JP6330402B2 - インバータ装置及びプラズマ発生装置 - Google Patents

インバータ装置及びプラズマ発生装置 Download PDF

Info

Publication number
JP6330402B2
JP6330402B2 JP2014055657A JP2014055657A JP6330402B2 JP 6330402 B2 JP6330402 B2 JP 6330402B2 JP 2014055657 A JP2014055657 A JP 2014055657A JP 2014055657 A JP2014055657 A JP 2014055657A JP 6330402 B2 JP6330402 B2 JP 6330402B2
Authority
JP
Japan
Prior art keywords
output
period
output voltage
inverter device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014055657A
Other languages
English (en)
Other versions
JP2015180127A5 (ja
JP2015180127A (ja
Inventor
鎌田 久浩
久浩 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2014055657A priority Critical patent/JP6330402B2/ja
Priority to US14/657,961 priority patent/US9232625B2/en
Publication of JP2015180127A publication Critical patent/JP2015180127A/ja
Publication of JP2015180127A5 publication Critical patent/JP2015180127A5/ja
Application granted granted Critical
Publication of JP6330402B2 publication Critical patent/JP6330402B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2439Surface discharges, e.g. air flow control
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/346Passive non-dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4815Resonant converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2242/00Auxiliary systems
    • H05H2242/20Power circuits
    • H05H2242/22DC, AC or pulsed generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)
  • Plasma Technology (AREA)

Description

この発明は、スイッチング素子によって入力電圧をスイッチングして、スイッチング素子がオンの期間に昇圧トランスの励磁巻線に励磁電流を流し、スイッチング素子がオフの期間に昇圧トランスの出力巻線から交流半波波形の出力電圧を出力するインバータ装置と、それを備えたプラズマ発生装置に関する。
大型プラズマディスプレー用放電管、プラズマ発生装置など、種々の装置に高電圧を供給するためにスイッチングレギュレータやインバータ装置が用いられている。
一般には出力電力値が数W程度のものが多く使用されているが、プラズマ発生装置などには、出力電圧が十数kVで電力値が数十W以上の交流の出力を持つインバータ装置が使用される。
一般のスイッチングレギュレータ(AC又はDC−DCコンバータ)は、電圧変換用のトランスの一次側の励磁巻線に直流電圧をスイッチング素子でスイッチングして断続的に印加し、二次側の出力巻線に発生する交流電流を整流及び平滑して直流電圧を出力する。
その出力電圧を一定電圧に維持するために、例えば特許文献1に見られるように、出力電圧を検出してフィードバック電圧を生成し、それによってスイッチング素子のオン時間とオフ時間の比率(デューティ比)を制御するパルス幅変調(PWM)制御を行なっている。
これは、出力電圧が下がったときには、スイッチングパルスのON幅を広げて出力電力不足を補い、逆に出力電圧が上がった時にはON幅を狭くして過剰な出力電力を制限することによって、出力電圧を一定に制御するものである。
また、インバータ装置は、上述と同様に電圧変換用のトランスの一次側の励磁巻線に直流電圧をスイッチング素子でスイッチングして断続的に印加し、二次側の出力巻線に発生する交流電圧をそのまま負荷へ出力する。
その場合、例えば特許文献2に見られるように、出力電圧の代わりに出力電流を検出して、それを電圧に置き換えて、スイッチング素子に対するPWM制御を行うようにしたものもある。
出力電圧が直流のスイッチングレギュレータの場合には、特許文献1に記載されているように、その出力電圧を検出して、スイッチング素子をON/OFF制御するスイッチングパルスをPWM制御することが可能である。また、出力側に平滑回路の電解コンデンサなどによる保持時間があるため、制御の応答性が問題になることもない。
しかし、インバータ装置の出力は交流であるために、全波であろうが半波であろうが、その波高値(ピーク電圧値)を一定に制御するのは困難であった。
固定化された負荷があり、それに応じた回路内の時比率、スイッチング周波数、共振周波数、入力電圧などが固定した状態では、出力電圧の波高値の変化は、環境変化と構成部品の経年変化のみになることが想定される。しかし、負荷が温度や経過時間などで変化したりする場合でも、出力電圧の波高値がほぼ一定であることが望ましい。さらに、入力電圧が変化したり、負荷がダイナミックに変化したとしても、ほぼ安定した出力電圧が得られることはさらに望ましい。
ところが、出力電圧の波高値の時間が1点であること、電圧の高低差が大きいため、それを検出するための素子数が増大し、寄生インダクタンスにより制御応答時間の遅延が生じる。出力電圧波形が繰り返される周波数が高くなるほどその遅延の影響が顕著になって、波高値電圧が降下し過ぎたり上昇し過ぎたりすることになる。
最悪の場合は共振周波数ずれが生じ、共振状態の電圧印加時に次のスイッチング周期のON状態で励磁電流が流れると、残電圧分の行き場のないエネルギーが過剰な電流になって共振が崩れてしまう。それによって、スイッチング素子の電力耐量をオーバして故障したり、トランスが飽和したりすることがある。
このように、出力が交流であって、スイッチング周波数が数十kHzと高く、電圧の共振を利用した出力の波高値電圧も十数kVのように高いインバータ装置の場合には、上述した制御の応答性の問題に加えて、出力電圧検出手段や部品の耐圧の問題、共振を完了する時間などの問題が生じる。
そのため、このようなインバータ装置では、人手によるつまみで入力供給電圧を設定し、設定した入力電圧で出力電圧を合わせこむだけで、出力電圧値は常時監視していないのが一般的であった。
この発明は、このような現状に鑑みてなされたものであり、インバータ装置において、入力電圧が変化しても交流出力電圧の波高値電圧が一定になるように制御することを目的とする。
この発明は、制御回路にオン・オフ制御されるスイッチング素子によって入力電圧をスイッチングして、そのスイッチング素子がオンの期間に昇圧トランスの励磁巻線に励磁電流を流し、そのスイッチング素子がオフの期間に前記昇圧トランスの出力巻線から交流半波波形の出力電圧を出力するインバータ装置において、上記の目的を達成するため、上記入力電圧の状態を電圧で検出する入力電圧検出手段と、上記出力電圧の状態を瞬時値に対応した電圧で検出する出力電圧検出手段と、その出力電圧検出手段による出力電圧検出信号に基づいて、上記出力電圧が発生している出力発生期間を検出する出力発生期間検出手段と、上記入力電圧検出手段による入力電圧検出信号と上記出力電圧検出手段による出力電圧検出信号とを比較して、上記出力電圧検出信号が上記入力電圧検出信号を超える出力大期間を検出する比較手段と、その比較手段が検出した出力大期間を示す情報を、上記出力発生期間検出手段によって上記出力発生期間が検出されなくなる次の期間へ移行させる移行手段とを有し、その移行手段によって移行された上記出力大期間を示す情報に基づいて、上記制御回路が上記スイッチング素子をオンにする期間を調整することを特徴とする。
この発明によるインバータ装置は、入力電圧が変化しても交流出力電圧の波高値電圧を一定に制御することができる。
この発明によるインバータ装置及びプラズマ発生装置の一実施形態を示す回路図である。 図1に示したインバータ装置の動作を説明するための各信号の波形を示すタイミングチャートである。 同じくその続きの説明をするための各信号の波形を示すタイミングチャートである。 入力電圧及び入力電圧検出信号を直線的な信号にした場合のレベル変動と出力大期間信号の変化との関係を示すタイミングチャートである。
以下、この発明を実施するための形態を図面に基づいて具体的に説明する。
図1はこの発明によるインバータ装置及びプラズマ発生装置の一実施形態を示す回路図である。
インバータ装置1は、その基本的な構成として、昇圧トランス10と、その励磁電流をオン・オフするスイッチング素子Qと、そのスイッチング素子Qのオン・オフを制御する制御回路である制御IC12とを備えている。スイッチング素子Qとしては、FET(電界効果トランジスタ)を使用している。制御IC12は、矩形波パルスのスイッチング信号Spを、スイッチング素子Qのゲートに出力して、そのオン・オフをPWM制御する。
また、入力端子I1,I2から入力する商用電源の交流の入力電圧Vinを全波整流する全波整流回路11も備えている。
この実施形態では、昇圧トランス10を、別個のコアを持つ同じ特性の複数のトランスT1,T2によって構成している。
その各トランスT1,T2の励磁巻線Np1,Np2を並列に接続して、全波整流回路11によって全波整流された脈流の入力電圧Vin(DC)を、制御IC12にオン・オフ制御されるスイッチング素子Qによってスイッチングして、同時に励磁電流Ipを流す。そして、スイッチング素子Qがオフの期間に、その各トランスT1,T2の出力巻線Ns1,Ns2にそれぞれ誘起される電圧の波形の時間軸が同期するようにしている。その各出力巻線Ns1,Ns2を互いに直列に接続して、その各出力電圧を重畳した交流半端波形の出力電圧Voutを出力端子O1,O2間から負荷2に出力する。
トランスT1,T2の励磁巻線Np1,Np2の並列回路に並列に接続した、ダイオードD1とコンデンサC1の直列回路はスナバ回路を構成している。抵抗R1は、入力電圧Vin(DC)によって制御IC12に起動電圧を供給するための抵抗である。
各トランスT1,T2は、その出力巻線Ns1,Ns2のインダクタンスLsと分布容量Cs及び負荷2の負荷容量Coとによる共振回路で共振し、出力電圧が共振の鋭さに比例する共振トランスであるのが望ましい。
負荷2は、この実施形態ではプラズマ発生用の放電電極とカウンタ電極を有する放電部を備え、インバータ装置1から出力される交流電圧が放電電極とカウンタ電極との間に印加されることによってプラズマを発生する。放電電極とカウンタ電極との間に負荷容量Coを有する。
その放電電極とカウンタ電極との間に誘電体を介在させており、大気中で6kV以上の電圧を印加すると、プラズマ放電の一種であるストリーマ放電(誘電体バリア放電、沿面放電、無声放電などともいわれる)が発生する。それによって、ラジカル基等の多量の活性種を含むプラズマが生成される。
したがって、図1に示すインバータ装置1と負荷2である放電部とによって、この発明によるプラズマ発生装置の実施形態を構成している。
昇圧トランス10を構成する1個のトランスT1には、励磁巻線Np1及び出力巻線Ns1の他に、同じコアに補助巻線Nhと第3次巻線(従属巻線ともいう)Ndが設けられている。補助巻線Nhは、励磁巻線Np1に励磁電流が流れているときに、電圧が誘起されそれを補助電源回路13によって整流・平滑して、制御ICの動作用電源として供給する。
第3次巻線Ndは、スイッチング素子Qがオフの期間に、出力巻線Ns1とNs2の直列回路に発生する交流半端波形の出力電圧Voutと同期して、波高値がその出力電圧Voutより小さい波形の電圧を発生して、後述する出力電圧検出信号Soutとする。
この第3次巻線Ndの巻数は、出力巻線Ns1の巻数に比べてはるかに少ない。そして出力電圧Voutが高圧(600V〜7kV)あるいは特別高圧(7kVを超える)に相当するような場合、この第3次巻線Ndに発生する電圧の波高値は、出力電圧の少なくとも1/100以下であり、1/1000程度より小さいとなおよい。このトランスT1の第3次巻線Ndが、出力電圧の状態を瞬時値に対応した電圧で検出する出力電圧検出手段であるが、その使用については後述する。
この実施形態によれば、昇圧トランスを大型にして励磁巻線と出力巻線の巻数比を非常に大きくしなくても、昇圧トランス10全体として出力巻線の巻数を多くすることができるので、昇圧比が高い高電圧を、安定にしかも安全に得ることができる。
昇圧トランス10を構成するトランスの数は3個以上でもよい。また、複数の各トランスの出力巻線を互いに並列に接続すれば、出力電圧は1個のトランスの場合と同等になるが、出力電流を倍増して、各出力巻線を直列に接続した場合と出力電力を同等にすることができる。
複数の各トランスの励磁巻線を直列に接続して、同時に励磁電流を流すようにしてもよい。
なお、昇圧トランス10を構成する複数のトランスのいずれか1個に補助巻線Nhと第3次巻線Ndを設けるため、複数のトランスが完全に同じ特性を持つようにするのは難しいが、補助巻線Nhや第3次巻線Ndの出力電力量は小さいので問題はない。
また、昇圧トランス10を構成する複数のトランスのいずれか1個の出力巻線にタップを出し、出力巻線の一部によって、出力電圧Voutと同期して、波高値がその出力電圧Voutより小さい波形の電圧を発生させて、出力電圧検出信号Soutとしてもよい。
しかし、昇圧トランスを複数のトランスで構成することは、この発明に必須のことではなく、1個のトランスで構成してもよい。
このインバータ装置におけるこの発明の特徴とする構成として、すなわち入力電圧が変化しても交流出力電圧の波高値電圧が一定になるように制御するための各手段を設けている。その一つが、前述したトランスT1の第3次巻線Ndによって出力電圧の状態をリアルタイムの電圧で検出する出力電圧検出手段である。
出力電圧Voutが、周波数が15kHz〜20kHzと高く、波高値が10kV以上と高い交流半波波形の電圧であっても、第3次巻線Ndに発生する電圧は、その出力電圧と同期して同じ変動をする。したがって、この第3次巻線Ndによって、出力電圧Voutを忠実にリアルタイムの電圧(瞬時値に対応した電圧)で検出することができる。
また、入力電圧Vinの状態を電圧で検出する入力電圧検出手段として、入力電圧検出回路14を設けている。この入力電圧検出回路14は、例えば商用電源による交流の入力電圧Vinを降圧するトランスと、その降圧した交流電圧を全波整流する全波整流回路とによって構成する。その降圧した交流電圧を全波整流した脈流の電圧を、入力電圧検出信号Sinとして出力する。
あるいは、入力電圧検出手段として、全波整流回路11によって全波整流した後の入力電圧Vin(DC)を抵抗分割して入力電圧検信号Sinとする回路を設けてもよい。
入力電圧は、一般に電圧があまり高くないので、種々の手段で容易に検出することができる。但し、入力電圧検信号Sinの変動レベルが、出力電圧検出信号Soutの波高値以内の範囲になるべく入るように、両検出信号のレベルを合わせておく必要がある。
さらに、出力電圧検出手段による出力電圧検出信号Soutに基づいて、スイッチング素子Qによるスイッチングの周期ごとに出力電圧Voutが発生している出力発生期間を検出する出力発生期間検出手段として、ゼロクロス回路15を設けている。出力発生期間は、スイッチング素子Qがオフで、昇圧トランス10に励磁電流を流さない期間であるから、OFF期間と称する。
この実施形態のゼロクロス回路15は、出力電圧検出信号Soutが僅かに正電圧になった時点からゼロレベルになる時点までの期間中ハイレベルで、それ以外の期間はローレベルの信号をゼロクロス信号Zxとして出力する。このゼロクロス信号Zxがハイレベルの期間が出力発生期間である。
また、入力電圧検出回路14による入力電圧検出信号Sinと出力電圧検出手段である第3次巻線Ndによる出力電圧検出信号Soutとを比較する比較手段として比較回路18を設けている。この比較回路18は、出力電圧検出信号Soutが入力電圧検出信号Sinを超える期間(以下「出力大期間」という)を検出し、出力大期間だけハイレベルになる信号Scを出力する。
さらに、比較回路18が検出した出力大期間を示す情報である信号Scを、出力発生期間検出手段であるゼロクロス回路15によるゼロクロス信号Zxがローレベルになる次の期間へ移行させる移行手段として、シフトレジスタ19を設けている。
このシフトレジスタ19によって移行された出力大期間を示す情報を、制御IC12とアース間に接続されたトランジスタTrを制御して制御IC12へ伝達する。それによって、PWM制御を行う制御IC12が、その出力大期間を示す情報に基づいて、スイッチング素子Qをオンにする期間を調整する。
その他に、シフトレジスタ19で使用するクロック信号CLKを発生する発振器(OSC)17、ゼロクロス信号Zxを反転して、反転ゼロクロス信号/Zxにする反転回路16、AND回路20,22、及びD−FF回路21を設けている。
これらの動作及び機能については、図2及び図3を用いて後述する。
ここで、この発明によるインバータ装置における出力電圧制御の原理について説明する。
まず、検出信号として前述した次の3つの検出信号が必要になる。
・入力電圧Vinを検出した入力電圧検出信号Sin
・出力電圧Voutを検出した出力電圧検出信号Sout
・出力電圧検出信号Soutから出力電圧が発生している期間を検出する出力発生期間検出信号
出力電圧検出信号Soutは、出力電圧Voutの波高値を直接検出するのではなく、間接的に出力電圧と同じ変動をする電圧を、図1に示したトランスT1の第3次巻線Ndから取り出して検出する。
出力電圧が発生している期間は、昇圧トランス10の出力インダクタンスと浮遊容量及び負荷容量Coによる共振時間によって決定される。この実施形態では出力電圧検出信号Soutが正の電圧波形になっている期間をゼロクロス回路15によってゼロクロス信号Zxとして検出する。
入力電圧Vinについては、昇圧トランス10を励磁する励磁電流Ipは、昇圧トランスの励磁インダクタンスをLpとすると、Vin(t)=Lp・Ip(t)/dt より、ごく短い時間においては、その微分係数となる。そのため、励磁電流Ipは入力電圧Vinに比例する(Ip∝Vin)。
この関係から、昇圧トランス10に蓄えられる励磁エネルギーは、使用するトランスの数が2個の場合は、1個のトランスの励磁インダクタンスをLpとすると、2個のトランスの励磁巻線を並列に接続した場合の励磁インダクタンスはLp/2となる。
そこで、2個のトランスに蓄積される励磁エネルギーεは、トランス2個の励磁電流の最終値(スイッチング素子Qに流れる電流Id(Q))で決まるから、
ε=(1/2)・(Lp/2)・Id(Q)2 ・・・(1)
また、スイッチング素子Qがオンし始めてからオフするまでの時間をTon時間とすると、ごく小さい時間軸では微分となり、励磁電流の最終値Id(Q)は、次式になる。
Id(Q)=Vin・Ton/Lp ・・・(2)
(1)式に(2)式を代入すると
ε=(1/4)・Lp・(Vin・Ton/Lp)2
=(Vin・Ton)2/4Lp ・・・・(3)
*1周期における2個のトランスに印加するエネルギー量になる。
故に、昇圧トランス10をn個のトランスで構成した場合のエネルギー量は、次式になる。
ε=(Vin・Ton2/(2n・Lp) ・・・・(4)
したがって、出力電力は、(4)式にあるトランスに如何にエネルギーを溜め込むかにかかっており、Tonが一定であれば、直角三角形の斜辺の傾きである(2)式のVin/Lpとなる。
このLpは、直流重畳特性NI(巻数Nと電流Iの積)のリニヤな部分のみに依存される。また、Vinが、ACになれば、交流の時間ごとの電圧変化にも依存し、DCであれば、電圧偏差に依存される。このように出力電力の大きさを決定しているのは、励磁電流Ipである。入力電圧Vinと負荷が固定であれば、励磁電流Ipは、VinとTonの積に応じた変化が強いられる。
そこで、入力電圧検出信号Sinを基準にする。そして、OFF期間に出力電圧検出信号Soutと比較し、出力電圧検出信号Soutが入力電圧検出信号Sinを上回っていた出力大期間の信号を、次のON期間へ移行(シフト)させる。
シフトに関しては、スイッチング周波数より高い、少なくとも10倍(10%刻み)以上の周波数のクロック信号CLKを発振器17から出力させ、そのクロック信号CLKで出力大期間の信号を刻む。このクロック信号CLKの周波数でのスイッチング周期に対する倍率を「分解能」という。
ここで、図2と図3を用いて、図1に示したインバータ装置による出力電圧制御動作について説明する。
図2及び図3は、図1に示したインバータ装置の動作を説明するための各信号の波形を示すタイミングチャートである。
これらの図において、ON期間とOFF期間を交互に繰り返しており、ON期間とOFF期間でスイッチングの1周期となっている。OFF期間は、図1におけるスイッチング素子Qがオフで、昇圧トランス10に励磁電流Ipが流れず、出力電圧Voutが発生する期間である。しかし、必ずしもOFF期間中すべて出力電圧Voutが発生しているとは限らない。
ON期間は、スイッチング素子Qをオンにして、昇圧トランス10に励磁電流Ipを流してエネルギーを蓄える期間である。しかし、このON期間中すべてスイッチング素子Qをオンにしている訳ではなく、スイッチング素子Qを実際にオンにする期間(「オン時間」と称す)を変化させて、入力電圧が変動しても出力電圧の波高値が一定になるように制御する。
図2の(a)は出力電圧検出信号Soutの波形を示す。これは出力電圧Voutと同期して同じ変化をする正の半波波形で、波高値が出力電圧Voutの1/1000から1/100以下で、数Vから数十V程度(好ましくは10V程度)の信号である。
(b)は入力電圧検出信号Sinの波形を示し、全波整流した入力電圧Vin(DC)と対応して、例えば実線で示す波形と破線で示す波形との間で振幅が変動する。また、この入力電圧検出信号Sinと比較する出力電圧検出信号Soutの波形を、細かい破線で重ねて示している。
(c)はゼロクロス信号Zxの波形を示す。これは、出力電圧検出信号Soutに基づいて出力電圧Voutが発生している出力発生期間を検出する出力発生期間検出手段であるゼロクロス回路15によって検出される信号である。このゼロクロス信号Zxは、出力電圧検出信号Soutが僅かに正電圧になった時点から再びゼロレベルになる時点までの期間中ハイレベルで、それ以外の期間はローレベルの信号であり、このゼロクロス信号Zxがハイレベルの期間が出力発生期間である。
(d)は、図1における比較回路18が、入力電圧検出信号Sinと出力電圧検出信号Soutとを比較して、出力電圧検出信号Soutが入力電圧検出信号Sinを超えている(Sout>Sin)期間を検出した出力大期間信号Scの波形を示す。この出力大期間信号Scがハイレベルの期間が、Sout>Sinの期間である。
(e)は、上記出力大期間信号Scの出力大期間(Sout>Sinの期間)を示す情報を、ゼロクロス信号Zxがローレベルになる(出力発生期間が検出されなくなる)次のON期間へシフト(移行)させた信号の波形を示す。その移行手段については図3によって後述する。
この移行された出力大期間を示す情報に基づいて、図1における制御IC12に、スイッチング素子Qを実際にオンにする期間であるON時間を調整させる。
次に、図3において、(a)は図1における発振器17が出力するクロック信号CLKであり、図示の都合上スイッチング周波数の6倍の周波数(周期は1/6)の例で示したが、実際には10倍以上の周波数であるのが望ましい。このクロック信号CLKの周波数が高い方が分解能が高くなり、シフトレジスタ19による出力大期間信号Scの取り込み誤差が、スイッチング周期を20分割する場合は5%、10分割する場合は10%になる。
(c)の太い破線で示す波形は、比較回路18による比較の結果、出力電圧検出信号Soutの値(レベル)が入力電圧検出信号Sinの値(レベル)を超えている期間を検出した出力大期間信号Scを示す。この出力大期間信号Scがハイレベルの期間が、Sout>Sinの期間である。
この出力大期間信号Scを6段のシフトレジスタ19のデータ入力とし、クロック信号CLKをクロック端子に入力してそれを取り込んでシフトさせたときのシフトレジスタ19の各段のデータを(b)に示す。このシフトレジスタ19は、クロック信号CLKの立ち上がりでデータをラッチするので、その時、出力大期間信号Scがハイになっていれば“1”がラッチされ、ローになっていれば“0”がラッチされる。
(c)の太い実線で示す波形は、上記のようにして6分解能でシフトレジスタ19に取り込まれた出力大期間信号Sciを示す。この信号は、太い破線で示す実際のSout>Sinの期間を示す出力大期間信号Scとの間で差異を生じる。しかし、クロック信号CLKの周期をスイッチング周期の1/10以下にして、それに応じてシフトレジスタの段数も10段以上にすれば、その誤差は10%以下になる。
その後さらに、シフトレジスタ19がクロック信号CLKによってラッチしたデータを次のON期間(ゼロクロス信号Zxローの期間)へ移行させる。7番目以降のクロック信号が入力されると、先のデータから順に出力される。
(d)は、その移行後の出力大期間信号SSciの波形を示す。このようにして、移行手段であるシフトレジスタ19は、スイッチングの周波数より高い周波数のクロック信号CLKに同期して、出力大期間を示す情報を、ゼロクロス回路15によって出力発生期間が検出されなくなる次の期間(ON期間)へ移行させる。
この信号SSciを、図1におけるD−FF回路21のデータ端子に順次入力させる。したがって、信号SSciがハイのときはD−FF回路21の入力は“1”になり、ローのときは“0”になる。そのD−FF回路21の入力データを(e)に示す。
(g)は、図2の(c)に示したゼロクロス信号Zxを、図1における反転回路16によって反転した反転ゼロクロス信号/Zxの波形を示す。
(h)は、クロック信号CLKと反転ゼロクロス信号/ZxとをAND回路20を通してアンドをとった信号で、反転ゼロクロス信号/ZxがハイのON期間中のみ出力されるクロック信号である。このD−FF回路21も、このクロック信号の立ち上がりでデータ端子Dの入力データをラッチしてQ端子に出力する。
そこで、(d)に示したシフトレジスタ19から出力されるシフトされた出力大期間信号SSciを(g)に示したクロック信号CLK(ON)の立ち上がりで、D−FF回路21にラッチする。そのD−FF回路21のQ端子の出力信号は(h)に示す波形になる。
このAND回路20及びD−FF回路21等が、シフトレジスタ19によって移行された出力大期間を示す情報(信号SSci)を、ゼロクロス回路15によって出力発生期間が検出されない(Zxがローの)期間にのみ制御回路へ伝達する情報伝達手段に相当する。
しかし、図3の(i)に示す信号SSciRは、右方の2つのハイレベルの波形部分は、出力発生期間になるOFF期間にまで延びてしまっている。このOFF期間には励磁電流を流すことはできないので、この部分の情報は不要である。
そこで、図1の実施形態ではAND回路22を設けて、D−FF回路21から出力される信号SSciRと(f)に示した反転ゼロクロス信号/Zxとのアンドをとって、図3の(i)に示す信号を出力するようにした。このAND回路22が、ゼロクロス回路15によって出力発生期間が検出された(/Zxがローの)期間には、出力大期間を示す情報(信号SSci)の制御IC12への伝達を禁止する手段に相当する。
このAND回路22の出力信号を図1におけるトランジスタTrのベースに印加する。それによって、その信号がハイレベルの期間、すなわち直前のOFF期間で出力電圧検出信号Soutが入力電圧検出信号Sinを超えていた(Sout>Sin)期間だけ、トランジスタTrをオン状態にする。すると、制御IC12のトランジスタTrを接続している端子が、その期間だけアース電位になり、Sout>Sinだった時間の情報が制御IC12に伝達される。
それによって、制御回路である制御IC12は、シフトレジスタ19によって移行された出力大期間を示す情報(信号SSci)に基づいて、出力電圧Vout の波高値を一定にするように、スイッチング素子Qを実際にオンにする期間を調整又は決定する。
たとえば、出力大期間が基準値より長いときは、入力電圧が低くなっているので、スイッチング素子Qをオンにする期間(ON時間)を長くする。出力大期間が基準値より短いいときは、入力電圧が高くなっているので、スイッチング素子Qをオンにする期間(ON時間)を短くする。
次に、この発明による上述したインバータ装置を一部変更した実施形態の動作を、図4のタイミングチャートによって説明する。
この図4の(a)と(b)は、図2の(b)と(d)に示した入力電圧検出信号Sinと、比較回路18による比較結果である出力大期間信号Scに対応する。出力大期間信号Scは、出力電圧検出信号Soutの値(レベル)が入力電圧検出信号Sinの値(レベル)を超えている期間だけハイレベルになる信号である。
この場合は、商用電源の交流の入力電圧Vinを図1の全波整流回路で全波整流した後、コンデンサなどで平滑して、昇圧トランス10の励磁巻線とスイッチング素子Qとの直列回路に印加する。そして、入力電圧検出回路14も、商用電源の交流の入力電圧Vinを全波整流した後、コンデンサなどで平滑して入力電圧検出信号Sinとする。それ以外は前述の実施形態と同様である。
この実施形態によれば、図4の(a)に示すように、入力電圧検出信号Sinが、ゆるい傾斜で直線的に変化し、その電圧レベルが同図に実線で示す基準値から、太い破線で示す最大値と、点線で示す最小値の間で変動する。
また、同図には出力電圧検出信号Soutの波形も点線で示している。したがって、入力電圧検出信号Sinと出力電圧検出信号Soutの値を比較して、出力電圧検出信号Soutの値の方が大きい期間を示す出力大期間信号Scは、図4の(b)に示すようになる。
この場合、同図に、長短の矢印範囲で示す情報によって、制御IC12がスイッチング素子QをオンにするON時間を調整して、出力電圧の波高値を一定にするように制御する。
このようにすると、入力電圧の変動の検出精度がよくなる。
以上説明したこの発明によるインバータ装置は、入力電検出信号を基準にすることで、出力電圧の波高値を一定にする。そのため、励磁電流Ip、入力電圧Vin、励磁インダクタンスLp、及びスイッチング素子のオン時間Tonとの間の Ip=Vin・Ton/Lpの関係上から、入力電圧Vinに応じオン時間Tonを変調させる制御を、同じ周期内で行う。したがって、入力電圧が変化しても、応答が速く安定な出力電圧を得ることができる。
また、スイッチング素子のオン期間とオフ期間の割合をPWM制御する場合、オン期間を短くすると、その分だけオフ期間が長くなり、出力の共振電圧も連続された電圧が発生する。そこで、スイッチング素子に流れる電流を検出し、あらかじめ決めた電流に達するとスイッチング素子をオフにする機能を追加することによって、オフ期間を固定し、オン期間のみ変調する制御が可能になり、一層応答が早い安定した出力電圧を得ることができる。
また、これに加え、予め入力電圧検出信号によってスイッチング素子のオン期間を決定させ、それによって制御することにより、安定した出力電圧を得ることも可能である。
この発明によるプラズマ発生装置は、この放電部内を、シート材を誘電体に沿って搬送して通過させることによって、その表面がプラズマによって生成されるラジカルやイオンなどの活性種に触れて改質が進行する。
それは、プラズマにより、空気中の成分やシート材自体に含まれている成分によって形成される種々の親水性官能基等の基が、シート材の表面に形成されて表面エネルギーが高くなることによって進行する。
このような大気圧プラズマは、表面処理の一つの手段として、表面の改質や汚染物の除去等、様々な工業製品に応用されている。樹脂等の接着や印刷、コーティング等を施す場合に、大気圧プラズマにより前処理を行うと、濡れ性を向上させることが可能になる。
例えば、電子写真方式による画像形成装置により樹脂トナーが印刷された印刷物に、紫外線硬化型のニスをコーティングしようとすると、樹脂トナーに含まれるワックス成分に
より、樹脂トナー印刷部分のニスを弾いてしまう場合がある。しかし、大気圧プラズマによる表面処理を行うと、濡れ性が向上するため、ニスコーティングが可能になり、印刷物
の付加価値が向上する。
しかし、この発明によるプラズマ発生装置は大気圧プラズマの発生に限るものではなく、種々の変更が可能である。また、コロナ放電によってプラズマを発生する装置や、多少ガスが入った低圧雰囲気でプラズマ放電を発生する装置にも適用可能である。
また、この発明によるインバータ装置は、プラズマ発生装置に限らず、半導体ウエハー接着装置、画像処理機器、塗装装置、蛍光ランブ等の照明機器、空気清浄機、放電機器、液晶TVのバックライト、除菌装置など、種々の装置の高電圧電源装置に利用できる。
以上、この発明の各実施形態について説明してきたが、その実施形態の各部の具体的な構成や動作の内容等は、そこに記載したものに限るものではない。
また、この発明は上述した各実施形態に限定されるものではなく、特許請求の範囲の各請求項に記載された技術的特徴を有する以外は、何ら限定されるものではないことは言うまでもない。
さらに、以上説明してきた各実施形態の回路例、動作例及び変形例等は、適宜変更又は追加し、あるいは一部を削除してもよく、相互に矛盾しない限り任意に組み合わせて実施することも可能であることは勿論である。
1:インバータ装置 2:負荷(プラズマ発生用の放電部)
10:昇圧トランス 11:全波整流回路 12:制御IC(制御回路)
13:補助電源回路 14:入力電圧検出回路(入力電圧検出手段)
15:ゼロクロス回路(出力発生期間検出手段) 16:反転回路
17:発振器(OSC) 18:比較回路(比較手段)
19:シフトレジスタ(移行手段) 20,22:AND回路 21:D−FF回路
Q:スイッチング素子 T1,T2:トランス Np1,Np2:励磁巻線
Ns1,Ns2:出力巻線 Nh:補助巻線
Nd:第3次巻線(出力電圧検出手段) Tr:トランジスタ
Vin:入力電圧 Vout:出力電圧
Vh:補助巻線に誘起される電圧 Co:負荷容量
Sin:入力電圧検出信号 Sout:出力電圧検出信号 CLK:クロック信号
Zx:ゼロクロス信号 /Zx:反転ゼロクロス信号
特開2009−11144号公報 国際公開第2007/060941号パンフレット

Claims (9)

  1. 制御回路にオン・オフ制御されるスイッチング素子によって入力電圧をスイッチングして、該スイッチング素子がオンの期間に昇圧トランスの励磁巻線に励磁電流を流し、該スイッチング素子がオフの期間に前記昇圧トランスの出力巻線から交流半波波形の出力電圧を出力するインバータ装置において、
    前記入力電圧の状態を電圧で検出する入力電圧検出手段と、
    前記出力電圧の状態を瞬時値に対応した電圧で検出する出力電圧検出手段と、
    該出力電圧検出手段による出力電圧検出信号に基づいて、前記出力電圧が発生している出力発生期間を検出する出力発生期間検出手段と、
    前記入力電圧検出手段による入力電圧検出信号と前記出力電圧検出手段による出力電圧検出信号とを比較して、前記出力電圧検出信号が前記入力電圧検出信号を超える出力大期間を検出する比較手段と、
    該比較手段が検出した出力大期間を示す情報を、前記出力発生期間検出手段によって前記出力発生期間が検出されなくなる次の期間へ移行させる移行手段とを有し、
    該移行手段によって移行された前記出力大期間を示す情報に基づいて、前記制御回路が前記スイッチング素子をオンにする期間を調整することを特徴とするインバータ装置。
  2. 前記制御回路は、前記スイッチング素子をオンにする期間を、前記出力大期間が基準値より長いほど長くし、短いほど短くするように調整することを特徴とする請求項1に記載のインバータ装置。
  3. 請求項1又は2に記載のインバータ装置において、
    前記移行手段によって移行される前記出力大期間を示す情報を、前記出力発生期間検出手段によって前記出力発生期間が検出されない期間にのみ前記制御回路へ伝達する情報伝達手段を設けたことを特徴とするインバータ装置。
  4. 請求項3に記載のインバータ装置において、
    前記出力発生期間検出手段によって前記出力発生期間が検出されている間は前記出力大期間を示す情報の前記制御回路への伝達を禁止する手段を設けたことを特徴とするインバータ装置。
  5. 前記移行手段は、前記スイッチングの周波数より高い周波数のクロック信号に同期して、前記出力大期間を示す情報を取り込んで、それを前記出力発生期間検出手段によって前記出力発生期間が検出されなくなる次の期間へ移行させることを特徴とする請求項1から4のいずれか一項に記載のインバータ装置。
  6. 前記情報伝達手段は、前記移行手段によって移行される前記出力大期間を示す情報を、前記スイッチングの周波数より高い周波数のクロック信号に同期して前記制御回路へ伝達する請求項3又は4に記載のインバータ装置。
  7. 前記出力電圧検出手段は、前記昇圧トランスに設けた第3次巻線によって、前記出力電圧に同期して波高値が該出力電圧より小さい波形の電圧を発生して前記出力電圧検出信号とすることを特徴とする請求項1から6のいずれか一項に記載のインバータ装置。
  8. 前記昇圧トランスを、別個のコアを持つ同じ特性の複数のトランスによって構成し、該複数の各トランスの励磁巻線を互いに並列又は直列に接続して同時に前記励磁電流を流し、前記各トランスの出力巻線を互いに直列又は並列に接続して、前記出力電圧を出力させるようにしたことを特徴とする請求項1から7のいずれか一項に記載のインバータ装置。
  9. 請求項1から8のいずれか一項に記載のインバータ装置と、該インバータ装置の負荷として前記出力電圧が印加される放電電極とカウンタ電極を有する放電部を備え、前記放電電極とカウンタ電極との間でプラズマを発生することを特徴とするプラズマ発生装置。
JP2014055657A 2014-03-18 2014-03-18 インバータ装置及びプラズマ発生装置 Active JP6330402B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014055657A JP6330402B2 (ja) 2014-03-18 2014-03-18 インバータ装置及びプラズマ発生装置
US14/657,961 US9232625B2 (en) 2014-03-18 2015-03-13 Inverter device, plasma generator apparatus and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055657A JP6330402B2 (ja) 2014-03-18 2014-03-18 インバータ装置及びプラズマ発生装置

Publications (3)

Publication Number Publication Date
JP2015180127A JP2015180127A (ja) 2015-10-08
JP2015180127A5 JP2015180127A5 (ja) 2017-06-01
JP6330402B2 true JP6330402B2 (ja) 2018-05-30

Family

ID=54143491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055657A Active JP6330402B2 (ja) 2014-03-18 2014-03-18 インバータ装置及びプラズマ発生装置

Country Status (2)

Country Link
US (1) US9232625B2 (ja)
JP (1) JP6330402B2 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6481814B2 (ja) 2015-02-19 2019-03-13 株式会社リコー インバータ装置
US9799441B2 (en) 2015-03-19 2017-10-24 Ricoh Company, Ltd. Transformer and plasma generator
US10164528B2 (en) * 2015-06-29 2018-12-25 Semiconductor Components Industries, Llc Switch control circuit and buck converter including the same
JP6675786B2 (ja) * 2016-07-29 2020-04-01 ダイハツ工業株式会社 プラズマリアクタの電源装置
JP6462637B2 (ja) * 2016-08-10 2019-01-30 株式会社東芝 沿面放電素子駆動装置および沿面放電素子駆動方法
FR3055494B1 (fr) * 2016-08-25 2018-09-21 Clarteis Generateur d'impulsions electriques
US11470711B2 (en) * 2017-05-16 2022-10-11 Fuji Corporation Plasma generator with connector-cable detector
PL233868B1 (pl) * 2017-12-29 2019-12-31 Politechnika Lubelska Układ i sposób zasilania reaktora plazmowego ze ślizgającym się wyładowaniem
CN108569742A (zh) * 2018-04-29 2018-09-25 航天慧能(江苏)环境工程有限公司 基于物联网的等离子废水处理***
CN108408826A (zh) * 2018-04-29 2018-08-17 航天慧能(江苏)环境工程有限公司 基于物联网的等离子废水处理***的交流电源
CN108400647A (zh) * 2018-05-14 2018-08-14 北方工业大学 基于互联网光触媒新风***的太阳能电源
CN111983524B (zh) * 2020-08-26 2021-06-08 西南交通大学 一种基于振荡波时频变换的变压器绕组故障评估方法
US11368095B1 (en) * 2021-01-29 2022-06-21 Abl Ip Holding Llc Continuous load high power flyback converter
US11881383B2 (en) * 2021-08-16 2024-01-23 Essentium Ipco, Llc Control circuit for a dielectric barrier discharge (DBD) disk in a three-dimensional printer

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2524942B2 (ja) 1992-07-27 1996-08-14 新日本製鐵株式会社 プラズマ表面処理装置
JPH0715950A (ja) * 1993-06-25 1995-01-17 Matsushita Electric Works Ltd 電力制御回路
JPH07227087A (ja) * 1994-02-08 1995-08-22 Ricoh Co Ltd 高圧電源
JP3353684B2 (ja) 1998-01-09 2002-12-03 ウシオ電機株式会社 誘電体バリア放電ランプ光源装置
JP4454444B2 (ja) 2004-09-08 2010-04-21 本田技研工業株式会社 双方向dc−dcコンバータ
JP4627320B2 (ja) 2005-11-22 2011-02-09 ローム株式会社 インバータおよびその制御回路、ならびにそれらを用いた発光装置および液晶テレビ
KR100889528B1 (ko) 2007-06-27 2009-03-19 삼성에스디아이 주식회사 소프트 스타트 회로와 이를 포함하는 전원공급장치
JP5298050B2 (ja) * 2010-03-11 2013-09-25 トヨタ自動車株式会社 スイッチング電源回路
EP2375555B1 (en) 2010-03-26 2013-10-02 Ricoh Company, Ltd. High voltage inverter device
JP2012135112A (ja) 2010-12-21 2012-07-12 Tohoku Ricoh Co Ltd 高電圧インバータ装置及びその出力電圧調整方法
JP5716394B2 (ja) 2010-12-28 2015-05-13 株式会社リコー 高電圧インバータ装置及びその漏電検出装置
JP5712704B2 (ja) 2011-03-14 2015-05-07 株式会社リコー 高電圧インバータ装置
JP5834596B2 (ja) * 2011-07-29 2015-12-24 株式会社リコー 高電圧インバータ装置
JP5842465B2 (ja) * 2011-08-29 2016-01-13 株式会社リコー 電源装置
JP2013219982A (ja) * 2012-04-11 2013-10-24 Toyota Industries Corp Dc−acインバータ
JP6160142B2 (ja) 2013-03-14 2017-07-12 株式会社リコー 高電圧インバータ

Also Published As

Publication number Publication date
US20150271906A1 (en) 2015-09-24
US9232625B2 (en) 2016-01-05
JP2015180127A (ja) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6330402B2 (ja) インバータ装置及びプラズマ発生装置
JP6481814B2 (ja) インバータ装置
JP2015180127A5 (ja)
JP2008312359A (ja) スイッチング電源装置、並びにレギュレーション回路
KR20170120592A (ko) 전원 제어용 반도체 장치
US11128211B2 (en) Method for driving an electronic switch in a power converter circuit and control circuit
JP2011087394A (ja) スイッチング素子駆動用制御回路およびスイッチング電源装置
JP4318659B2 (ja) 放電灯駆動装置
US9453860B2 (en) Inverter device
TWI672894B (zh) 電源控制器與相關之控制方法
JP5834596B2 (ja) 高電圧インバータ装置
US9467071B2 (en) Voltage resonant inverter, control method, and surface treatment device
JP4729468B2 (ja) 圧電トランスを用いた電源装置、電子写真用電源装置、圧電トランス用駆動電圧制御方法及びそのプログラム
JP2009038893A (ja) 圧電トランス方式高圧電源装置及び画像形成装置
US9450493B2 (en) Voltage generating apparatus for stably controlling voltage
JP2015019533A (ja) 高圧電源装置及び画像形成装置
JP2009545945A (ja) 磁気的に結合されるスイッチ制御回路を備える直流−直流電力変換器
JP2005198462A (ja) 圧電トランスを用いた電源装置
JP6273918B2 (ja) 自励式インバータ装置及びプラズマ発生装置
JP2017085793A (ja) 電源装置およびプラズマ処理装置
CN112771774A (zh) 控制串联谐振转换器的方法
JP4483204B2 (ja) スイッチング電源
JP6428179B2 (ja) インバータ装置
KR102372772B1 (ko) 제어 회로 및 이를 이용한 전원 변환 장치
JP2007037312A (ja) 圧電トランスを用いた電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180409

R151 Written notification of patent or utility model registration

Ref document number: 6330402

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151