JP6423839B2 - 機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム - Google Patents

機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム Download PDF

Info

Publication number
JP6423839B2
JP6423839B2 JP2016186773A JP2016186773A JP6423839B2 JP 6423839 B2 JP6423839 B2 JP 6423839B2 JP 2016186773 A JP2016186773 A JP 2016186773A JP 2016186773 A JP2016186773 A JP 2016186773A JP 6423839 B2 JP6423839 B2 JP 6423839B2
Authority
JP
Japan
Prior art keywords
damper
linear
drive
linear motor
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016186773A
Other languages
English (en)
Other versions
JP2018057067A (ja
Inventor
直人 園田
直人 園田
雪雄 豊沢
雪雄 豊沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP2016186773A priority Critical patent/JP6423839B2/ja
Priority to DE102017216616.9A priority patent/DE102017216616B4/de
Priority to US15/711,466 priority patent/US10166642B2/en
Priority to CN201710858491.7A priority patent/CN107866691B/zh
Publication of JP2018057067A publication Critical patent/JP2018057067A/ja
Application granted granted Critical
Publication of JP6423839B2 publication Critical patent/JP6423839B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/0032Arrangements for preventing or isolating vibrations in parts of the machine
    • B23Q11/0039Arrangements for preventing or isolating vibrations in parts of the machine by changing the natural frequency of the system or by continuously changing the frequency of the force which causes the vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • B23Q5/28Electric drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37434Measuring vibration of machine or workpiece or tool
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/01Current loop, i.e. comparison of the motor current with a current reference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2205/00Indexing scheme relating to controlling arrangements characterised by the control loops
    • H02P2205/07Speed loop, i.e. comparison of the motor speed with a speed reference

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Numerical Control (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Description

本発明は、機械振動を抑制する、機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステムに関する。
従来、工作物を加工するための被駆動体を往復移動させるために、回転運動をするサーボモータと、この回転運動を直線運動に変換するボールねじとを組み合わせた機構が広く用いられていた。しかしながら、近年被駆動体を高い加速度で往復移動させたいという要求があり、これに応じて被駆動体を高い加速度で往復移動させることができるリニアモータが一般的に利用されている。
この点、リニアモータによって被駆動体を往復移動させると、この往復移動に伴い騒音が発生したり、振動が発生したりするという問題があった。特に発生した振動で被駆動体や工作物が揺れてしまうと、被駆動体と、工作物との位置関係が変動してしまい、加工精度が低下してしまうために問題となる。
この問題を考慮した、騒音や振動の発生を抑えるための技術の一例が特許文献1や特許文献2に開示されている。
特許文献1に開示の技術では、リニアモータにより駆動するスライダを2つ用意し、この2つのスライダを、ベース上に設置された直線的に延びる軌道レール上に、背中合わせに配置する。そして、これら2つのスライダを、互いに反対方向に軌道レール上で往復移動させることにより、これら2つのスライダの往復移動で発生する加速度による反力を打ち消すようにする。
具体的には、2つのスライダそれぞれに指令を与えることにより、2つのスライダを、軌道レール上を互いに離れる方向に同時に移動させたり、軌道レール上を互いに接近する方向に同時に移動させたりする。これによって、両スライダにそれぞれ発生する反力が打ち消し合うことになるので、両スライダに発生する反力を低減でき、両スライダに発生する反力に起因して発生する騒音や振動が抑制できる。
また、特許文献2に開示の技術においても、特許文献1と同様に、リニア可動部を2つ用意し、それぞれのリニア可動部が互いに力を打ち消す方向に動くように指令を与える。これにより、振動や騒音の発生を抑制することができる。
特許第4638980号公報 特開2001−195130号公報
上述したように、特許文献1や特許文献2に開示の技術を利用することにより、リニア可動部の往復運動により発生する騒音や振動を抑制することができる。
しかしながら、これらの技術を利用するためには、2つのリニア可動部それぞれに対応した、それぞれ異なる2つの指令を与え続ける必要があった。
例えば、特許文献1に開示の技術を利用するためには、2つのスライダを互いに反対方向に動かすための指令を、この2つのスライダそれぞれに対して与え続ける必要があった。しかも、単に反対方向に動かせばよいのではなく、それぞれの反対方向の動きを同期させる必要もあり、このような同期をさせるための同期指令を生成して制御するのは容易ではなかった。
更に、特許文献1に開示の技術では、2つの同じ構造のスライダという形状や重量が同一のものを動かすことを想定しているが、特許文献2に開示の技術では、ステージと定盤という形状や重量の異なるものを動かすことを想定している。このように重量等が異なる場合には、重量比等も考慮してステージと定盤のそれぞれに同期指令を与える必要があり、同期指令による制御はより困難となっていた。
そこで、本発明は、複雑な同期指令による制御を要することなく、機械の動作に伴って発生する振動を抑制することが可能な、機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステムを提供することを目的とする。
本発明によれば、機械ベース(例えば、後述の機械ベース400)に固定された固定部(例えば、後述のダンパー固定部230)と、可動部(例えば、後述のダンパー可動部220)とを有するダンパー側リニアモータと、前記ダンパー側リニアモータの可動部に固定された固定部(例えば、後述のリニア固定部130)と、可動部(例えば、後述のリニア可動部120)とを有する駆動側リニアモータと、前記機械ベースに対する前記駆動側リニアモータの可動部の位置である第1位置を検出する第1検出手段(例えば、後述の第1検出器310)と、前記機械ベースに対する前記ダンパー側リニアモータの可動部の位置である第2位置を検出する第2検出手段(例えば、後述の第2検出器320)と、前記ダンパー側リニアモータの可動部に対する前記駆動側リニアモータの可動部の位置である第3位置を検出する第3検出手段(例えば、後述の第3検出器330)と、前記第1検出手段が検出した第1位置と、前記第3検出手段が検出した第3位置とに基づいて前記駆動側リニアモータの制御を行う駆動側制御手段(例えば、後述のリニア側制御部)と、前記第2検出手段が検出した第2位置に基づいて前記ダンパー側リニアモータの制御を行うことにより、前記ダンパー側リニアモータをダンパーとして機能させるダンパー側制御手段(例えば、後述のダンパー側制御部)と、を備える機械振動抑制機能を備えた駆動装置が提供される。
上記の機械振動抑制機能を備えた駆動装置においては、前記ダンパー側制御手段の応答帯域は、前記駆動側制御手段に与えられる指令周波数の帯域、もしくは前記駆動側制御手段の応答帯域と比較して、低い応答帯域にしてもよい。
上記の機械振動抑制機能を備えた駆動装置においては、前記ダンパー側制御手段の応答帯域は、前記駆動側制御手段に与えられる指令周波数の帯域、もしくは前記駆動側制御手段の応答帯域に応じて調整が可能にしてもよい。
上記の機械振動抑制機能を備えた駆動装置においては、前記調整は、前記ダンパー側制御手段が前記ダンパー側リニアモータの制御を行うために用いるパラメータ(例えば、後述の位置ループ制御における比例ゲイン)を調整することにより行うようにしてもよい。
上記の機械振動抑制機能を備えた駆動装置においては、前記第3検出手段は、前記第1検出手段が検出した第1位置と、前記第2検出手段が検出した第2位置との差分を算出し、該算出した差分から前記第3位置を検出するようにしてもよい。
上記の機械振動抑制機能を備えた駆動装置においては、前記駆動側リニアモータの重量よりも、前記ダンパー側リニアモータの重量が重いようにしてもよい。
上記の機械振動抑制機能を備えた駆動装置においては、前記駆動側リニアモータを駆動させることにより、当該機械振動抑制機能を備えた駆動装置を工作機械として機能させるようにしてもよい。
上記の機械振動抑制機能を備えた駆動装置と、上位制御装置(例えば、後述の上位制御装置111)とを備えた機械振動抑制機能を備えたシステムであって、前記駆動側制御手段と、前記ダンパー側制御手段は、それぞれがフィードバック制御を行う制御手段であり、前記上位制御装置は、前記駆動側制御手段に位置指令を与えるが、前記ダンパー側制御手段には位置指令を与えない機械振動抑制機能を備えたシステムにしてもよい。
本発明によれば、複雑な同期指令による制御を要することなく、機械の動作に伴って発生する振動を抑制することが可能となる。
本発明の実施形態全体の構成を示す図である。 本発明の実施形態における各制御回路の構成及び信号の流れを示す図である。 本発明の実施形態の適用例について示す図(1/2)である。 本発明の実施形態の適用例について示す図(2/2)である。 本発明の実施形態の変形例における各制御回路の構成及び信号の流れを示す図である。
まず本実施形態の概略について説明をする。
本実施形態は、リニアモータを2段(以下、上段を「リニア軸」と呼ぶ。また、下段を「ダンパー軸」と呼ぶ。)に重ねることで、リニア軸で発生した力をダンパー軸で吸収する。これにより、各リニアモータの往復運動により発生する反力を、リニアモータを設置した機械ベースに伝達しないようにする。また、特にリニア軸の高周波揺動において高速化により高周波運動となる場合の、高加速による機械ベースの振動を低減する。
この点、特許文献1等に開示の先行技術では、ダンパー軸に相当する駆動系を、リニア軸に相当する駆動系と同期して互いに力を打ち消すように指令を与えて駆動していた。しかしながら、このようにして同期して動作するための同期指令を、それぞれの軸に対して与えることは困難であった。
一方、本実施形態は、ダンパー軸の特性をリニア軸に与えられる高周波揺動に応答しないような低い周波数特性とすると共に、ダンパー軸に対する指令としてはゼロを与える。また、リニア軸の位置決めは、機械ベースに取り付けた検出器で行う。これにより、ダンパー軸が高周波揺動に対しては自由運動となり、低周波に対しては同じ位置に位置決めができるようになる。
結果、本実施形態は、ダンパー軸に同期指令を与えることなく、リニア軸駆動時の反力を機械ベースに与えないようになることから、機械振動を抑制することが可能となる。すなわち、本実施形態は、[発明が解決しようとする課題]の欄で述べた「複雑な同期指令による制御を要することなく、機械の動作に伴って発生する振動を抑制する」という課題を解決することが可能となる。
以上が本実施形態の概略である。
次に、本実施形態について図面を参照して詳細に説明をする。まず図1を参照して本実施形態全体の構成について説明をする。
図1に示すように本実施形態は、ダンパー軸として、機械ベース400の上に設置されたリニアモータである、ダンパー固定部230と、ダンパー固定部230に設けられたリニアガイドに沿ってX軸方向に往復運動を行うダンパー可動部220を備える。また、リニア軸として、ダンパー可動部220に設置されたリニアモータである、リニア固定部130と、リニア固定部130に設けられたリニアガイドに沿ってX軸方向に往復運動を行うリニア可動部120を備える。すなわち、本実施形態は、リニア軸となるリニアモータと、ダンパー軸となるリニアモータを二段重ねた構成をとる。
ここで、図中の右下に図示するように、X軸は、上述したようにリニア可動部120及びダンパー可動部220による往復運動の方向に対応する軸であり、Z軸は、X軸と直交して高さ方向に伸びる軸であり、図1はこれらX軸及びZ軸により形成されるXZ−平面を平面視した図である。
リニア可動部120は、工作物を加工するための工具として、例えばバイト(図示を省略する。)を備えている。そして、リニア可動部120がX軸方向に往復運動するのに伴い、同様にX軸方向に往復運動を行うバイトにより工作物が加工される。この往復運動は、リニア側制御部110の制御に基づいて実現される。
かかるリニア側制御部110の制御を行うためには、リニア側制御部110に、機械ベース400に対するリニア可動部120の現在位置と、ダンパー可動部220に対するリニア可動部120の現在位置とを通知する必要がある。
そのために、リニア可動部120は第1リニアスケール121を備えている。また、機械ベース400にはこの第1リニアスケール121を読み取ることにより、機械ベース400に対するリニア可動部120の現在位置を検出するための第1検出器310が設置されている。そして、第1検出器310が検出した、機械ベース400に対するリニア可動部120の現在位置は、リニア側制御部110に出力される。
同様に、リニア可動部120は第3リニアスケール123を備えている。また、機械ベース400にはこの第3リニアスケール123を読み取ることにより、ダンパー可動部220に対するリニア可動部120の現在位置を検出するための第3検出器330が設置されている。ここで、ダンパー可動部220に対するリニア可動部120の現在位置とは、リニア可動部120の磁極位置に相当する。そして、第3検出器330が検出した、ダンパー可動部220に対するリニア可動部120の現在位置は、リニア側制御部110に出力される。
リニア側制御部110は、上位制御装置111、リニア側位置速度部112及びリニア側電流駆動部113を備える。
上位制御装置111は、工作物を加工するための位置指令を、リニア側位置指令としてリニア側位置速度部112に対して与える装置である。上位制御装置111は、例えば、数値制御装置(CNC:Computer Numerical Control)により実現される。
リニア側位置速度部112は、上位制御装置111から与えられたリニア側位置指令から、第1検出器310から与えられた第1位置フィードバックを減算することによって位置偏差量を算出する。そして、リニア側位置速度部112は、算出した位置偏差量に基づいて位置制御及び速度制御を行うことにより、リニア側電流指令を生成する。更に、リニア側位置速度部112は、生成したリニア側電流指令をリニア側電流駆動部113に対して出力する。
リニア側電流駆動部113は、リニア側位置速度部112から与えられたリニア側電流指令と、第3検出器330から与えられた第3位置フィードバックとに基づいて、リニア側駆動電流を生成する。そして、リニア側電流駆動部113は、生成したリニア側駆動電流により、リニア固定部130の磁極を切り替えてリニア可動部120の往復運動を実現する。
これにより、上位制御装置111が与えたリニア側位置指令に応じた位置及び速度でリニア可動部120が移動することになり、工作物をユーザ等の設定に基づいた所望の形状に加工することが可能となる。
ダンパー可動部220は、リニア軸で発生した力をダンパー軸で吸収するために、リニア可動部120の往復運動を打ち消すような反力を発生させるように往復運動を行う。かかるダンパー可動部220の往復運動は、ダンパー側制御部210の制御に基づいて実現される。
かかるダンパー側制御部210の制御を行うためには、ダンパー側制御部210に、機械ベース400に対するダンパー可動部220の現在位置を通知する必要がある。
そのために、ダンパー可動部220は第2リニアスケール222備えている。また、機械ベース400にはこの第2リニアスケール222を読み取ることにより、機械ベース400に対するダンパー可動部220の現在位置を検出するための第2検出器320が設置されている。そして、第2検出器320が検出した、機械ベース400に対するダンパー可動部220の現在位置は、ダンパー側制御部210に出力される。
ダンパー側制御部210は、ダンパー側ゼロ値出力部211、ダンパー側位置速度部212及びダンパー側電流駆動部213を備える。
ダンパー側ゼロ値出力部211は、ダンパー側位置指令を出力する。しかしながら、形式上ダンパー側位置指令とは呼ぶものの、本実施形態では、状況に応じたダンパー側位置指令を生成して出力するのではなく、ダンパー側位置指令として常にゼロを出力する。つまり、本実施形態では、実質的にダンパー側位置指令を生成する必要はない。すなわち、リニア軸とダンパー軸とを同期させるための同期指令を生成する必要はない。これは、本実施形態の説明の冒頭に述べた通りである。なお、図中ではダンパー側ゼロ値出力部211に対応する機能ブロックに、出力に対応するゼロを記載する。
ダンパー側位置速度部212は、上位制御装置111から与えられたダンパー側位置指令(すなわち、ゼロ)から、第2検出器320から与えられた第2位置フィードバックを減算することによって位置偏差量を算出する。そして、ダンパー側位置速度部212は、算出した位置偏差量に基づいて位置制御及び速度制御を行うことにより、ダンパー側電流指令を生成する。更に、ダンパー側位置速度部212は、生成したダンパー側電流指令をダンパー側電流駆動部213に対して出力する。
ダンパー側電流駆動部213は、ダンパー側位置速度部212から与えられたダンパー側電流指令と、第2検出器320から与えられた第2位置フィードバックとに基づいて、ダンパー側駆動電流を生成する。そして、ダンパー側電流駆動部213は、生成したダンパー側駆動電流により、ダンパー固定部230の磁極を切り替えてダンパー可動部220の往復運動を実現する。これにより、リニア軸で発生した力をダンパー軸で吸収することができる。そのため、振動や騒音の発生を抑制することが可能となる。
次に、図2を参照して、本実施形態のより詳細な構成について説明を行う。図2は、図1に示した各制御回路の構成及び信号の流れをより詳細に記載した図である。
ここで、図2のリニア側位置制御部11、リニア側速度制御部13及びリニア側微分回路19は、図1のリニア側位置速度部112に相当する部分である。また、図2のリニア側電流制御部15及びリニア側電流増幅器16は、図1のリニア側電流駆動部113に相当する部分である。
また、同様に、図2ダンパー側位置制御部21、ダンパー側速度制御部23及びダンパー側微分回路29は、図1のダンパー側位置速度部212に相当する部分である。また、図2のダンパー側電流制御部25及びダンパー側電流増幅器26は、図1のダンパー側電流駆動部213に相当する部分である。
まず、リニア軸について説明をする。上位制御装置111は、動作プログラム等に基づいて所定周期毎に、リニア側位置制御部11に対してリニア側位置指令を出力する。
リニア側位置制御部11よりも後段の各部は、このリニア側位置指令を読みとり、所定周期毎に、位置制御、速度制御、及び電流制御を行い、リニア固定部130の磁極を切り替えてリニア可動部120を駆動する。
上位制御装置111とリニア側位置制御部11の間には減算器10が配置される。そして、この減算器10により、上位制御装置111が出力した位置指令から、第1検出器310が検出したリニア側位置フィードバックが減算される。ここで、第1検出器310が検出したリニア側位置フィードバックとは、図1を参照して上述したように「機械ベース400に対するリニア可動部120の現在位置」のことである。なお、図中では、フィードバックを単に「FB」と表記する。
また、この減算器10は、減算後の値をリニア側位置制御部11に対して出力する。ここで、かかる減算後の値は、リニア側位置偏差量となる。
そして、リニア側位置制御部11は、このリニア側位置偏差量に基づいて、比例演算を行うという位置ループ処理によりリニア側速度指令を生成し、生成したリニア側速度指令をリニア側速度制御部13に対して出力する。
リニア側位置制御部11と、リニア側速度制御部13の間には減算器12が配置される。そして、この減算器12により、リニア側位置制御部11が出力したリニア側速度指令から、後述のリニア側微分回路19が出力したリニア側速度フィードバックが減算される。また、この減算器12は、減算後の値をリニア側速度制御部13に対して出力する。ここで、かかる減算後の値は、リニア側速度偏差量となる。
リニア側速度制御部13は、このリニア側速度偏差量に基づいて、比例演算や積分演算を行なうといった速度ループ処理によりリニア側電流指令を出力する。なお、電流指令は、トルク指令と呼ばれることもある。
リニア側速度制御部13と、リニア側電流制御部15の間には減算器14が配置される。この減算器14により、リニア側速度制御部13が出力したリニア側電流指令から、後述のリニア側電流増幅器16からの電流フィードバックが減算される。これにより電流ループ制御が実現される。また、この減算器14は、減算後の値をリニア側電流制御部15に対して出力する。ここで、かかる減算後の値は、リニア側電流偏差量となる。
リニア側電流制御部15は、このリニア側電流偏差量と、第3検出器330が検出したリニア側磁極位置とに基づいて、リニア側電圧指令を生成する。ここで、第3検出器330が検出したリニア側磁極位置とは、図1を参照して上述したように「ダンパー可動部220に対するリニア可動部120の現在位置」のことである。
そして、リニア側電流制御部15は、生成したリニア側電圧指令をリニア側電流増幅器16に対して出力する。
リニア側電流増幅器16は、このリニア側電圧指令に基づいて、リニア固定部130の磁極を切り替えてリニア可動部120を駆動させるためのリニア側駆動電流を形成し、このリニア側駆動電流をリニア固定部130に対して出力する。図中では、リニア側駆動電流が、リニア固定部130を含んだリニア側機構部18に出力されるものとして、以後の説明を行う。
なお、他方で、リニア側電流増幅器16は自身の出力するリニア側駆動電流に基づいてリニア側電流フィードバックを生成する。そして、リニア側電流増幅器16は、生成したリニア側電流フィードバックを、リニア側速度制御部13と、リニア側電流制御部15の間の減算器14に対して出力する。
次にリニア側機構部18について説明をする。リニア側機構部18に対して出力された(すなわち、リニア固定部130に対して出力された)リニア側駆動電流は、リニア可動部120を駆動する力である推力Fを発生させる。
ここで、推力Fは、推力定数Kと、リニア側駆動電流の値iを乗算することにより算出できる。この推力定数Kは、単位電流あたりで発生する推力の大きさであり、リニアモータの種類により定まる。
推力Fは、分岐してリニア固定部130とダンパー側機構部28に出力される。なお、ここで推力Fがダンパー側機構部28に出力されるというのは、推力Fがダンパー軸に対して反力として作用することを表す。
また、推力Fの分岐点とリニア固定部130の間には減算器17が配置される。そして、この減算器17により、推力Fから、外乱FLoadが減算される。また、この減算器17は、この減算後の値をリニア固定部130に出力する。そして、リニア固定部130は、この減算後の推力によりリニア可動部120を動作させる。
ここで、リニア側機構部18について上述のように説明をしたが、リニア側機構部18は本実施形態を図示するための概念的な部分を含んでいるので、この点について説明をする。
現実には、リニア側駆動電流は直接リニア固定部130に供給され、これによりリニア可動部120が推力Fで駆動しようとすると、外乱FLoadにより、この推力Fが物理的に影響を受け、この影響を受けた後の推力にてリニア可動部120が駆動をする。ここで、外乱FLoadは、リニア可動部120の駆動に伴って駆動する工具と、工作物とが接触することにより、リニア可動部120に作用する反力である。
つまり、リニア側駆動電流そのものが直接推力Fとなり、そこから実在の減算器にて外乱FLoadが減算されてからリニア固定部130に入力されるわけではない。しかしながら、図2では説明を容易とするため、概念的に分岐点を設けて推力Fダンパー軸に対して反力として作用することや、概念的に減算器を設けて外乱FLoadの影響を受けることを図示するものとする。
何れにせよ、外乱FLoadにより、影響を受けた推力にてリニア可動部120が駆動をする。すると、これに伴い、リニア可動部120が備える第1リニアスケール121と第3リニアスケール123も駆動する。
すると、第3検出器330が、駆動後の新たなリニア側磁極位置を検出する。検出した新たなリニア側磁極位置は、リニア側速度制御部13とリニア側電流制御部15の間に配置された減算器14に対して出力される。
他方で、第1検出器310が、駆動後の新たなリニア側位置フィードバックを検出する。検出した新たなリニア側位置フィードバックは、上位制御装置111とリニア側位置制御部11の間に配置された減算器10に出力される。これにより、位置ループ制御が実現される。
また、減算器10の前段においてリニア側位置フィードバックは分岐され、リニア側微分回路19にも出力される。
リニア側微分回路19は、このリニア側位置フィードバックを微分することにより、新たなリニア側速度フィードバックを生成する。そして、リニア側微分回路19は生成した新たなリニア側速度フィードバックを、リニア側位置制御部11と、リニア側速度制御部13の間に配置される減算器12に出力する。これにより、速度ループ制御が実現される。
以上説明したようにして、所定周期毎に、位置ループ制御、速度ループ制御、及び電流ループ制御を行うことにより、リニア側位置指令に応じてリニア可動部120を駆動することができる。
次に、ダンパー軸について説明をする。なお、上述したリニア軸と重複する内容については、一部説明を省略する。
まず、ダンパー側ゼロ値出力部211は、ダンパー側位置指令を出力する。図1を参照して上述したが、このダンパー側位置指令は、常にゼロである。つまり、ダンパー側制御部210では、実質的に位置指令を与えずに、ダンパー可動部220が位置指令に応じた能動的な移動をせず、所定の位置に留まるようにする。これにより、リニア側の移動に伴う応力によりダンパー軸が動いた場合に、ダンパー軸は元の位置に戻ろうとすることとなる。
ダンパー側ゼロ値出力部211とダンパー側位置制御部21の間には減算器20が配置される。そして、この減算器20により、ダンパー側ゼロ値出力部211が出力した位置指令から、第2検出器320が検出したダンパー側位置フィードバックが減算される。ここで、第2検出器320が検出したダンパー側位置フィードバックとは、図1を参照して上述したように「機械ベース400に対するダンパー可動部220の現在位置」のことである。
また、この減算器20は、減算後の値をダンパー側位置制御部21に対して出力する。ここで、かかる減算後の値は、ダンパー側位置偏差量となる。
そして、ダンパー側位置制御部21は、このダンパー側位置偏差量に基づいて、比例演算を行うという位置ループ処理によりダンパー側速度指令を生成し、生成したダンパー側速度指令をダンパー側速度制御部23に対して出力する。
続く、ダンパー側位置制御部21、減算器22、ダンパー側速度制御部23及び減算器24での動作は、上述したリニア側位置制御部11、減算器12、リニア側速度制御部13及び減算器14の動作と同様なので説明を省略する。
ダンパー側電流制御部25は、減算器24が出力するダンパー側電流偏差量と、第2検出器320が検出したダンパー側磁極位置とに基づいて、ダンパー側電圧指令を生成する。ここで、第2検出器320が検出したダンパー側磁極位置とは、図2を参照して上述したように「機械ベース400に対するダンパー可動部220の現在位置」のことである。
そして、ダンパー側電流制御部25は、生成したダンパー側電圧指令をダンパー側電流増幅器26に対して出力する。
ダンパー側電流増幅器26は、このダンパー側電圧指令に基づいて、ダンパー固定部230の磁極を切り替えてダンパー可動部220を駆動させるためのダンパー側駆動電流を形成し、このダンパー側駆動電流をダンパー固定部230に対して出力する。図中では、ダンパー側駆動電流が、ダンパー固定部230を含んだダンパー側機構部28に出力されるものとして、以後の説明を行う。
なお、他方で、ダンパー側電流増幅器26は自身の出力するダンパー側駆動電流に基づいてダンパー側電流フィードバックを生成する。そして、ダンパー側電流増幅器26は、生成したダンパー側電流フィードバックを、ダンパー側速度制御部23と、ダンパー側電流制御部25の間の減算器24に対して出力する。
次にダンパー側機構部28について説明をする。ダンパー側機構部28に対して出力された(すなわち、ダンパー固定部230に対して出力された)ダンパー側駆動電流は、ダンパー可動部220を駆動する力である推力Fを発生させる。
ここで、推力Fは、推力Fと同様に推力定数Kと、ダンパー側駆動電流の値iを乗算することにより算出できる。推力Fは、ダンパー固定部230に出力される。
ダンパー側電流増幅器26とダンパー固定部230の間には減算器27が配置される。そして、この減算器27により、推力Fから、推力Fが減算される。これは、推力Fがダンパー軸に対して反力として作用することを表す。
また、この減算器27は、この減算後の値をダンパー固定部230に出力する。そして、ダンパー固定部230は、この減算後の推力によりダンパー可動部220を動作させる。
なお、ダンパー側機構部28もリニア側機構部18のように、本実施形態を図示するための概念的な部分を含んでいるので、この点について説明をする。
現実には、ダンパー側駆動電流は直接ダンパー固定部230に供給され、これによりダンパー可動部220が推力Fで駆動しようとすると、
推力Fで動作するリニア軸により、この推力Fが物理的に影響を受け、この影響を受けた後の推力にてダンパー可動部220が駆動をする。
つまり、ダンパー側駆動電流そのものが直接推力Fとなり、そこから実在の減算器にて推力Fが減算されてからダンパー固定部230に入力されるわけではない。しかしながら、図2では説明を容易とするため、概念的に減算器を設けて推力Fの影響を受けることを図示するものとする。
何れにせよ、推力Fにより、影響を受けた推力にてダンパー可動部220が駆動をする。すると、これに伴い、ダンパー可動部220が備える第2リニアスケール222も駆動する。
すると、第2検出器320が、機械ベース400に対するダンパー可動部220の駆動後の新たな現在位置を検出する。検出した新たな現在位置は、ダンパー側ゼロ値出力部211とダンパー側位置制御部21の間に配置された減算器20にダンパー側位置フィードバックとして出力される。これにより、位置ループ制御が実現される。
また、第2検出器320が、検出した新たな現在位置は、減算器20の前段において分岐され、ダンパー側電流制御部25にダンパー側磁極位置フィードバックとして出力される。
加えて、第2検出器320が、検出した新たな現在位置は、減算器20の前段において更に分岐され、ダンパー側微分回路29にも出力される。
ダンパー側微分回路29は、このダンパー側位置フィードバックを微分することにより、新たなダンパー側速度フィードバックを生成する。そして、ダンパー側微分回路29は生成した新たなダンパー側速度フィードバックを、ダンパー側位置制御部21と、ダンパー側速度制御部23の間に配置される減算器22に出力する。これにより、速度ループ制御が実現される。
以上説明したようにして、所定周期毎に、位置ループ制御、速度ループ制御、及び電流ループ制御を行うことにより、リニア軸で発生した力をダンパー軸で吸収することが可能となる。
具体的には、リニア軸が推力Fにより生じる反力に伴う振動が直接機械ベース400に伝達するのではなく、ダンパー軸の推力Fにより減算された反力に伴う振動が機械ベース400に伝達することになり、機械ベース400に伝達する振動を抑制することができる、という効果を奏する。更に、この場合に、位置指令としてはゼロを与え続ければよいため、複雑な同期指令を生成して制御をする必要がない、という効果も奏する。
また、複雑な同期指令を生成する必要がないので、リニア軸とダンパー軸とで重さが違うようにした場合に、特許文献2に開示の技術のようにリニア軸とダンパー軸との重量比を考慮して複雑な同期指令を生成しなければならないという問題も生じない。そのため、例えばダンパー軸の重さをリニア軸よりも重くすることにより、リニア軸で発生した力をダンパー軸でより吸収しやすくするようなことも容易に実現することができる。
次に、ダンパー軸の特性をリニア軸に与えられる高周波に応答しないような低い周波数特性とすることについて説明をする。すなわち、低周波には高いゲインで応答するが、所定の基準を上回る高周波に対しては低ゲインで応答するような周波数特性とする。
ダンパー軸の特性をこのような周波数特性とすることにより、ダンパー軸が高周波揺動に対しては自由運動となる。そのため、例えば100ヘルツ等の高周波で揺動するダンパー軸とは反対側の方向に動くことになるので、リニア軸で発生した力をダンパー軸でより吸収しやすくなる。
一方で、低周波に対しては高いゲインで応答するため同じ位置に位置決めができるようになる。そのため、ダンパー可動部220が特定の位置に留まるようになる。また、低周波である場合には、ダンパー軸は低加速で移動するので振動は微小である。そのため、これに対してダンパー軸が高いゲインで応答して特定の位置に留まるようにしても機械ベース400に振動が生じるような問題は起きない。
このような周波数特性とするためには、ダンパー側制御部210による、位置制御、電流制御及び速度制御の制御ループの特性を決定するパラメータを調整して、このような周波数特性となるようにすればよい。例えば位置ループ制御における比例ゲインを調整して、このような周波数特性となるようにすればよい。なお、位置ループ制御における比例ゲインはポジションゲインと呼ばれることもある。
また、他にも例えば速度ループ制御における積分ゲインや比例ゲインも調整するようにしてもよい。
このように、本実施形態では、パラメータの調整により周波数特性を変更することにより、ダンパー軸をダンパーとして望ましい特性とすることが可能となる。従って、例えば、バネ等の機構によりダンパーを実現する場合と比べて、自由度の高いダンパー特性を得ることができる。なぜならば、バネ等の機構によりダンパーを実現する場合は、バネ等を取り外して他のバネ等に変更する必要があるが、本実施形態であればパラメータを変更すれば足りるからである。
なお、以上ダンパー軸の周波数特性について説明したが、これはリニア軸からの観点で見てみれば、リニア軸はダンパー軸と比較して、高周波に高いゲインで応答するような周波数特性とするということである。
つまり、以上をまとめると、ダンパー側制御部210が高いゲインで応答する周波数帯域(本発明の「ダンパー側制御手段の応答帯域」に相当。)は、リニア側制御部110に与えられる指令周波数の帯域(本発明の「駆動側制御手段に与えられる指令周波数の帯域」に相当。)もしくは、リニア側制御部110が高いゲインで応答する周波数帯域(本発明の「駆動側制御手段の応答帯域」に相当。)よりも低い応答帯域にするとよい、ということになる。
次に、本実施形態を適用例について図3及び図4を参照して説明をする。
図3には、リニア固定部500、リニア可動部510、バイト511、ピストン600及び回転機構700を図示する。リニア固定部500は、リニア固定部130に相当する。リニア可動部510は、リニア可動部120に相当する。リニア可動部510には、工作物であるピストン600を加工するためのバイト511が取り付けられている。リニア可動部510は、X軸方向に高速揺動しこれに伴いバイト511もX軸方向に高速揺動する。一方で、ピストン600は回転機構700に取り付けられる。そして、回転機構700により、X軸と直交して高さ方向に伸びる軸であるZ軸方向に上下移動する。また、Z軸を軸として一定の速度で高速に回転する。このようにリニア可動部510によるX軸方向の高速揺動と、Z軸方向に上下移動と、Z軸を軸とした高速回転を、数値制御装置等の制御により行うことにより、ピストン600に対する加工を行うことができる。
次に、X軸方向に高速揺動する理由について説明をする。仮に、図中に破線で表すようにピストン600の断面が真円形状なのであれば、バイト511とピストン600の距離を所定距離で維持したままピストン600を回転させることにより、ピストン600の側面を一定の深さで加工することができる。しかしながら、例えば図4に示すようにピストン600の断面が楕円形状である場合には、一定の深さで加工を行うためには、ピストン600が高速に一回転するたびにリニア可動部510をX軸方向に2回往復移動させる必要がある。そのため、リニア可動部510をX軸方向に高速揺動する必要がある。
しかしながら、リニア可動部510をX軸方向に高速揺動する場合には、振動が発生し、機械ベースにこの振動が伝達してしまう。そこで、上述したようなダンパー軸を設ける本実施形態の構成を図3及び図4の構成に適用することにより、機械ベースへの振動の伝達を抑制することができる。
このように、本実施形態は任意の用途に適用可能であるが、例えば図3及び図4のようなリニア可動部の高速揺動が要求されるような用途に適用すると、特に好適である。
なお、このようなリニア可動部510をX軸方向に高速揺動する用途としては、他にも例えば筒状のパイプの内径のねじ切り加工等が挙げられる。
以上、本発明の実施形態について説明をした。上述した実施形態は、本発明の好適な実施形態ではあるが、上記実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。
種々の変更の一例について図5を参照して説明をする。上述の実施形態では、図1や図2を参照して説明したように、第3リニアスケール123と第3検出器330を利用して、ダンパー可動部220に対するリニア可動部120の現在位置(すなわち、リニア側磁極位置)を検出していた。
しかしながら、上述の実施形態を変形することにより、第3リニアスケール123と第3検出器330を省略することができる。この構成について図5を参照して説明をする。
図5に示すように、本変形例では第3リニアスケール123と第3検出器330が省略されている。その一方で、減算器30が新たに追加されていると共に、第1検出器310と第2検出器320それぞれの出力が分岐して減算器30に出力されている。
そして、減算器30は、第1検出器310の出力から第2検出器320の出力を減算することにより、両者の差分を算出し、この差分を第3検出器330の出力に代えてリニア側電流制御部15に出力する。
つまり、本実施形態では、第1検出器310が検出した「機械ベース400に対するリニア可動部120の現在位置」と、第2検出器320が検出した「機械ベース400に対するダンパー可動部220の現在位置」の差分を、第3検出器330が検出する「ダンパー可動部220に対するリニア可動部120の現在位置(すなわち、リニア側磁極位置)」として取り扱う。
これにより、第3リニアスケール123と第3検出器330を省略した構成としつつ、上述の実施形態と同様の制御を行うことが可能となる。
また、以上説明した実施形態は、ハードウェア、ソフトウェア又はこれらの組合せにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。ハードウェアで構成する場合、各実施形態の一部又は全部を、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、ゲートアレイ、FPGA(Field Programmable Gate Array)等の集積回路(IC)で構成することができる。
また、各実施形態の一部又は全部をソフトウェアとハードウェアの組み合わせで構成する場合、フローチャートで示されるサーボ制御装置の動作の全部又は一部を記述したプログラムを記憶した、ハードディスク、ROM等の記憶部、演算に必要なデータを記憶するDRAM、CPU、及び各部を接続するバスで構成されたコンピュータにおいて、演算に必要な情報をDRAMに記憶し、CPUで当該プログラムを動作させることで実現することができる。
プログラムは、様々なタイプのコンピュータ可読媒体(computer readable medium)を用いて格納され、コンピュータに供給することができる。コンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。コンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD−ROM(Read Only Memory)、CD−R、CD−R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(random access memory))を含む。
10、12、14、17、20、22、24、27、30 減算器
11 リニア側位置制御部
13 リニア側速度制御部
15 リニア側電流制御部
16 リニア側電流増幅器
18 リニア側機構部
19 リニア側微分回路
21 ダンパー側位置制御部
23 ダンパー側速度制御部
25 ダンパー側電流制御部
26 ダンパー側電流増幅器
28 ダンパー側機構部
29 ダンパー側微分回路
110 リニア側制御部
111 上位制御装置
112 リニア側位置速度部
113 リニア側電流駆動部
121 第1リニアスケール
123 第3リニアスケール
120 リニア可動部
130 リニア固定部
210 ダンパー側制御部
211 ダンパー側ゼロ値出力部
212 ダンパー側位置速度部
213 ダンパー側電流駆動部
222 第2ダンパースケール
220 ダンパー可動部
230 ダンパー固定部
310 第1検出器
320 第2検出器
330 第3検出器
400 機械ベース
500 リニア固定部
510 リニア可動部
511 バイト
600 ピストン
700 回転機構

Claims (8)

  1. 機械ベースに固定された固定部と、可動部とを有するダンパー側リニアモータと、
    前記ダンパー側リニアモータの可動部に固定された固定部と、可動部とを有する駆動側リニアモータと、
    前記機械ベースに対する前記駆動側リニアモータの可動部の位置である第1位置を検出する第1検出手段と、
    前記機械ベースに対する前記ダンパー側リニアモータの可動部の位置である第2位置を検出する第2検出手段と、
    前記ダンパー側リニアモータの可動部に対する前記駆動側リニアモータの可動部の位置である第3位置を検出する第3検出手段と、
    駆動用途に応じた位置指令と、前記第1検出手段が検出した第1位置と、前記第3検出手段が検出した第3位置とに基づいて前記駆動側リニアモータの制御を行う駆動側制御手段と、
    ゼロの値に対応する位置指令と、前記第2検出手段が検出した第2位置に基づいて前記ダンパー側リニアモータの制御を行うことにより、前記ダンパー側リニアモータをダンパーとして機能させるダンパー側制御手段と、
    を備える機械振動抑制機能を備えた駆動装置。
  2. 前記ダンパー側制御手段の応答帯域は、前記駆動側制御手段に与えられる指令周波数の帯域、もしくは前記駆動側制御手段の応答帯域と比較して、低い応答帯域である請求項1に記載の機械振動抑制機能を備えた駆動装置。
  3. 前記ダンパー側制御手段の応答帯域は、前記駆動側制御手段に与えられる指令周波数の帯域、もしくは前記駆動側制御手段の応答帯域に応じて調整が可能である請求項1又は2に記載の機械振動抑制機能を備えた駆動装置。
  4. 前記調整は、前記ダンパー側制御手段が前記ダンパー側リニアモータの制御を行うために用いるパラメータを調整することにより行う請求項3に記載の機械振動抑制機能を備えた駆動装置。
  5. 前記第3検出手段は、前記第1検出手段が検出した第1位置と、前記第2検出手段が検出した第2位置との差分を算出し、該算出した差分から前記第3位置を検出する請求項1から4いずれかに記載の機械振動抑制機能を備えた駆動装置。
  6. 前記駆動側リニアモータの重量よりも、前記ダンパー側リニアモータの重量が重い請求項1から5いずれかに記載の機械振動抑制機能を備えた駆動装置。
  7. 前記駆動側リニアモータを駆動させることにより、当該機械振動抑制機能を備えた駆動装置を工作機械として機能させる請求項1から6いずれかに記載の機械振動抑制機能を備えた駆動装置。
  8. 請求項1から7いずれかに記載の機械振動抑制機能を備えた駆動装置と、上位制御装置とを備えた機械振動抑制機能を備えたシステムであって、
    前記駆動側制御手段と、前記ダンパー側制御手段は、それぞれがフィードバック制御を行う制御手段であり、
    前記上位制御装置は、前記駆動側制御手段に位置指令を与えるが、前記ダンパー側制御手段には位置指令を与えない機械振動抑制機能を備えたシステム。
JP2016186773A 2016-09-26 2016-09-26 機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム Active JP6423839B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016186773A JP6423839B2 (ja) 2016-09-26 2016-09-26 機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム
DE102017216616.9A DE102017216616B4 (de) 2016-09-26 2017-09-20 Antriebsvorrichtung mit einer Funktion zum Unterdrücken von mechanischen Vibrationen und System mit einer Funktion zum Unterdrücken von mechanischen Vibrationen
US15/711,466 US10166642B2 (en) 2016-09-26 2017-09-21 Drive apparatus comprising mechanical vibration suppression function, and system comprising mechanical vibration suppression function
CN201710858491.7A CN107866691B (zh) 2016-09-26 2017-09-21 具备机械振动抑制功能的驱动装置以及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016186773A JP6423839B2 (ja) 2016-09-26 2016-09-26 機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム

Publications (2)

Publication Number Publication Date
JP2018057067A JP2018057067A (ja) 2018-04-05
JP6423839B2 true JP6423839B2 (ja) 2018-11-14

Family

ID=61564381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016186773A Active JP6423839B2 (ja) 2016-09-26 2016-09-26 機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム

Country Status (4)

Country Link
US (1) US10166642B2 (ja)
JP (1) JP6423839B2 (ja)
CN (1) CN107866691B (ja)
DE (1) DE102017216616B4 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061267B2 (ja) 2018-03-23 2022-04-28 京セラドキュメントソリューションズ株式会社 画像処理装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0557100B1 (en) * 1992-02-21 1999-01-13 Canon Kabushiki Kaisha Stage driving system
JP3202308B2 (ja) * 1992-02-21 2001-08-27 キヤノン株式会社 複合位置決め装置
JP2001093798A (ja) * 1999-09-20 2001-04-06 Canon Inc ステージ装置
JP4144980B2 (ja) * 1999-09-22 2008-09-03 オリンパス株式会社 ステージ装置
JP3814453B2 (ja) 2000-01-11 2006-08-30 キヤノン株式会社 位置決め装置、半導体露光装置およびデバイス製造方法
JP2001345244A (ja) * 2000-05-31 2001-12-14 Canon Inc ステージ制御方法、ステージ装置、露光装置およびデバイス製造方法
JP4638980B2 (ja) 2000-11-24 2011-02-23 西部電機株式会社 スライダを背中合わせに備えた複列の加工機
JP2003045939A (ja) * 2001-07-27 2003-02-14 Canon Inc 移動ステージ装置
JP2003195945A (ja) * 2001-12-27 2003-07-11 National Institute Of Advanced Industrial & Technology 直動アクチュエータ
US20040231374A1 (en) * 2003-05-20 2004-11-25 Chang Jae Won Damper for washing machine
JP2005153047A (ja) * 2003-11-21 2005-06-16 Fanuc Ltd ロボットの関節装置。
EP3279739A1 (en) * 2006-02-21 2018-02-07 Nikon Corporation Exposure apparatus, exposure method, and device manufacturing method
TWI457723B (zh) * 2006-09-08 2014-10-21 尼康股份有限公司 A mask, an exposure device, and an element manufacturing method
KR101110892B1 (ko) * 2006-11-30 2012-03-13 미쓰비시덴키 가부시키가이샤 면진 제어 시스템
US8035805B2 (en) * 2007-10-17 2011-10-11 Canon Kabushiki Kaisha Driving apparatus and exposure apparatus, and device fabrication method
JP5671306B2 (ja) * 2010-11-10 2015-02-18 カヤバ工業株式会社 サスペンション装置
CN104678711B (zh) * 2013-11-26 2017-06-27 上海微电子装备有限公司 运动台反力抵消装置
JP5834121B1 (ja) * 2014-08-25 2015-12-16 株式会社ソディック 加工装置
JP6046182B2 (ja) * 2015-02-27 2016-12-14 ファナック株式会社 振動を抑制する機能を備えたモータ制御装置
JP6602044B2 (ja) * 2015-05-08 2019-11-06 キヤノン株式会社 振動型駆動装置、制御装置及び医用システム

Also Published As

Publication number Publication date
DE102017216616B4 (de) 2020-03-26
US20180085872A1 (en) 2018-03-29
DE102017216616A1 (de) 2018-03-29
JP2018057067A (ja) 2018-04-05
US10166642B2 (en) 2019-01-01
CN107866691B (zh) 2019-06-25
CN107866691A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
KR100914349B1 (ko) 서보모터의 제어방법
US10353374B2 (en) Servo controller, control method, and computer-readable recording medium for machine tool used for oscillating cutting
US9724825B2 (en) Robot controller for robot which sets two objects in combined state
JP5646073B2 (ja) サーボ制御装置
JP2009110492A (ja) 位置制御装置
Dong et al. An experimental investigation of the effects of the compliant joint method on feedback compensation of pre-sliding/pre-rolling friction
JP6423839B2 (ja) 機械振動抑制機能を備えた駆動装置、及び機械振動抑制機能を備えたシステム
JP6903485B2 (ja) 制振装置および加工機
JP2018033205A (ja) モータ制御装置、モータ制御方法及びモータ制御用プログラム
EP3078452A1 (en) System for suppressing chatter in a machine tool
JP6850700B2 (ja) 位置制御装置
JP4605135B2 (ja) 加工装置
JP2007075915A (ja) 切削加工方法および切削加工装置
US10579044B2 (en) Computer readable information recording medium, evaluation method, and control device
JP2017033587A (ja) 送り駆動系及び送り駆動系の設計方法
JP5642104B2 (ja) レンズ駆動システムおよびレーザ加工装置
JP4880763B2 (ja) モータ制御方法及び装置
JP3765710B2 (ja) 工作機械のサーボモータの制御装置
JP7453330B2 (ja) 工作機械の制御装置
JP2003208230A (ja) 機械の制振制御方法,装置および制振制御型機械
JP7497968B2 (ja) 数値制御装置、工作機械システム及び数値制御方法
JP2023021555A (ja) 制御装置、制御方法およびプログラム
Sencer et al. Smooth polynomial interpolation for point-to-point trajectories with vibration avoidance
JP4367041B2 (ja) 機械制御装置
CN107077127B (zh) 进给轴控制方法及数值控制机床

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6423839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150