissolved in water and mixed. The organic metal salt of the active component and the organic metal salt of the carrier component may be mixed in a predetermined amount and then dissolved in water, or each may be dissolved in water alone and then mixed in a predetermined amount. May be. Moreover, when dissolving in water, in order to improve the solubility, heating may be performed in a range where water does not boil.

また、担体成分の水分散性のマグネシウムおよびアルミニウムの水酸化物は、単独で所定量を水に分散した後、前記活性成分と混合してもよく、また、前記活性成分と所定量を混合してから水に分散させても良い。   Further, the water-dispersible magnesium and aluminum hydroxides of the carrier component may be mixed with the active ingredient after being dispersed in water alone, and the active ingredient may be mixed with the predetermined amount. Then, it may be dispersed in water.

更に、水分散させる際に、ビーズミル分散機等を使用して、微細分散を行ってもよい。   Furthermore, when dispersing in water, fine dispersion may be performed using a bead mill disperser or the like.

本発明の工程(1)に、さらにモリブデンを含む水溶性の金属塩を、溶液中に含有することもできる。モリブデンを含む水溶性の金属塩は、前記触媒活性成分の活性度を向上させる助触媒成分としての酸化モリブデンの原料となる。モリブデンを含む水溶性の金属塩は、前記活性成分および/または前記担体成分と所定量を混合してから水に溶解させてもよく、また、前記助触媒成分を単独で水に溶解させてから、前記活性成分および/または前記担体成分と混合しても良い。   In the step (1) of the present invention, a water-soluble metal salt further containing molybdenum can be contained in the solution. The water-soluble metal salt containing molybdenum serves as a raw material for molybdenum oxide as a promoter component that improves the activity of the catalytically active component. The water-soluble metal salt containing molybdenum may be dissolved in water after mixing a predetermined amount with the active component and / or the carrier component, or after the promoter component is dissolved in water alone. , And may be mixed with the active ingredient and / or the carrier ingredient.

モリブデンを含む水溶性の金属塩は、例えばモリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブデン酸カリウム、モリブデン酸リチウム、リンモリブデン酸等を例示できる。   Examples of the water-soluble metal salt containing molybdenum include ammonium molybdate, sodium molybdate, potassium molybdate, lithium molybdate, and phosphomolybdic acid.

本発明の工程(1)において、活性成分である、鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩と、担体成分である、マグネシウムおよびアルミニウムの少なくともいずれか1つ以上の担体成分の金属元素を含む水溶性の有機金属塩、または前記担体成分の金属元素を含む水酸化物との割合は、得られるカーボンナノチューブ合成用触媒中の、前記活性成分と前記担体成分との合計100モル%に対する前記活性成分の含有割合(以下、この割合を単に「活性成分含有率」と称す。)が50〜80モル%であることが好ましく、50〜70モル%となるような量であることが更に好ましい。   In the step (1) of the present invention, the water-soluble organometallic salt containing the active ingredient metal element of at least one of iron, cobalt, and nickel, and the carrier component, magnesium and The ratio of the water-soluble organometallic salt containing the metal element of at least one of the carrier components of aluminum, or the hydroxide containing the metal element of the carrier component in the obtained catalyst for carbon nanotube synthesis, The content ratio of the active ingredient relative to 100 mol% in total of the active ingredient and the carrier component (hereinafter, this ratio is simply referred to as “active ingredient content”) is preferably 50 to 80 mol%, The amount is more preferably ˜70 mol%.

触媒中の活性成分含有率が上記範囲よりも少ないと、触媒活性が低く、カーボンナノチューブ生成量が低くなり、逆に、活性成分含有率が上記範囲よりも多いと、前記活性成分の粒子径が過大となり、カーボンナノチューブ成長点の減少や触媒として寄与しない活性成分の増加が生じ、効率が低下する。   When the active component content in the catalyst is less than the above range, the catalyst activity is low and the amount of carbon nanotubes generated is low. Conversely, when the active component content is higher than the above range, the particle size of the active component is small. An excessive amount causes a decrease in carbon nanotube growth points and an increase in active components that do not contribute as a catalyst, resulting in a reduction in efficiency.

本発明の工程(1)において、前記活性成分の活性度を向上させる助触媒成分としての酸化モリブデンの原料となるモリブデンを含む水溶性の金属塩の割合は、得られる触媒中の前記活性成分の100モル%に対して1モル%〜20モル%であることが好ましく、5モル%〜10モル%であることが更に好ましい。   In the step (1) of the present invention, the ratio of the water-soluble metal salt containing molybdenum as a raw material of molybdenum oxide as a promoter component for improving the activity of the active component is determined by the ratio of the active component in the obtained catalyst. It is preferably 1 mol% to 20 mol%, more preferably 5 mol% to 10 mol%, relative to 100 mol%.

触媒中の助触媒成分の含有率が上記範囲よりも少ないと、前記触媒活性成分の活性度を向上させる助触媒成分としての効果が低く触媒効率の向上に寄与しなくなる。逆に、上記範囲よりも多いと、活性成分の割合が少なくなり、効率が低下する。   When the content of the promoter component in the catalyst is less than the above range, the effect as a promoter component for improving the activity of the catalyst active component is low, and it does not contribute to the improvement of the catalyst efficiency. On the other hand, when the amount is larger than the above range, the ratio of the active ingredient is decreased and the efficiency is lowered.

次に、本発明の工程(2)について説明する。   Next, the process (2) of this invention is demonstrated.

本発明の工程(2)は、工程(1)で得られた、鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩と、マグネシウムおよびアルミニウムの少なくともいずれか1つ以上の担体成分の金属元素を含む水溶性の有機金属塩、または前記担体成分の金属元素を含む水酸化物とを、水溶媒中に溶解および/または分散し、混合した溶液を、空気雰囲気下で、もしくは窒素、アルゴン等の不活性ガス雰囲気下で100〜200℃の範囲の温度で、乾燥して水分を除去して固形化し、さらに空気中で微細化処理して、平均粒径(D50)が50μm以下の触媒前駆体を作製する工程である。   Step (2) of the present invention comprises a water-soluble organometallic salt containing at least one of the active element metal elements of iron, cobalt and nickel, magnesium and aluminum obtained in step (1). The water-soluble organometallic salt containing the metal element of at least one of the carrier components or the hydroxide containing the metal element of the carrier component was dissolved and / or dispersed in an aqueous solvent and mixed. The solution is dried in an air atmosphere or an inert gas atmosphere such as nitrogen or argon at a temperature in the range of 100 to 200 ° C. to remove moisture, solidify, and further refine in air. In this step, a catalyst precursor having an average particle size (D50) of 50 μm or less is prepared.

ここで、粉体の平均粒径(D50)は、Malvern Instruments社製の粉体粒度分布計mastersizer2000を用いて乾式で測定し、積算(累積)重量百分率で積算値50%の粒度を平均粒径(D50)として算出した。   Here, the average particle diameter (D50) of the powder is measured by a dry method using a powder particle size distribution meter mastersizer 2000 manufactured by Malvern Instruments, and the average particle diameter is 50% of the integrated value (accumulated) weight percentage. Calculated as (D50).

工程(2)の触媒前駆体を製造する際に、乾燥して水分を除去するときの温度が重要であり、好ましくは100℃以上200℃以下である。   In producing the catalyst precursor in the step (2), the temperature at which the moisture is removed by drying is important, and is preferably 100 ° C. or higher and 200 ° C. or lower.

乾燥時の温度が200℃を超えてしまうと、乾燥と同時に有機酸塩の一部で分解が起こり、前記の活性成分の担体としてのマグネシア、および、アルミナの原料となる、水溶性のマグネシウムの有機金属塩と均一に混合することができなくなるか、あるいは、水分散性のマグネシウム、および、アルミニウムの水酸化物の分散体表面に均一に存在することができなくなるため、乾燥して水分を除去して固形化した時に触媒の活性成分が微細に均一に存在できなくなり、触媒効率の低下が生じてしまう。   When the temperature at the time of drying exceeds 200 ° C., decomposition occurs in part of the organic acid salt simultaneously with drying, and magnesia as a carrier of the active ingredient and water-soluble magnesium as a raw material of alumina It cannot be uniformly mixed with the organometallic salt, or it cannot be uniformly present on the surface of the water-dispersible magnesium and aluminum hydroxide dispersion, so it is dried to remove moisture As a result, when the catalyst is solidified, the active component of the catalyst cannot be present finely and uniformly, resulting in a decrease in catalyst efficiency.

一方、乾燥温度が100℃未満であると、水分の乾燥に長時間かかるため、量産をする上で好ましくない。また、水分が残存していると、後述の微細化処理が難しく、触媒前駆体に適度の空気を含むことが難しくなってしまうため好ましくない。   On the other hand, if the drying temperature is less than 100 ° C., it takes a long time to dry the moisture, which is not preferable for mass production. In addition, if moisture remains, it is not preferable because the later-described refinement process is difficult, and it becomes difficult to contain appropriate air in the catalyst precursor.

ここで、本発明において、触媒効率については、炭素出力で表す。炭素出力とは、カーボンナノチューブの合成に用いる触媒の単位重量当たりに生成するカーボンナノチューブ等の炭素質固形分の重量の比であり、式(1)で表すことができる。

炭素出力=(合成で得られた触媒を含む炭素質固形分の重量−合成に用いた触媒重量)
÷(合成に用いた触媒重量)
・・・・・・式(1)
Here, in the present invention, the catalyst efficiency is expressed in terms of carbon output. The carbon output is the ratio of the weight of carbonaceous solids such as carbon nanotubes produced per unit weight of the catalyst used for the synthesis of carbon nanotubes, and can be expressed by the formula (1).

Carbon output = (weight of carbonaceous solids including catalyst obtained by synthesis−weight of catalyst used for synthesis)
÷ (Catalyst weight used for synthesis)
・ ・ ・ ・ ・ ・ Formula (1)

工程(2)において、乾燥して水分を除去して固形化した後、さらに微細化処理して、平均粒径が50μm以下の触媒前駆体を得ることが好ましい。   In the step (2), it is preferable to obtain a catalyst precursor having an average particle diameter of 50 μm or less by drying and removing the water to solidify, and further performing a finer treatment.

前記の触媒前駆体は、乾燥して水分を除去して固形化した後、微細化処理することにより製造されるが、50μm以下の平均粒径まで微細化することにより、適度の空気を含むことができるようになる為、後述の工程(3)の触媒前駆体を焼成するときに、活性成分と担持成分双方の有機金属塩の有機化合物部位を効率的に分解させて消失させることができるようになる。一方、乾燥して水分を除去して固形化した後、微細化処理しないで焼成処理する、あるいは、50μm以下の平均粒径まで微細化処理しないで焼成を行うと、有機金属塩の有機化合物部位が完全に分解消失しないで、多量の炭素質不純物が触媒中に残り、カーボンナノチューブにおける異物の原因となり、また担体成分への活性成分粒子の均一担持が不十分となり、炭素出力の低下の原因となる。   The catalyst precursor is produced by drying, removing moisture, solidifying, and then refined, and contains moderate air by refining to an average particle size of 50 μm or less. Therefore, when the catalyst precursor in the step (3) described below is calcined, the organic compound sites of the organometallic salt of both the active component and the supported component can be efficiently decomposed and eliminated. become. On the other hand, after drying and solidifying by removing moisture, baking is performed without refining treatment, or baking is performed without refining to an average particle size of 50 μm or less. Does not completely decompose and disappear, a large amount of carbonaceous impurities remain in the catalyst, causing foreign matter in the carbon nanotubes, and the uniform loading of the active component particles on the support component is insufficient, which causes a decrease in carbon output. Become.

工程(2)において、触媒前駆体製造時の微細化処理手段としては特に制限はないが、少量の場合は乳鉢を用いて、一度に多量を処理する場合は、ピンミル、ハンマーミル、パルペライザー、ターボミル、クリプトロンKTM等の機械式粉砕機、ジェットミル等の衝突式粉砕機を用いることができる。   In the step (2), there is no particular limitation on the means for refining the catalyst precursor, but in the case of a small amount, a mortar is used. When a large amount is processed at once, a pin mill, a hammer mill, a pulverizer, a turbo mill A mechanical pulverizer such as Kryptron KTM or a collision pulverizer such as a jet mill can be used.

本発明の工程(2)において、触媒前駆体を製造するときに、乾燥して水分を除去するときの温度が重要であり、好ましくは200℃以下、より好ましくは100℃以上200℃以下であるが、更に好ましくは120℃以上170℃以下である。触媒前駆体を量産する際は、短時間で乾燥するように、できるだけ高温の雰囲気下が好ましいが、一方、高温の雰囲気下では、乾燥と同時に有機金属塩の一部で分解が起こり易いため、できるだけ低温の雰囲気下での乾燥が好ましい。120℃以上170℃以下の温度範囲は、短時間での乾燥性と有機金属塩の分解の起こり難さをいずれも満足する。   In the step (2) of the present invention, when the catalyst precursor is produced, the temperature at which the moisture is removed by drying is important, preferably 200 ° C. or lower, more preferably 100 ° C. or higher and 200 ° C. or lower. However, More preferably, it is 120 degreeC or more and 170 degrees C or less. When mass-producing the catalyst precursor, an atmosphere as high as possible is preferable so that the catalyst precursor is dried in a short time. On the other hand, in a high-temperature atmosphere, decomposition is likely to occur in part of the organometallic salt simultaneously with drying. Drying in an atmosphere as low as possible is preferred. The temperature range of 120 ° C. or more and 170 ° C. or less satisfies both the drying property in a short time and the difficulty of decomposition of the organometallic salt.

工程(2)において、乾燥して水分を除去して固形化した後、更に微細化処理して、平均粒径(D50)が50μm以下の触媒前駆体を作成することが重要であるが、更に好ましくは1μm以上30μm以下である。平均粒径(D50)が小さい方がより多くの空気を含むことができるようになる為、後述の工程(3)の触媒前駆体を焼成するときに、有機金属塩の有機化合物部位をより効率的に分解させて消失させることができる。一方、平均粒径(D50)が1μm未満であると、工程(3)の焼成時に浮遊してしまい、結果として周囲の焼成雰囲気の汚染や焼成物の収率低下を起こしてしまうため、平均粒径(D50)は大きい方が望ましい。1μm以上30μm以下の平均粒径(D50)は、工程(3)の焼成時の効率的な分解と汚染や収率低下の問題をいずれも満足する。   In step (2), it is important to dry and remove moisture to solidify, and then further refine to create a catalyst precursor having an average particle size (D50) of 50 μm or less. Preferably they are 1 micrometer or more and 30 micrometers or less. The smaller the average particle size (D50), the more the air can be contained. Therefore, when the catalyst precursor in step (3) described later is fired, the organic compound portion of the organometallic salt is more efficient. It can be decomposed and disappear. On the other hand, if the average particle size (D50) is less than 1 μm, it floats during firing in step (3), resulting in contamination of the surrounding firing atmosphere and a decrease in the yield of the fired product. A larger diameter (D50) is desirable. An average particle diameter (D50) of 1 μm or more and 30 μm or less satisfies both the problems of efficient decomposition, contamination, and yield reduction during firing in step (3).

次に、本発明の工程(3)について説明する。   Next, the process (3) of this invention is demonstrated.

本発明の工程(3)は、工程(2)で得られた前記触媒前駆体を、酸素の存在下、焼成温度350〜550℃の範囲で加熱し、冷却した後、得られた焼成物を粉砕して平均粒径(D50)が5μm以下のカーボンナノチューブ合成用触媒を得る工程である。   In the step (3) of the present invention, the catalyst precursor obtained in the step (2) is heated in the range of a calcination temperature of 350 to 550 ° C. in the presence of oxygen and cooled, and then the obtained baked product is obtained. This is a step of pulverizing to obtain a carbon nanotube synthesis catalyst having an average particle size (D50) of 5 μm or less.

工程(3)において、触媒前駆体を焼成するとき、焼成雰囲気として酸素の存在下、空気中ないし空気と窒素混合雰囲気を用いることが重要である。酸素の欠乏雰囲気下での焼成では、活性成分と担持成分に由来する有機金属塩の有機化合物部位が完全に分解消失しないで、多量の炭素質不純物(以下、残炭分と称する)が触媒中に残り、カーボンナノチューブにおける異物の原因となり、また担体成分への活性成分粒子の均一担持が不十分となり、炭素出力の低下の原因となる。   In the step (3), when the catalyst precursor is calcined, it is important to use an air or nitrogen / air mixture atmosphere in the presence of oxygen as a calcining atmosphere. In the calcination in an oxygen-deficient atmosphere, the organic compound portion of the organometallic salt derived from the active component and the supported component is not completely decomposed and lost, and a large amount of carbonaceous impurities (hereinafter referred to as residual carbon content) are contained in the catalyst. In addition, the carbon nanotubes may cause foreign matters, and the active component particles may not be uniformly supported on the carrier component, resulting in a decrease in carbon output.

工程(3)において、焼成は、350℃以上550℃以下で行われることが重要である。焼成温度が550℃よりも高いと活性成分の金属元素が焼結してしまい、350℃よりも低いとと有機金属塩の有機化合物部位が未分解となり、多量の残炭分が触媒中に残り、カーボンナノチューブにおける異物の原因となり、また担体成分への活性成分粒子の均一担持が不十分となり、いずれも炭素出力の低下の原因となる。   In the step (3), it is important that the firing is performed at 350 ° C. or more and 550 ° C. or less. If the calcination temperature is higher than 550 ° C., the metal element of the active component is sintered, and if it is lower than 350 ° C., the organic compound portion of the organometallic salt becomes undecomposed, and a large amount of residual carbon remains in the catalyst. This causes foreign matter in the carbon nanotubes, and the active component particles are not uniformly supported on the carrier component, both of which cause a decrease in carbon output.

工程(3)において、焼成は、好ましくは350℃以上500℃以下、さらに好ましくは370℃以上470℃以下である。有機金属塩の有機化合物部位は燃焼により、分解・気化し、排出され、残炭分が望ましい範囲まで少なくなるには、できるだけ高温の雰囲気下で焼成することが好ましい。一方、活性成分の金属元素が焼結を起こして炭素出力の低下を起こさせない為には、できるだけ低温の雰囲気下で焼成することが好ましい。370℃以上470℃以下の温度範囲は、この残炭分と焼結のいずれも満足する。   In the step (3), the firing is preferably 350 ° C. or higher and 500 ° C. or lower, more preferably 370 ° C. or higher and 470 ° C. or lower. The organic compound portion of the organometallic salt is preferably fired in an atmosphere as high as possible in order to decompose, vaporize and discharge by combustion, and to reduce the residual carbon content to a desired range. On the other hand, firing is preferably performed in an atmosphere as low as possible so that the metal element of the active component does not cause sintering and decrease in carbon output. A temperature range of 370 ° C. or higher and 470 ° C. or lower satisfies both the residual carbon content and sintering.

触媒中の残炭分量は、残炭分の主成分である炭素分を測定し、mass%で表わすこととした。炭素分については、株式会社堀場製作所製 炭素・硫黄分析装置EMIA−810Wを用いて測定した。   The amount of residual carbon in the catalyst was determined by measuring the carbon content, which is the main component of the residual carbon content, and expressed in mass%. The carbon content was measured using a carbon / sulfur analyzer EMIA-810W manufactured by Horiba, Ltd.

工程(3)の焼成により、活性成分は鉄、コバルト、および、ニッケルのいずれかの酸化物、担体成分はマグネシア、および、アルミナのいずれかとなり、前記の鉄、コバルト、および、ニッケルのいずれかの酸化物が、前記のマグネシア、および、アルミナのいずれかに担持された触媒が得られる。なお、有機金属塩の有機化合物部位は燃焼により、分解・気化し、排出される。カーボンナノチューブ析出反応が阻害されないためにも、触媒表面を清浄化させる必要があり、残炭分が焼成後触媒中の10mass%以下、好ましくは5mass%以下になることが望ましい。   As a result of the firing in step (3), the active component is any oxide of iron, cobalt and nickel, the support component is either magnesia or alumina, and any one of the above iron, cobalt and nickel Thus, a catalyst in which the oxide is supported on either magnesia or alumina is obtained. The organic compound portion of the organic metal salt is decomposed, vaporized and discharged by combustion. In order not to inhibit the carbon nanotube precipitation reaction, it is necessary to clean the catalyst surface, and it is desirable that the residual carbon content is 10 mass% or less, preferably 5 mass% or less in the catalyst after firing.

工程(3)において、このようにして得られた焼成物を更に微粉砕して平均粒径(D50)が5μm以下の微粒子状の触媒とすることが重要である。   In step (3), it is important to further pulverize the fired product obtained in this way to obtain a fine particle catalyst having an average particle size (D50) of 5 μm or less.

焼成物を微粉砕しない場合、あるいは平均粒径(D50)が5μmを超える場合では、カーボンナノチューブ合成用触媒と、炭化水素および/またはアルコールを含んでなる炭素源とを接触させて、カーボンナノチューブを合成する際に、該触媒の活性成分に、該炭素源が十分に接触することができなくなり、結果として炭素出力が低下してしまう。   When the baked product is not finely pulverized or when the average particle diameter (D50) exceeds 5 μm, the carbon nanotube synthesis catalyst is brought into contact with a carbon source containing hydrocarbons and / or alcohols. During the synthesis, the carbon source cannot sufficiently come into contact with the active component of the catalyst, resulting in a decrease in carbon output.

工程(3)の微粉砕手段としては特に制限はないが、少量の場合は乳鉢を用いて、一度に多量を処理する場合は、ピンミル、ハンマーミル、パルペライザー、ジェットミル等を用いることができる。また、微粉砕後に分級機を用いることにより、粒度分布を調整することが好ましい。例えば、このジェットミルによる微粉砕時に、圧縮気体(通常、空気もしくは窒素が用いられる。)の圧力を制御するか、後段への分級機設置により粉砕粒度を調整して、所望の粒径の微粒子状触媒を得ることができる。分級機としては、エルボージェット分級機、気流式分級機、回転式分級機等を用いることができる。   The fine pulverizing means in step (3) is not particularly limited, but a mortar can be used for a small amount, and a pin mill, a hammer mill, a pulverizer, a jet mill or the like can be used for treating a large amount at a time. Moreover, it is preferable to adjust the particle size distribution by using a classifier after fine pulverization. For example, fine particles having a desired particle size can be obtained by controlling the pressure of compressed gas (usually air or nitrogen) during fine pulverization by the jet mill or adjusting the pulverization particle size by installing a classifier at the subsequent stage. A catalyst can be obtained. As the classifier, an elbow jet classifier, an airflow classifier, a rotary classifier, or the like can be used.

工程(3)において、得られた焼成物を更に微粉砕して平均粒径(D50)が5μm以下の微粒子状触媒とすることが重要であるが、更に好ましくは0.1μm以上5μm以下である。優れた炭素出力を得るためには、カーボンナノチューブ合成用触媒の活性成分に後述する炭化水素やアルコールなどの炭素源が十分に接触することが重要であり、微粒子状触媒はできるだけ微細であることが好ましい。一方、微粒子状触媒の平均粒径(D50)が0.1μm未満であると、炭素源と接触した際に飛散する量が多くなり、結果としてカーボンナノチューブの収率が低下するため、飛散を避けるためには、平均粒径(D50)はできるだけ大きいことが好ましい。0.1μm以上5μm以下の平均粒径(D50)範囲は、優れた炭素出力と飛散による収率低下防止のいずれも満足する。   In step (3), it is important to further pulverize the obtained fired product to obtain a fine particle catalyst having an average particle size (D50) of 5 μm or less, more preferably 0.1 μm to 5 μm. . In order to obtain an excellent carbon output, it is important that the active component of the carbon nanotube synthesis catalyst is sufficiently in contact with a carbon source such as a hydrocarbon or alcohol described later, and the particulate catalyst should be as fine as possible. preferable. On the other hand, when the average particle diameter (D50) of the particulate catalyst is less than 0.1 μm, the amount of scattering when contacted with the carbon source increases, and as a result, the yield of the carbon nanotubes decreases, thereby avoiding scattering. For this purpose, the average particle diameter (D50) is preferably as large as possible. An average particle diameter (D50) range of 0.1 μm or more and 5 μm or less satisfies both excellent carbon output and prevention of yield reduction due to scattering.

この様に、工程(1)〜(3)を経ることによって、好ましいカーボンナノチューブ合成用触媒が得られる。   Thus, a preferable catalyst for carbon nanotube synthesis is obtained through the steps (1) to (3).

[カーボンナノチューブ集合体の製造方法]
次に、得られたカーボンナノチューブ合成用触媒を用いた本発明のカーボンナノチューブ集合体の製造方法について説明する。
[Method for producing aggregate of carbon nanotubes]
Next, a method for producing a carbon nanotube aggregate of the present invention using the obtained catalyst for carbon nanotube synthesis will be described.

本発明のカーボンナノチューブ集合体を製造するには、触媒として本発明のカーボンナノチューブ合成用触媒を用いて、炭素源としての原料ガスを加熱下、この触媒に接触させて、カーボンナノチューブの析出反応を行い製造する。   In order to produce the aggregate of carbon nanotubes of the present invention, the catalyst for carbon nanotube synthesis of the present invention is used as a catalyst, and a raw material gas as a carbon source is brought into contact with the catalyst under heating to cause a carbon nanotube precipitation reaction. To make.

カーボンナノチューブの炭素源としての原料ガスとしては、従来公知の任意のものを使用でき、例えば、炭素を含むガスとしてメタンやエチレン、プロパン、ブタン、アセチレンなどの炭化水素や、一酸化炭素、メタノールやエタノール、プロパノール、イソプロパノール、ブタノールなどのアルコールなどを用いることができるが、特に使い易さ等の理由により、プロパン、ブタンやエタノールを用いることが好ましい。   As a source gas as a carbon source of the carbon nanotube, any conventionally known gas can be used. For example, as a gas containing carbon, hydrocarbons such as methane, ethylene, propane, butane, acetylene, carbon monoxide, methanol, Alcohols such as ethanol, propanol, isopropanol, and butanol can be used, but propane, butane and ethanol are preferably used for reasons such as ease of use.

また、必要に応じて、還元雰囲気下で活性化した後、又は還元性ガスと共にカーボンナノチューブ原料ガスと接触させて製造することが好ましい。活性化時における還元性ガスは、水素(H2)、アンモニア等を用いることができるが、特にH2が好ましく、その濃度は、原料ガス濃度100体積%に対して0.1〜100体積%、特に1〜100体積%であることが好ましい。還元性ガスの濃度が0.1体積%未満であると、濃度が薄すぎて還元性ガスの効果が期待できない。100体積%を超える濃度だと相対的に原料ガスが少なくなり、炭素出力が低下しカーボンナノチューブの収率が低下してしまう。 Moreover, it is preferable to manufacture after making it activate in a reducing atmosphere as needed, or making it contact with carbon nanotube raw material gas with a reducing gas. As the reducing gas at the time of activation, hydrogen (H 2 ), ammonia or the like can be used, but H 2 is particularly preferable, and the concentration thereof is 0.1 to 100% by volume with respect to 100% by volume of the raw material gas. In particular, it is preferably 1 to 100% by volume. If the concentration of the reducing gas is less than 0.1% by volume, the concentration is too thin and the effect of the reducing gas cannot be expected. If the concentration exceeds 100% by volume, the amount of raw material gas is relatively reduced, the carbon output is lowered, and the yield of carbon nanotubes is lowered.

本発明のカーボンナノチューブ集合体を製造する方式としては、本発明のカーボンナノチューブ合成用触媒を大気圧より減圧した雰囲気で原料ガスを導入する方式(以下、減圧法とする)でも良く、あるいは、大気圧下で原料ガスを導入する方式(以下、常圧法とする)でも良い。   The method for producing the aggregate of carbon nanotubes of the present invention may be a method in which the raw material gas is introduced in an atmosphere in which the catalyst for carbon nanotube synthesis of the present invention is depressurized from atmospheric pressure (hereinafter referred to as a depressurization method). A method of introducing a source gas under atmospheric pressure (hereinafter referred to as an atmospheric pressure method) may be used.

減圧法は、減圧が可能で、外部ヒーターで加熱が可能な反応管内に、本発明のカーボンナノチューブ合成用触媒を設置し、反応管内部の空気を真空ポンプで吸引して減圧後、窒素やアルゴン等の不活性ガスを導入して、更に吸引して減圧することで、反応管内の酸素濃度を0.1%以下とした後、所定の反応温度で炭化水素ガス、必要に応じて水素ガス等の還元性ガスを混合して反応管内に導入してカーボンナノチューブ集合体を製造する方式である。   In the depressurization method, the catalyst for carbon nanotube synthesis of the present invention is installed in a reaction tube that can be depressurized and heated by an external heater, and the air inside the reaction tube is sucked with a vacuum pump and then depressurized, and then nitrogen or argon Introducing an inert gas such as the above, and further reducing the pressure by suction to reduce the oxygen concentration in the reaction tube to 0.1% or less, then hydrocarbon gas at a predetermined reaction temperature, hydrogen gas as required, etc. The reducing gas is mixed and introduced into a reaction tube to produce a carbon nanotube aggregate.

常圧法は、常圧にて、窒素やアルゴン等の不活性ガスを導入して、反応管内部の空気を不活性ガスで置換して、反応管内の酸素濃度を0.1%以下とした後、所定の反応温度で炭化水素ガス、必要に応じて水素ガス等の還元性ガスを混合して反応管内に導入してカーボンナノチューブ集合体を製造する方式である。   In the normal pressure method, after introducing an inert gas such as nitrogen or argon at normal pressure and replacing the air inside the reaction tube with an inert gas, the oxygen concentration in the reaction tube is reduced to 0.1% or less. This is a method for producing a carbon nanotube aggregate by mixing a hydrocarbon gas at a predetermined reaction temperature and, if necessary, a reducing gas such as hydrogen gas into a reaction tube.

本発明のカーボンナノチューブ合成用触媒を用いて、カーボンナノチューブ集合体を製造する温度については、500〜1000℃の範囲で析出反応を行うことが重要である。更に、600〜900℃の範囲で析出反応を行うことがより好ましい。温度が500℃未満であると、析出反応がほとんど起こらずカーボンナノチューブ集合体が製造できない。温度が1000℃を超えると、前記得られたカーボンナノチューブ合成用触媒中の活性成分の焼結が発生し、本発明の目的の優れた炭素出力が得られなくなるとともに、急激な析出反応が起こるためカーボンナノチューブの絡まりが大きくなり、分散性に劣るカーボンナノチューブ集合体となってしまう為好ましくない。温度が600〜900℃は、本発明の目的の炭素出力とほぐれ易さのいずれも満足する。   About the temperature which manufactures a carbon nanotube aggregate using the catalyst for carbon nanotube synthesis | combination of this invention, it is important to perform precipitation reaction in the range of 500-1000 degreeC. Furthermore, it is more preferable to perform the precipitation reaction in the range of 600 to 900 ° C. If the temperature is lower than 500 ° C., the precipitation reaction hardly occurs and the carbon nanotube aggregate cannot be produced. When the temperature exceeds 1000 ° C., sintering of the active component in the obtained catalyst for carbon nanotube synthesis occurs, and the carbon output excellent in the object of the present invention cannot be obtained, and a rapid precipitation reaction occurs. Since the entanglement of the carbon nanotubes becomes large and the carbon nanotube aggregate is inferior in dispersibility, it is not preferable. A temperature of 600 to 900 ° C. satisfies both the carbon output and the ease of unraveling of the object of the present invention.

原料ガスの供給量は、従来公知の任意の値から、適宜選択し決定すれば良いが、反応圧力は、減圧法の場合は大気圧以下圧力100Pa以上が好ましい。圧力が100Pa未満であると原料ガスが少なく、優れた炭素出力が得られない。   The supply amount of the source gas may be appropriately selected and determined from any conventionally known value, but the reaction pressure is preferably an atmospheric pressure or lower and a pressure of 100 Pa or higher in the case of a decompression method. If the pressure is less than 100 Pa, the raw material gas is small and an excellent carbon output cannot be obtained.

常圧法の場合は、常圧以上40kPa以下、特に常圧以上30kPa以下とすることが好ましい。反応時間は、反応温度や触媒と原料ガスとの接触比率に応じて任意に設定されるが、通常0.5〜6時間程度である。本発明での反応速度は反応開始から約1時間で最大となり、その後、徐々に失速して反応開始から5〜5.5時間で停止する。従って、反応時間は0.5〜6時間の範囲で管理することが好ましい。   In the case of the normal pressure method, the pressure is preferably set to normal pressure to 40 kPa, particularly normal pressure to 30 kPa. The reaction time is arbitrarily set according to the reaction temperature and the contact ratio between the catalyst and the raw material gas, but is usually about 0.5 to 6 hours. In the present invention, the reaction rate reaches its maximum at about 1 hour from the start of the reaction, and then gradually decreases and stops at 5 to 5.5 hours from the start of the reaction. Therefore, the reaction time is preferably managed in the range of 0.5 to 6 hours.

反応終了後の原料ガス置換には、アルゴンガスや窒素等の不活性ガスを用いることが好ましい。   It is preferable to use an inert gas such as argon gas or nitrogen for the replacement of the raw material gas after completion of the reaction.

次に、本発明により製造されるカーボンナノチューブ集合体について説明する。   Next, the carbon nanotube aggregate produced according to the present invention will be described.

本発明の製造方法で得られたカーボンナノチューブ集合体は、容易にほぐれ易く、また分散性に優れ、少ない配合量で高い導電性を有する材料を提供できる。ここで、該集合体がほぐれるとは、該集合体中の絡まっているカーボンナノチューブ間の距離が大きくなることであり、ほぐれ易さとは、該集合体中のカーボンナノチューブ間に樹脂や溶媒等の分散媒体を容易に取り込み、カーボンナノチューブ同士の距離が大きくなることにより集合体が膨潤して大きくなることであると考える。そこで、本発明のカーボンナノチューブ集合体のほぐれ易さの指標として、室温、メタノール中での膨潤率で表した。   The aggregate of carbon nanotubes obtained by the production method of the present invention can be easily loosened, has excellent dispersibility, and can provide a material having high conductivity with a small blending amount. Here, the loosening of the aggregate means that the distance between the entangled carbon nanotubes in the aggregate is increased, and the ease of loosening means that a resin, a solvent, or the like is interposed between the carbon nanotubes in the aggregate. It is considered that the aggregate is swollen and becomes larger by easily taking in the dispersion medium and increasing the distance between the carbon nanotubes. Therefore, the swelling ratio in methanol at room temperature was used as an index of the ease of loosening of the aggregate of carbon nanotubes of the present invention.

膨潤率は、下記で示した方法で測定し、式(2)により算出した。   The swelling rate was measured by the method shown below and calculated by the formula (2).

直径35mm×高さ78mmのガラス瓶に、メタノール40ccと評価用のカーボンナノチューブ粉体0.2gを量り取り、室温で60分放置後溶媒中のカーボンナノチューブ集合体の高さを測定し、分散処理前の高さとした。BRANSON製 超音波分散機 SONIFIER MODEL450Dを用いて、出力5Wで30分処理し、60分静置した後、溶媒中のカーボンナノチューブ集合体の高さを測定し、超音波分散処理後の高さとした。

膨潤率=超音波分散処理後の高さ÷分散処理前の高さ ・・・・式(2)
Weigh 40 cc of methanol and 0.2 g of carbon nanotube powder for evaluation into a glass bottle with a diameter of 35 mm and a height of 78 mm, leave it at room temperature for 60 minutes, measure the height of the aggregate of carbon nanotubes in the solvent, and before dispersion treatment And the height. Using a ultrasonic dispersion machine SONIFIER MODEL450D manufactured by BRANSON, processed for 30 minutes at an output of 5 W, allowed to stand for 60 minutes, and then measured the height of the aggregate of carbon nanotubes in the solvent to obtain the height after ultrasonic dispersion treatment. .

Swell ratio = height after ultrasonic dispersion treatment / height before dispersion treatment (2)

本発明のカーボンナノチューブ集合体の膨潤率は、好ましくは10以上である。膨潤率が10未満であると、分散媒体を容易に取り込み難く、優れた分散性が得られない。一方、膨潤率が50以上であると、該集合体を形成するカーボンナノチューブのアスペクト比(カーボンナノチューブの直径に対する長さの比)が小さくなり、優れた導電性が得られにくくなる場合があり、膨潤率は50未満であることがより好ましい。
The swelling ratio of the carbon nanotube aggregate of the present invention is preferably 10 or more. When the swelling ratio is less than 10, it is difficult to take in the dispersion medium easily, and excellent dispersibility cannot be obtained. On the other hand, when the swelling ratio is 50 or more, the aspect ratio of the carbon nanotubes forming the aggregate (the ratio of the length to the diameter of the carbon nanotubes) is small, and it may be difficult to obtain excellent conductivity. The swelling rate is more preferably less than 50.

本発明の製造方法で得られるカーボンナノチューブ合成用触媒を用いて製造されるカーボンナノチューブ集合体は好ましくは膨潤率10以上50未満の特性を有しているものである。
Production methods resulting aggregate of carbon nanotubes produced using the carbon nanotube synthesis catalyst of the present invention are preferably those that have a characteristic of less than the swelling rate 10 or 50.

以下、実施例によって本発明を具体的に説明するが、本発明は実施例に特に限定されるものではない。なお、実施例中、「部」は「重量部」、「%」は「重量%」を表す。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not specifically limited to an Example. In the examples, “parts” represents “parts by weight” and “%” represents “% by weight”.

(実施例1)[触媒(A)の製造]
酢酸コバルト・四水和物200部、酢酸マグネシウム・四水和物172部をビーカーに量り取り、精製水を1488部加えて、完全に溶解するまで攪拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度130±5℃の温度で60分乾燥させ水分を蒸発させた後、乳鉢で粉砕して平均粒径(D50)40μmの触媒(A)前駆体を得た。得られた触媒(A)前駆体300部を耐熱容器に量り取り、マッフル炉にて、空気中470℃±5℃雰囲気下で60分焼成した後、乳鉢で粉砕して平均粒径(D50)2μm、残炭分5mass%の触媒(A)を得た。
(Example 1) [Production of catalyst (A)]
200 parts of cobalt acetate tetrahydrate and 172 parts of magnesium acetate tetrahydrate were weighed into a beaker, 1488 parts of purified water was added, and the mixture was stirred until completely dissolved. It was transferred to a heat-resistant container and dried using an electric oven at an ambient temperature of 130 ± 5 ° C. for 60 minutes to evaporate water, and then pulverized in a mortar to obtain a catalyst (A) having an average particle diameter (D50) of 40 μm A precursor was obtained. 300 parts of the obtained catalyst (A) precursor was weighed into a heat-resistant container, calcined in a muffle furnace in an atmosphere of 470 ° C. ± 5 ° C. for 60 minutes, and then pulverized in a mortar to obtain an average particle diameter (D50) A catalyst (A) having 2 μm and a remaining coal content of 5 mass% was obtained.

(実施例2〜4)[触媒(B)〜触媒(D)の製造]
表1に記載した活性成分,担持成分,モリブデン成分の原料と仕込み量を用い、表2に示した乾燥温度と焼成温度に変更した以外は実施例1と同様にして製造を行い、表2に示した平均粒径(D50)と残炭分の触媒(B)〜触媒(D)を得た。
(Examples 2 to 4) [Production of catalyst (B) to catalyst (D)]
Production was carried out in the same manner as in Example 1 except that the raw materials and amounts of the active component, supporting component, and molybdenum component described in Table 1 were used, and the drying temperature and firing temperature shown in Table 2 were changed. The indicated average particle size (D50) and residual carbon content catalyst (B) to catalyst (D) were obtained.

(実施例5)[触媒(E)の製造]
無水酢酸コバルト142.1部と七モリブデン酸アンモニウム・四水和物14.2部をビーカー(1)に量り取り、精製水を744部加えて、完全に溶解するまで攪拌した。別のビーカー(2)に水酸化マグネシウム15.6部を量り取り、精製水を744部加えて、水酸化マグネシウムの沈殿が目視で観察されなくなるまで攪拌し分散液を得た。ビーカー(1)とビーカー(2)の液を混合し60分攪拌した後、耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度150±5℃の温度で60分乾燥させ水分を蒸発させた後、乳鉢で粉砕して平均粒径(D50)20μmの触媒(E)前駆体を得た。得られた触媒(E)前駆体300部を耐熱容器に量り取り、マッフル炉にて、空気中450℃±5℃雰囲気下で60分焼成した後、乳鉢で粉砕して平均粒径(D50)1.5μm、残炭分4mass%の触媒(E)を得た。
(Example 5) [Production of catalyst (E)]
142.1 parts of anhydrous cobalt acetate and 14.2 parts of ammonium heptamolybdate tetrahydrate were weighed into a beaker (1), 744 parts of purified water was added, and the mixture was stirred until completely dissolved. In another beaker (2), 15.6 parts of magnesium hydroxide was weighed, 744 parts of purified water was added, and the mixture was stirred until no precipitation of magnesium hydroxide was visually observed to obtain a dispersion. After mixing the liquid of the beaker (1) and the beaker (2) and stirring for 60 minutes, transfer to a heat-resistant container and dry using an electric oven at an ambient temperature of 150 ± 5 ° C. for 60 minutes to evaporate water. And then pulverized in a mortar to obtain a catalyst (E) precursor having an average particle diameter (D50) of 20 μm. 300 parts of the obtained catalyst (E) precursor was weighed in a heat-resistant container, calcined in a muffle furnace in an atmosphere of 450 ° C. ± 5 ° C. for 60 minutes, and then pulverized in a mortar to obtain an average particle diameter (D50) A catalyst (E) having 1.5 μm and a residual coal content of 4 mass% was obtained.

(実施例6)[触媒(F)の製造]
表1に記載した活性成分,担持成分,モリブデン成分の原料と仕込み量を用い、表2に示した焼成温度に変更したた以外は実施例5と同様にして製造を行い、平均粒径(D50)1.5μm、残炭分5mass%の触媒(F)を得た
(Example 6) [Production of catalyst (F)]
Production was carried out in the same manner as in Example 5 except that the raw materials and preparation amounts of the active component, supporting component and molybdenum component described in Table 1 were used, and the firing temperature was changed to that shown in Table 2. The average particle size (D50 ) A catalyst (F) having 1.5 μm and a remaining coal content of 5 mass% was obtained.

(実施例7)[触媒(G)の製造]
酢酸コバルト・四水和物200部をビーカー(1)に量り取り、精製水を744部加えて、完全に溶解するまで攪拌した。別の密閉可能なガラス瓶(3)に水酸化アルミニウム41.6部を量り取り、精製水を500部加え、更に0.8mmガラスビーズ500部加えた後、浅田鉄工株式会社製ペイントシェーカー分散機で60分処理し、水酸化アルミニウム分散液を得た。ガラス瓶(3)のガラスビーズを分離した後、ビーカー(1)と混合し、更に精製水244部を加えて60分攪拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度150±5℃の温度で60分乾燥させ水分を蒸発させた後、乳鉢で粉砕して平均粒径(D50)25μmの触媒(G)前駆体を得た。得られた触媒(G)前駆体300部を耐熱容器に量り取り、マッフル炉にて、空気中450℃±5℃雰囲気下で60分焼成した後、乳鉢で粉砕して平均粒径(D50)2.5μm、残炭分3mass%の触媒(G)を得た。
(Example 7) [Production of catalyst (G)]
200 parts of cobalt acetate tetrahydrate was weighed into a beaker (1), 744 parts of purified water was added, and the mixture was stirred until completely dissolved. Weigh out 41.6 parts of aluminum hydroxide in another sealable glass bottle (3), add 500 parts of purified water, add 500 parts of 0.8 mm glass beads, and then use a paint shaker disperser manufactured by Asada Tekko Co., Ltd. Treatment for 60 minutes gave an aluminum hydroxide dispersion. The glass beads in the glass bottle (3) were separated, mixed with the beaker (1), 244 parts of purified water was further added, and the mixture was stirred for 60 minutes. Transfer to a heat-resistant container and dry using an electric oven at an ambient temperature of 150 ± 5 ° C. for 60 minutes to evaporate the water, and then pulverize in a mortar to obtain an average particle size (D50) 25 μm catalyst (G) A precursor was obtained. 300 parts of the obtained catalyst (G) precursor was weighed into a heat-resistant container, calcined in a muffle furnace in an atmosphere of 450 ° C. ± 5 ° C. for 60 minutes, and then pulverized in a mortar to obtain an average particle diameter (D50) A catalyst (G) having 2.5 μm and a residual carbon content of 3 mass% was obtained.

Figure 0005845515
Figure 0005845515

Figure 0005845515
Figure 0005845515

(比較例1)[触媒(a)の製造]
酢酸コバルト・四水和物200部、酢酸マグネシウム・四水和物172部をビーカーに量り取り、精製水を1488部加えて、完全に溶解するまで攪拌した。耐熱容器に移し替え、水溶液のままマッフル炉にて、空気中450℃±5℃雰囲気下で60分乾燥と焼成をした後、乳鉢で粉砕して平均粒径(D50)3μm、残炭分15mass%の触媒(a)を得た。
(Comparative Example 1) [Production of catalyst (a)]
200 parts of cobalt acetate tetrahydrate and 172 parts of magnesium acetate tetrahydrate were weighed into a beaker, 1488 parts of purified water was added, and the mixture was stirred until completely dissolved. It was transferred to a heat-resistant container, dried and fired in a muffle furnace in an air atmosphere at 450 ° C. ± 5 ° C. for 60 minutes, and then pulverized in a mortar to obtain an average particle size (D50) of 3 μm and a residual coal content of 15 mass. % Catalyst (a) was obtained.

(比較例2)[触媒(b)の製造]
表3に記載した原料と仕込み量を用いた以外は比較例1と同様にして製造を行い、平均粒径(D50)4μm、残炭分12mass%の触媒(b)を得た。
(Comparative Example 2) [Production of catalyst (b)]
Except that had use raw materials and the charged amounts in Table 3 performs preparation in the same manner as in Comparative Example 1, the average particle diameter (D50) 4 [mu] m, was obtained Zansumibun 12 mass% of the catalyst (b).

Figure 0005845515
Figure 0005845515

Figure 0005845515
Figure 0005845515

(比較例3)[触媒(c)の製造]
酢酸コバルト・四水和物200部、酢酸マグネシウム・四水和物172部をビーカーに量り取り、精製水を1488部加えて、完全に溶解するまで攪拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度80±5℃の温度で60分乾燥させ水分を蒸発させた後、乳鉢で粉砕して平均粒径(D50)40μmの触媒(c)前駆体を得た。得られた触媒(c)前駆体300部を耐熱容器に量り取り、マッフル炉にて、空気中450℃±5℃雰囲気下で60分焼成した後、乳鉢で粉砕して平均粒径(D50)3μm、残炭分17mass%の触媒(c)を得た。
(Comparative Example 3) [Production of catalyst (c)]
200 parts of cobalt acetate tetrahydrate and 172 parts of magnesium acetate tetrahydrate were weighed into a beaker, 1488 parts of purified water was added, and the mixture was stirred until completely dissolved. Transfer to a heat-resistant container and dry using an electric oven at an ambient temperature of 80 ± 5 ° C. for 60 minutes to evaporate water, and then pulverize in a mortar to obtain a catalyst (c) having an average particle size (D50) of 40 μm A precursor was obtained. 300 parts of the obtained catalyst (c) precursor was weighed into a heat-resistant container, calcined in a muffle furnace in an atmosphere of 450 ° C. ± 5 ° C. for 60 minutes, and then pulverized in a mortar to obtain an average particle diameter (D50) A catalyst (c) having 3 μm and a residual carbon content of 17 mass% was obtained.

(比較例4〜8)[触媒(d)〜(h)の製造]
比較例3で使用した原料と仕込み量を用い、表6に記載した乾燥温度、焼結温度以外は比較例3と同様にして製造を行い、表6に記載した平均粒径(D50)と残炭分を有する触媒(d)〜(h)を得た。
(Comparative Examples 4 to 8) [Production of Catalysts (d) to (h)]
Production was carried out in the same manner as in Comparative Example 3 except for the drying temperature and sintering temperature described in Table 6 using the raw materials and the charge amounts used in Comparative Example 3, and the average particle diameter (D50) and the residual values described in Table 6 were used. Catalysts (d) to (h) having carbon were obtained.

Figure 0005845515
Figure 0005845515

Figure 0005845515
Figure 0005845515

(比較例9)[触媒(i)の製造]
塩化コバルト・六水和物200部、塩化マグネシウム・六水和物170部をビーカーに量り取り、精製水を1488部加えて、完全に溶解するまで攪拌した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度150±5℃の温度で60分乾燥させ水分を蒸発させた後、乳鉢で粉砕して平均粒径(D50)30μmの触媒(i)前駆体を得た。得られた触媒(i)前駆体300部を耐熱容器に量り取り、マッフル炉にて、空気中450℃±5℃雰囲気下で60分焼成した後、乳鉢で粉砕して平均粒径(D50)3μm、残炭分1mass%の触媒(i)を得た。
(Comparative Example 9) [Production of catalyst (i)]
200 parts of cobalt chloride hexahydrate and 170 parts of magnesium chloride hexahydrate were weighed into a beaker, 1488 parts of purified water was added, and the mixture was stirred until completely dissolved. Transfer to a heat-resistant container and dry using an electric oven at an ambient temperature of 150 ± 5 ° C. for 60 minutes to evaporate the water, then pulverize in a mortar and average particle size (D50) 30 μm catalyst (i) A precursor was obtained. 300 parts of the resulting catalyst (i) precursor was weighed into a heat-resistant container, calcined in a muffle furnace in an atmosphere of 450 ° C. ± 5 ° C. for 60 minutes, and then pulverized in a mortar to obtain an average particle diameter (D50) A catalyst (i) having 3 μm and a residual coal content of 1 mass% was obtained.

(比較例10〜11)[触媒(j)〜(k)の製造]
表7に記載した活性成分,担持成分,モリブデン成分の原料と仕込み量を用いた以外は比較例9と同様にして製造を行い、表8に示した平均粒径(D50)と残炭分の触媒(j)〜触媒(k)を得た。
(Comparative Examples 10 to 11) [Production of Catalysts (j) to (k)]
Production was carried out in the same manner as in Comparative Example 9 except that the raw materials and charged amounts of the active component, supported component, and molybdenum component described in Table 7 were used, and the average particle size (D50) and residual carbon content shown in Table 8 were obtained. Catalyst (j) to catalyst (k) were obtained.

Figure 0005845515
Figure 0005845515

Figure 0005845515
Figure 0005845515

(比較例12)[触媒(l)の製造]
表9に掲載した、塩化コバルト・六水和物200部、塩化マグネシウム170部、グリシン185部をビーカー(1)に量り取り、精製水を2232部加えて、攪拌しながら60±5℃まで加熱し、完全に溶解するまで攪拌しながら温度を60±5℃に保持した。耐熱性容器に移し替え、電気オーブンを用いて、雰囲気温度150±5℃の温度で60分乾燥させ水分を蒸発させた後、乳鉢で粉砕して平均粒径(D50)20μmの触媒(l)前駆体を得た。得られた触媒(l)前駆体300部を耐熱容器に量り取り、マッフル炉にて、空気中450℃±5℃雰囲気下で焼成した後、乳鉢で粉砕して、表10に記載した平均粒径(D50)2.5μm、残炭分3mass%の触媒(l)を得た。
(Comparative Example 12) [Production of catalyst (l)]
Weigh 200 parts of cobalt chloride hexahydrate, 170 parts of magnesium chloride and 185 parts of glycine listed in Table 9 into a beaker (1), add 2232 parts of purified water, and heat to 60 ± 5 ° C with stirring. The temperature was kept at 60 ± 5 ° C. with stirring until completely dissolved. Transfer to a heat-resistant container and dry using an electric oven at an ambient temperature of 150 ± 5 ° C. for 60 minutes to evaporate water, and then pulverize in a mortar to obtain a catalyst (l) having an average particle diameter (D50) of 20 μm A precursor was obtained. 300 parts of the obtained catalyst (l) precursor was weighed into a heat-resistant container, calcined in a muffle furnace in an atmosphere of 450 ° C. ± 5 ° C., pulverized in a mortar, and the average particle size described in Table 10 A catalyst (l) having a diameter (D50) of 2.5 μm and a residual coal content of 3 mass% was obtained.

Figure 0005845515
Figure 0005845515

Figure 0005845515
Figure 0005845515

(実施例8)
減圧が可能で、外部ヒーターで加熱可能な横型反応管の中央部に、表11で示した触媒(A)1.0g を散布した石英ガラス製耐熱皿を設置した。横型反応管中の空気を真空ポンプにて1×103Paまで減圧後、アルゴンガスを8×104Paまで注入し、再度真空ポンプにて1×103Paまで減圧する、を2回繰り返して、横型反応管中の酸素濃度を0.1体積%以下とした。1×103Paに保ちながら外部ヒーターにて加熱し、横型反応管の中心部が表11で示した合成温度まで加熱した。表11で示した合成温度750±5℃に保ち、ブタン/プロパン混合ガスを注入し、3×104Pa〜6×104Paに反応管内の圧力を維持しながら3時間反応させてカーボンナノチューブを製造した。反応終了後、反応管内のガスをアルゴンガスで置換し、200℃以下の温度で取り出し、カーボンナノチューブ集合体を得た。得られたカーボンナノチューブ集合体は、導電性、分散性を比較するため、40メッシュの金網で粉砕ろ過して、実施例8のカーボンナノチューブ集合体の粉体を得た。
(Example 8)
A quartz glass bakeware sprinkled with 1.0 g of the catalyst (A) shown in Table 11 was installed in the center of a horizontal reaction tube that can be decompressed and heated with an external heater. The pressure in the horizontal reaction tube is reduced to 1 × 10 3 Pa with a vacuum pump, argon gas is injected to 8 × 10 4 Pa, and the pressure is reduced to 1 × 10 3 Pa again with a vacuum pump. Thus, the oxygen concentration in the horizontal reaction tube was set to 0.1% by volume or less. Heating was performed with an external heater while maintaining the pressure at 1 × 10 3 Pa, and the central part of the horizontal reaction tube was heated to the synthesis temperature shown in Table 11. Maintaining the synthesis temperature 750 ± 5 ° C. as shown in Table 11, butane / propane mixed gas was injected, 3 × 10 4 Pa~6 × 10 4 Pa reacted for 3 hours while maintaining the pressure in the reaction tube to be carbon nanotubes Manufactured. After completion of the reaction, the gas in the reaction tube was replaced with argon gas and taken out at a temperature of 200 ° C. or less to obtain a carbon nanotube aggregate. The obtained carbon nanotube aggregate was pulverized and filtered with a 40-mesh wire mesh in order to compare conductivity and dispersibility, and the carbon nanotube aggregate powder of Example 8 was obtained.

(実施例9〜15)
11で示した触媒種類、合成温度、ガス種類に変更した以外は実施例と同様にして、実施例9〜15のカーボンナノチューブ集合体の粉体を得た。
(Examples 9 to 15)
Except having changed into the catalyst kind shown in Table 11 , the synthesis temperature, and the gas kind, it carried out similarly to Example 8, and obtained the powder of the carbon nanotube aggregate of Examples 9-15.

(実施例16)
ある程度まで加圧可能で、外部ヒーターで加熱可能な、内容積が10リットルの横型反応管の中央部に、表11で示した触媒(B)1.0g を散布した石英ガラス製耐熱皿を設置した。アルゴンガスを注入してしながら排気をして、反応管内の空気をアルゴンガスで置換し、横型反応管中の酸素濃度を0.1体積%以下とした。外部ヒーターにて加熱し、横型反応管の中心部が表11で示した合成温度まで加熱した。ブタン/プロパン混合ガスを毎分1リットルの速度で注入し、3時間分反応させてカーボンナノチューブを製造した。反応終了後、反応管内のガスをアルゴンガスで置換し、200℃以下の温度で取り出し、カーボンナノチューブ集合体を得た。得られたカーボンナノチューブは、導電性、分散性を比較するため、40メッシュの金網で粉砕ろ過して、実施例16のカーボンナノチューブ集合体の粉体を得た。
(Example 16)
Quartz glass bakeware sprinkled with 1.0 g of catalyst (B) shown in Table 11 is installed at the center of a horizontal reaction tube that can be pressurized to a certain extent and can be heated with an external heater. did. The air was exhausted while injecting argon gas, and the air in the reaction tube was replaced with argon gas, so that the oxygen concentration in the horizontal reaction tube was 0.1 vol% or less. Heated with an external heater, the central part of the horizontal reaction tube was heated to the synthesis temperature shown in Table 11 . A butane / propane mixed gas was injected at a rate of 1 liter per minute and reacted for 3 hours to produce carbon nanotubes. After completion of the reaction, the gas in the reaction tube was replaced with argon gas and taken out at a temperature of 200 ° C. or less to obtain a carbon nanotube aggregate. The obtained carbon nanotubes were pulverized and filtered with a 40-mesh wire mesh in order to compare conductivity and dispersibility to obtain a carbon nanotube aggregate powder of Example 16.

(実施例17)
表11で示した触媒種類に変更した以外は実施例16と同様にして、実施例17のカーボンナノチューブ集合体の粉体を得た。

(Example 17)
A carbon nanotube aggregate powder of Example 17 was obtained in the same manner as in Example 16 except that the catalyst type was changed to that shown in Table 11.

Figure 0005845515
Figure 0005845515

(比較例13〜24)
表12で示した触媒種類、合成温度、ガス種類に変更した以外は実施例8と同様にして、比較例13〜24のカーボンナノチューブ集合体の粉体を得た。
(Comparative Examples 13-24)
Except having changed into the catalyst kind shown in Table 12, the synthesis temperature, and the gas kind, it carried out similarly to Example 8, and obtained the powder of the carbon nanotube aggregate of Comparative Examples 13-24.

(比較例25〜28)
表12で示した触媒種類に変更した以外は実施例16と同様にして、比較例25〜28のカーボンナノチューブ集合体の粉体を得た。
(Comparative Examples 25-28)
Except having changed into the catalyst kind shown in Table 12, it carried out similarly to Example 16, and obtained the powder of the carbon nanotube aggregate of Comparative Examples 25-28.

Figure 0005845515
Figure 0005845515

(比較例29)
市販のCNano Technology Limited製カーボンナノチューブFloTube9000−Mを用いて、40メッシュの金網で粉砕ろ過して、比較例29のカーボンナノチューブ集合体の粉体を得た。
(Comparative Example 29)
Using a commercially available CN Nano Technology Limited carbon nanotube FloTube 9000-M, it was pulverized and filtered with a 40-mesh wire mesh to obtain a carbon nanotube aggregate powder of Comparative Example 29.

実施例8〜17、および比較例13〜29で得られたカーボンナノチューブ集合体の粉体について、炭素出力、粉体の体積抵抗率(Ω・cm)、カーボンナノチューブ集合体の膨潤性、樹脂分散後の体積抵抗率(Ω・cm)で比較した。   For the carbon nanotube aggregate powders obtained in Examples 8 to 17 and Comparative Examples 13 to 29, the carbon output, the powder volume resistivity (Ω · cm), the swellability of the carbon nanotube aggregate, and the resin dispersion Comparison was made by volume resistivity (Ω · cm) later.

[炭素出力]
合成で得られたカーボンナノチューブ集合体は、合成時に使用した触媒と混合した形で得られるため、触媒効率の指標として、炭素出力で比較した。
炭素出力は、式(1)によって算出した。
炭素出力=(合成で得られたカーボンナノチューブ集合体重量−仕込み触媒重量)÷(仕込み触媒量)・・・・・・式(1)
[Carbon output]
Since the aggregate of carbon nanotubes obtained by synthesis is obtained in a form mixed with the catalyst used at the time of synthesis, the carbon output was compared as an index of catalyst efficiency.
The carbon output was calculated by the formula (1).
Carbon output = (weight of aggregate of carbon nanotubes obtained by synthesis−weight of charged catalyst) ÷ (amount of charged catalyst) ························· Equation (1)

[粉体の体積低効率(Ω・cm)]
得られたカーボンナノチューブ集合体の粉体での導電性を比較するために、粉体の体積抵抗率(Ω・cm)で比較した。
体積抵抗率(Ω・cm)は、(株)三菱化学アナリティック製 粉体抵抗システム MCP−PD51を用いた。評価用のカーボンナノチューブ粉体を1.2g量り取り、20kNの荷重時の値を、粉体の体積抵抗率(Ω・cm)とした。
[Low volume efficiency of powder (Ω · cm)]
In order to compare the conductivity of the obtained carbon nanotube aggregates in powder, the volume resistivity (Ω · cm) of the powder was compared.
For the volume resistivity (Ω · cm), a powder resistance system MCP-PD51 manufactured by Mitsubishi Chemical Analytic Co., Ltd. was used. 1.2 g of the carbon nanotube powder for evaluation was weighed, and the value at a load of 20 kN was defined as the volume resistivity (Ω · cm) of the powder.

[樹脂分散後の体積抵抗率(Ω・cm)]
三菱化学(株)製エポキシ樹脂グレード1256を、ブチルカルビトールアセテートに溶解して、固形分40%のエポキシ樹脂溶液(1)を得た。エポキシ樹脂溶液(1)の固形分100部に対して、評価用のカーボンナノチューブ5部を混合し、3ロール分散機で3回パスさせて評価用カーボンナノチューブ分散体を得た。
東洋紡績(株)製PETフィルムに、アプリケーターを用いて、乾燥塗膜厚みで10±1μmとなるように塗工後、電気オーブン150±5℃雰囲気下で60分乾燥させて、樹脂分散後の体積抵抗値測定用塗工フィルムを得た。
三菱化学(株)製体積抵抗測定機 MCP−T610を用いて、樹脂分散時の体積抵抗値を測定した。
[Volume resistivity after resin dispersion (Ω · cm)]
An epoxy resin grade 1256 manufactured by Mitsubishi Chemical Corporation was dissolved in butyl carbitol acetate to obtain an epoxy resin solution (1) having a solid content of 40%. 5 parts of carbon nanotubes for evaluation were mixed with 100 parts of the solid content of the epoxy resin solution (1) and passed three times with a three-roll disperser to obtain a carbon nanotube dispersion for evaluation.
After coating with Toyobo Co., Ltd. PET film using an applicator so that the dry coating thickness is 10 ± 1 μm, it is dried in an electric oven at 150 ± 5 ° C. for 60 minutes, and after resin dispersion A coating film for measuring volume resistance was obtained.
The volume resistance value at the time of resin dispersion was measured using a volume resistance measuring device MCP-T610 manufactured by Mitsubishi Chemical Corporation.

表13に実施例8〜17の炭素出力、粉体の体積抵抗率、膨潤率、樹脂分散後の体積抵抗率の評価結果を示した。   Table 13 shows the evaluation results of the carbon output of Examples 8 to 17, the volume resistivity of the powder, the swelling rate, and the volume resistivity after resin dispersion.

表14に比較例13〜29の炭素出力、粉体の体積抵抗率、膨潤率、樹脂分散後の体積抵抗率の評価結果を示した。 Table 14 shows the evaluation results of the carbon output, powder volume resistivity, swelling rate, and volume resistivity after resin dispersion of Comparative Examples 13 to 29.

表14に比較例29の膨潤性の評価結果を示した。 Table 14 shows the evaluation results of the swelling property of Comparative Example 29.

Figure 0005845515
Figure 0005845515

Figure 0005845515
Figure 0005845515

[評価の結果]
表2より、実施例1〜7で得られた触媒(A)〜(G)は、良好な範囲の平均粒径(D50)、残炭分を有していることが分かる。
[Evaluation results]
From Table 2, it can be seen that the catalysts (A) to (G) obtained in Examples 1 to 7 have a good average particle diameter (D50) and residual carbon content.

表4,6,8より、比較例1〜3,6,8で得られた触媒(a)〜(c),(f),(h)では、実施例1〜7と比較して残炭分が多いことが分かる。また、比較例7で得られた触媒(g)では、実施例1〜7と比較して平均粒径(D50)が大きいことが分かる。比較例4〜5,9〜12で得られた触媒(d)〜(e),(i)〜(k)では、実施例1〜7と同等の良好な範囲の平均粒径(D50)、残炭分を有していることが分かる。   From Tables 4, 6, and 8, in the catalysts (a) to (c), (f), and (h) obtained in Comparative Examples 1 to 3, 6, and 8, residual charcoal compared to Examples 1 to 7 You can see that there are many minutes. Moreover, in the catalyst (g) obtained by the comparative example 7, it turns out that an average particle diameter (D50) is large compared with Examples 1-7. In the catalysts (d) to (e) and (i) to (k) obtained in Comparative Examples 4 to 5 and 9 to 12, the average particle diameter (D50) in a good range equivalent to that of Examples 1 to 7, It can be seen that there is a residual carbon content.

炭素出力について、実施例8〜17は、比較例13〜28と比較して優れた炭素出力を有する。   Regarding carbon output, Examples 8 to 17 have excellent carbon output as compared with Comparative Examples 13 to 28.

カーボンナノチューブ集合体の膨潤率について、実施例8〜17は、比較例13〜29と比較して優れた膨潤性を有していることが分かる。   About the swelling rate of a carbon nanotube aggregate, it turns out that Examples 8-17 have the swelling property outstanding compared with Comparative Examples 13-29.

カーボンナノチューブ集合体の粉体の体積抵抗率について、実施例8〜17と比較例13〜28は大きな差がないが、樹脂分散後の体積抵抗率について、実施例8〜17は、比較例13〜28と比較して低い体積抵抗率を示し、優れた導電性を有することが分かる。   Regarding the volume resistivity of the powder of the carbon nanotube aggregate, Examples 8 to 17 and Comparative Examples 13 to 28 are not significantly different, but with respect to the volume resistivity after resin dispersion, Examples 8 to 17 are Comparative Example 13. It shows a low volume resistivity compared to ˜28 and has excellent conductivity.

表13、表14より、本発明の製造方法により得られるカーボンナノチューブ合成用触媒を用いることにより、析出反応時のカーボンナノチューブの絡み合いを抑制することができ、この結果、炭素出力に優れ、容易にほぐれ易く、また分散性に優れ、少ない配合量で高い導電性を有する材料を提供できるカーボンナノチューブを効率的に製造することができる。   From Tables 13 and 14, by using the carbon nanotube synthesis catalyst obtained by the production method of the present invention, the entanglement of the carbon nanotubes during the precipitation reaction can be suppressed. As a result, the carbon output is excellent and easily It is possible to efficiently produce carbon nanotubes that are easy to be loosened, are excellent in dispersibility, and can provide a material having high conductivity with a small blending amount.

以上、本発明を特定の態様に沿って説明したが、当業者に自明の変形や改良は本発明の範囲に含まれる。   As mentioned above, although this invention was demonstrated along the specific aspect, the deformation | transformation and improvement obvious to those skilled in the art are included in the scope of the present invention.

Claims (10)

以下(1)〜(3)の工程を備えたカーボンナノチューブ合成用触媒の製造方法。
(1)鉄、コバルト、および、ニッケルの少なくともいずれか1以上の活性成分の金属元素を含む水溶性の有機金属塩と、マグネシウムおよびアルミニウムの少なくともいずれか1つ以上の担体成分の金属元素を含む水溶性の有機金属塩、または前記担体成分の金属元素を含む水酸化物とを、水溶媒中に溶解および/または分散し、混合する工程。
(2)前記(1)の工程で得られた溶液および/または分散液を、乾燥温度100〜200℃の範囲で水溶媒を除去し、固形化した後、得られた固形物を粉砕し平均粒径(D50)が50μm以下の触媒前駆体を得る工程。
(3)前記(2)の工程で得られた触媒前駆体を、酸素の存在下、焼成温度350〜550℃の範囲で加熱し、冷却した後、得られた焼成物を粉砕して平均粒径(D50)が5μm以下のカーボンナノチューブ合成用触媒を得る工程。
The manufacturing method of the catalyst for carbon nanotube synthesis | combination provided with the process of (1)-(3) below.
(1) A water-soluble organometallic salt containing a metal element of at least one active component of iron, cobalt, and nickel, and a metal element of at least one carrier component of magnesium and aluminum A step of dissolving and / or dispersing and mixing a water-soluble organometallic salt or a hydroxide containing a metal element of the carrier component in an aqueous solvent.
(2) After removing the aqueous solvent from the solution and / or dispersion obtained in the step (1) at a drying temperature of 100 to 200 ° C. and solidifying, the obtained solid is pulverized and averaged. A step of obtaining a catalyst precursor having a particle size (D50) of 50 μm or less.
(3) The catalyst precursor obtained in the step (2) is heated in the range of 350 to 550 ° C. in the presence of oxygen and cooled, and then the obtained calcined product is pulverized to obtain an average particle A step of obtaining a carbon nanotube synthesis catalyst having a diameter (D50) of 5 μm or less.
(1)の工程に、さらにモリブデンを含む水溶性の金属塩を、水溶媒中に含有することを特徴とする請求項1記載のカーボンナノチューブ合成用触媒の製造方法。   The method for producing a catalyst for carbon nanotube synthesis according to claim 1, wherein the step (1) further comprises a water-soluble metal salt containing molybdenum in an aqueous solvent. カーボンナノチューブ合成用触媒中の活性成分の金属元素と、担体成分の金属元素との合計100モル%に対する、活性成分の金属元素の含有割合が、50〜80モル%であることを特徴とする請求項1または2記載のカーボンナノチューブ合成用触媒の製造方法。   The content ratio of the metal element of the active component is 50 to 80 mol% with respect to 100 mol% in total of the metal element of the active component and the metal element of the support component in the catalyst for carbon nanotube synthesis. Item 3. A method for producing a carbon nanotube synthesis catalyst according to Item 1 or 2. カーボンナノチューブ合成用触媒中のモリブデンの割合が、活性成分の金属元素100モル%に対して1モル%〜20モル%であることを特徴とする請求項2または3に記載のカーボンナノチューブ合成用触媒の製造方法。 The catalyst for carbon nanotube synthesis according to claim 2 or 3, wherein the proportion of molybdenum in the catalyst for carbon nanotube synthesis is 1 mol% to 20 mol% with respect to 100 mol% of the metal element of the active ingredient. Manufacturing method. (2)の工程の乾燥温度が120〜170℃の範囲であることを特徴とする請求項1〜4いずれかに記載のカーボンナノチューブ合成用触媒の製造方法。   The method for producing a carbon nanotube synthesis catalyst according to any one of claims 1 to 4, wherein the drying temperature in the step (2) is in the range of 120 to 170 ° C. (2)の工程の触媒前駆体の平均粒径(D50)が1μm以上30μm以下であることを特徴とする請求項1〜5いずれかに記載のカーボンナノチューブ合成用触媒の製造方法。   6. The method for producing a catalyst for carbon nanotube synthesis according to claim 1, wherein an average particle diameter (D50) of the catalyst precursor in the step (2) is 1 μm or more and 30 μm or less. (3)の工程の焼成温度が370〜470℃の範囲であることを特徴とする請求項1〜6いずれかに記載のカーボンナノチューブ合成用触媒の製造方法。   The method for producing a carbon nanotube synthesis catalyst according to any one of claims 1 to 6, wherein the firing temperature in the step (3) is in the range of 370 to 470 ° C. (3)の工程のカーボンナノチューブ合成用触媒の平均粒径(D50)が0.1〜5μmの範囲であることを特徴とする請求項1〜7いずれかに記載のカーボンナノチューブ合成用触媒の製造方法。   The average particle diameter (D50) of the catalyst for carbon nanotube synthesis in the step (3) is in the range of 0.1 to 5 µm, The production of the catalyst for carbon nanotube synthesis according to any one of claims 1 to 7 Method. 酸素濃度が0.1体積%以下の雰囲気で、合成温度500〜1000℃の条件下に請求項1〜8のいずれかに記載の製造方法で製造されてなるカーボンナノチューブ合成用触媒と、炭化水素および/またはアルコールを含んでなる炭素源とを接触させることを特徴とするカーボンナノチューブ集合体の製造方法。   A catalyst for synthesizing carbon nanotubes produced by the production method according to any one of claims 1 to 8 under an atmosphere having an oxygen concentration of 0.1 vol% or less and a synthesis temperature of 500 to 1000 ° C, and a hydrocarbon And / or contacting with a carbon source comprising alcohol. 式(2)により算出した膨潤率が10以上、50未満であるカーボンナノチューブ集合体。
膨潤率=超音波分散処理後の高さ÷分散処理前の高さ ・・・・式(2)
(但し、分散処理前の高さは、直径35mm×高さ78mmのガラス瓶に、メタノール40ccと評価用のカーボンナノチューブ粉体0.2gを量り取り、室温で60分放置後に測定した溶媒中のカーボンナノチューブ集合体の高さであり、超音波分散処理後の高さは、超音波分散機を用いて、出力5Wで30分処理し、60分静置した後、測定した溶媒中のカーボンナノチューブ集合体の高さである。)
A carbon nanotube aggregate having a swelling ratio calculated by the formula (2) of 10 or more and less than 50.
Swell ratio = height after ultrasonic dispersion treatment / height before dispersion treatment (2)
(However, the height before the dispersion treatment was determined by measuring 40 cc of methanol and 0.2 g of the carbon nanotube powder for evaluation in a glass bottle having a diameter of 35 mm and a height of 78 mm, and measuring the carbon in the solvent after standing for 60 minutes at room temperature. The height of the aggregate of the nanotubes. The height after the ultrasonic dispersion treatment is treated with an ultrasonic disperser for 30 minutes at an output of 5 W, left standing for 60 minutes, and the aggregate of carbon nanotubes in the measured solvent. Body height.)
JP2012056580A 2012-01-16 2012-03-14 Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes Expired - Fee Related JP5845515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012056580A JP5845515B2 (en) 2012-01-16 2012-03-14 Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012005846 2012-01-16
JP2012005846 2012-01-16
JP2012056580A JP5845515B2 (en) 2012-01-16 2012-03-14 Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes

Publications (2)

Publication Number Publication Date
JP2013166140A JP2013166140A (en) 2013-08-29
JP5845515B2 true JP5845515B2 (en) 2016-01-20

Family

ID=49177020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012056580A Expired - Fee Related JP5845515B2 (en) 2012-01-16 2012-03-14 Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes

Country Status (1)

Country Link
JP (1) JP5845515B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6237225B2 (en) * 2013-12-26 2017-11-29 東洋インキScホールディングス株式会社 Catalyst for carbon nanotube synthesis
CN115805076B (en) * 2021-09-15 2023-09-08 江苏天奈科技股份有限公司 Catalyst and preparation method thereof, array carbon nanotube and preparation method thereof
CN113881961B (en) * 2021-11-11 2023-04-25 郑州大学 Platinum single-atom catalyst and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3136334B2 (en) * 1997-07-23 2001-02-19 工業技術院長 Method for producing carbon nanotube
CA2451080C (en) * 2001-07-03 2010-08-31 Facultes Universitaires Notre-Dame De La Paix Catalyst supports and carbon nanotubes produced thereon
EP1797950A1 (en) * 2005-12-14 2007-06-20 Nanocyl S.A. Catalyst for a multi-walled carbon nanotube production process
JP5034544B2 (en) * 2007-02-20 2012-09-26 東レ株式会社 Carbon nanotube aggregate and method for producing the same
US8124043B2 (en) * 2007-03-16 2012-02-28 Honda Motor Co., Ltd. Method of preparing carbon nanotube containing electrodes
JP5266907B2 (en) * 2007-06-29 2013-08-21 東レ株式会社 Carbon nanotube aggregate, dispersion and conductive film
JP5599204B2 (en) * 2010-03-12 2014-10-01 東洋炭素株式会社 Carbon nanotube aggregate and method for producing the same

Also Published As

Publication number Publication date
JP2013166140A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP6369048B2 (en) Method for producing catalyst for carbon nanotube synthesis and method for producing aggregate of carbon nanotubes
KR101446116B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
JP5194455B2 (en) Catalyst for producing vapor grown carbon fiber and vapor grown carbon fiber
JP2015529157A (en) Catalyst composition for producing multi-walled carbon nanotubes
EP3287189B1 (en) Method for manufacturing carbon nanotube pellets
KR102291933B1 (en) Production method for carbon nanofibers, and carbon nanofibers
US11059009B2 (en) Apparatus for manufacturing carbon nanotube pellets
JP6237225B2 (en) Catalyst for carbon nanotube synthesis
JP5845515B2 (en) Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes
JP5905593B2 (en) Method for producing homogeneous supported catalyst for carbon nanotube
CN107847887B (en) Carbon nanotube aggregate and method for producing same
JP6237311B2 (en) Catalyst for carbon nanotube synthesis
JP5909777B2 (en) Dispersion
JP5909778B2 (en) Dispersion
JP2017039099A (en) Catalyst for carbon nanotube synthesis
JP3766350B2 (en) Method for preparing nickel powder dispersion and method for preparing conductive paste
KR101608477B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
JP3766351B2 (en) Nickel powder dispersion, method for preparing the same, and method for preparing a conductive paste using the same
JP6600182B2 (en) Carbon nanofiber manufacturing method and carbon nanofiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150109

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151102

R150 Certificate of patent or registration of utility model

Ref document number: 5845515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees