JP5993765B2 - Composite nickel particles - Google Patents

Composite nickel particles Download PDF

Info

Publication number
JP5993765B2
JP5993765B2 JP2013061308A JP2013061308A JP5993765B2 JP 5993765 B2 JP5993765 B2 JP 5993765B2 JP 2013061308 A JP2013061308 A JP 2013061308A JP 2013061308 A JP2013061308 A JP 2013061308A JP 5993765 B2 JP5993765 B2 JP 5993765B2
Authority
JP
Japan
Prior art keywords
nickel
nickel particles
particles
composite
composite nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013061308A
Other languages
Japanese (ja)
Other versions
JP2014029014A (en
Inventor
山田 勝弘
勝弘 山田
井上 修治
修治 井上
恭子 足立
恭子 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2013061308A priority Critical patent/JP5993765B2/en
Publication of JP2014029014A publication Critical patent/JP2014029014A/en
Application granted granted Critical
Publication of JP5993765B2 publication Critical patent/JP5993765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、焼結性に優れた複合ニッケル粒子に関し、より詳しくは、例えば積層セラミックスコンデンサ(MLCC)の内部電極形成用などの導電ペーストに好適に利用できる複合ニッケル粒子に関する。   The present invention relates to composite nickel particles having excellent sinterability, and more particularly to composite nickel particles that can be suitably used for conductive pastes for forming internal electrodes of multilayer ceramic capacitors (MLCC), for example.

MLCCは、セラミックス誘電体と内部電極とを交互に層状に重ねて圧着し、焼成して一体化させたものである。このようなMLCCの内部電極を形成する際には、内部電極材料である金属ニッケル粒子をペースト化したのち、これをセラミックス基板上に印刷する。次いで、乾燥、積層及び圧着した後、通常、酸化雰囲気下で約250〜400℃に加熱して有機物を除去するための脱バインダー処理を行なう。このような加熱処理を行なうことによって、金属ニッケル粒子は酸化され、それにより体積膨張が起きる。さらにその後、還元性雰囲気下で高温(例えばチタン酸バリウム系セラミックス誘電体では約1200〜1400℃)で焼結を行なうが、この焼結により、一旦酸化された金属ニッケル粒子が還元されるとともに、体積の収縮が生じる。   In MLCC, ceramic dielectrics and internal electrodes are alternately layered and pressure-bonded, and fired and integrated. When forming such MLCC internal electrodes, metallic nickel particles, which are internal electrode materials, are made into a paste and then printed on a ceramic substrate. Next, after drying, laminating and press-bonding, a binder removal treatment for removing organic substances is usually performed by heating to about 250 to 400 ° C. in an oxidizing atmosphere. By performing such a heat treatment, the metallic nickel particles are oxidized, thereby causing volume expansion. Further, after that, sintering is performed under a reducing atmosphere at a high temperature (for example, about 1200 to 1400 ° C. in the case of a barium titanate ceramic dielectric). By this sintering, once oxidized metal nickel particles are reduced, Volume shrinkage occurs.

このように、MLCCの製造工程では、酸化反応や還元反応によって金属ニッケル粒子が膨張・収縮して体積変化が生じる。また、セラミックス誘電体も焼結により膨張・収縮し、体積変化が生じる。ところが、金属ニッケル粒子とセラミックス誘電体とでは、焼結時における膨張・収縮による体積変化の挙動が異なるため、デラミネーションやクラック等の欠陥を生じるおそれがある。   Thus, in the manufacturing process of MLCC, metallic nickel particles expand and contract due to an oxidation reaction or a reduction reaction, resulting in a volume change. The ceramic dielectric also expands and contracts due to sintering, resulting in a volume change. However, since the behavior of volume change due to expansion / contraction during sintering differs between the metallic nickel particles and the ceramic dielectric, defects such as delamination and cracks may occur.

このような問題を解決する手段として、金属ニッケル粒子の表面に存在する水酸化物を熱処理により酸化物に変化させて酸化被膜を形成した金属ニッケル粒子が提案されている(例えば、特許文献1参照)。このような金属ニッケル粒子は、表面に緻密で厚い酸化被膜が形成されているので、金属ニッケル粒子の内部への酸化の進行は抑制されるものの、焼結時においては、拡散係数の大きな酸化物が、セラミックス誘電体中へ拡散する懸念がある。   As means for solving such a problem, metal nickel particles in which an oxide film is formed by changing a hydroxide present on the surface of the metal nickel particles into an oxide by heat treatment have been proposed (for example, see Patent Document 1). ). Since such metal nickel particles have a dense and thick oxide film formed on the surface, the progress of oxidation to the inside of the metal nickel particles is suppressed, but an oxide having a large diffusion coefficient during sintering. However, there is a concern that it may diffuse into the ceramic dielectric.

国際公開WO2004−020128号パンフレットInternational Publication WO2004-020128 Pamphlet

本発明の目的は、粒子の凝集や融着、脱バインダー時の金属表面における炭化物の生成を抑制できるだけでなく、金属ニッケル粒子の急激な酸化を抑制しつつ、耐焼結性を向上させた複合ニッケル粒子を提供することである。   The object of the present invention is not only to suppress the aggregation and fusion of particles and the formation of carbides on the metal surface during debinding, but also to prevent the rapid oxidation of metallic nickel particles and improve the sintering resistance. To provide particles.

本発明者らは、鋭意研究を重ねた結果、金属ニッケル粒子の表面に水酸化物又は酸化物の被膜を有する複合ニッケル粒子は、粒子径の大小によらず、被膜の厚みが変動しにくいという知見を得た。この知見から、複合ニッケル粒子に含有される酸素の割合が、その粒子径が小さくなるにつれて大きくなることに着目し、本発明を完成するに至った。   As a result of intensive studies, the inventors of the present invention say that the composite nickel particles having a hydroxide or oxide coating on the surface of the metallic nickel particles are less likely to vary in the thickness of the coating regardless of the size of the particle diameter. Obtained knowledge. From this knowledge, the inventors have paid attention to the fact that the proportion of oxygen contained in the composite nickel particles increases as the particle diameter decreases, leading to the completion of the present invention.

すなわち、本発明の複合ニッケル粒子は、金属ニッケル粒子の表面に、水酸化物又は酸化物の被膜を有する複合ニッケル粒子である。この複合ニッケル粒子は、酸素含有量(Mo)が0.1〜4.0質量%の範囲内、走査型電子顕微鏡観察による平均粒子径(L)が20〜250nmの範囲内、結晶子径(L)が10nm以上であって、Mo(単位;質量%)、L(単位;nm)及びL(単位;nm)が、Mo×L/L≦9(単位;質量%)の関係を満足する。 That is, the composite nickel particle of the present invention is a composite nickel particle having a hydroxide or oxide film on the surface of the metal nickel particle. The composite nickel particles have an oxygen content (Mo) in the range of 0.1 to 4.0% by mass, an average particle diameter (L 1 ) by scanning electron microscope observation in the range of 20 to 250 nm, and a crystallite diameter. (L 2 ) is 10 nm or more, and Mo (unit: mass%), L 1 (unit: nm) and L 2 (unit: nm) are Mo × L 1 / L 2 ≦ 9 (unit: mass%) ) Satisfy the relationship.

本発明の複合ニッケル粒子は、被膜を透過するX線で金属ニッケルを同定するX線光電子分光分析法により測定した金属ニッケルの含有率が25〜75atm%の範囲内であってもよい。   The composite nickel particles of the present invention may have a metallic nickel content of 25 to 75 atm% as measured by X-ray photoelectron spectroscopy that identifies metallic nickel with X-rays that pass through the coating.

また、本発明の複合ニッケル粒子は、前記平均粒子径が40〜150nmの範囲内であり、粒子径の変動係数(標準偏差/平均粒子径)が0.2以下であってもよい。   The composite nickel particles of the present invention may have an average particle size in the range of 40 to 150 nm and a coefficient of variation (standard deviation / average particle size) of 0.2 or less.

本発明の複合ニッケル粒子によれば、酸素含有量が平均粒子径及び結晶子径のバランスを考慮して制御されているため、脱バインダー時における金属ニッケル粒子の酸化及び炭化物の生成を抑制できるのみならず、低温での熱収縮が抑制されている。このような複合ニッケル粒子は、例えば積層セラミックコンデンサの内部電極の材料として好適に用いることができる。   According to the composite nickel particles of the present invention, since the oxygen content is controlled in consideration of the balance between the average particle size and the crystallite size, only the oxidation of metal nickel particles and the generation of carbides during debinding can be suppressed. In other words, thermal shrinkage at a low temperature is suppressed. Such composite nickel particles can be suitably used as a material for an internal electrode of a multilayer ceramic capacitor, for example.

実施例2−1で得られた複合ニッケル粒子のSEM(走査型電子顕微鏡)写真(×5万倍)である。It is a SEM (scanning electron microscope) photograph (x50,000 times) of the composite nickel particle obtained in Example 2-1. 実施例2−1で得られた複合ニッケル粒子のTMA(熱機械分析)のチャートである。3 is a TMA (thermomechanical analysis) chart of the composite nickel particles obtained in Example 2-1. 実施例2−2で得られた複合ニッケル粒子のSEM写真(×5万倍)である。It is a SEM photograph (x50,000 times) of the composite nickel particle obtained in Example 2-2. 実施例2−2で得られた複合ニッケル粒子のTMAのチャートである。It is a TMA chart of the composite nickel particles obtained in Example 2-2. 実施例2−3で得られた複合ニッケル粒子のSEM写真(×5万倍)である。It is a SEM photograph (x50,000 times) of the composite nickel particle obtained in Example 2-3. 実施例2−3で得られた複合ニッケル粒子のTEM(透過型電子顕微鏡)写真である。It is a TEM (transmission electron microscope) photograph of the composite nickel particle obtained in Example 2-3. 実施例2−3で得られた複合ニッケル粒子の結晶子の模様を模式的に示す説明図である。It is explanatory drawing which shows typically the pattern of the crystallite of the composite nickel particle obtained in Example 2-3. 実施例2−5で得られた複合ニッケル粒子のSEM写真(×5万倍)である。It is a SEM photograph (x50,000 times) of the composite nickel particle obtained in Example 2-5. 実施例2−6で得られた複合ニッケル粒子のSEM写真(×1万倍)である。It is a SEM photograph (x10,000 times) of the composite nickel particle obtained in Example 2-6. 実施例2−9で得られた複合ニッケル粒子のSEM写真(×1万倍)である。It is a SEM photograph (x10,000 times) of the composite nickel particle obtained in Example 2-9.

[複合ニッケル粒子]
本実施の形態の複合ニッケル粒子は、金属ニッケル粒子の表面に、水酸化物又は酸化物の被膜を有し、酸素元素の含有量(Mo)が0.1〜4.0質量%の範囲内にあり、走査型電子顕微鏡観察による平均粒子径(L)が20〜250nmの範囲内、結晶子径(L)が10nm以上である。また、複合ニッケル粒子におけるMo(単位;質量%)、L(単位;nm)及びL(単位;nm)のそれぞれが、Mo×L/L≦9(単位;質量%)を満足する。
[Composite nickel particles]
The composite nickel particle of the present embodiment has a hydroxide or oxide film on the surface of the metal nickel particle, and the oxygen element content (Mo) is in the range of 0.1 to 4.0% by mass. The average particle diameter (L 1 ) by scanning electron microscope observation is in the range of 20 to 250 nm, and the crystallite diameter (L 2 ) is 10 nm or more. Further, each of Mo (unit: mass%), L 1 (unit: nm) and L 2 (unit: nm) in the composite nickel particles satisfies Mo × L 1 / L 2 ≦ 9 (unit: mass%). To do.

本実施の形態の複合ニッケル粒子において、金属ニッケル粒子は、ニッケル元素を含有する。ニッケル元素の含有量は、その使用目的に応じて適宜選択すればよいが、ニッケル元素の量を、複合ニッケル粒子100質量部に対し、好ましくは90質量部以上、より好ましくは95質量部以上とすることがよい。ニッケル以外の金属としては、例えば、チタン、コバルト、銅、クロム、マンガン、鉄、アルミニウム、ナトリウム、カリウム、マグネシウム、ジルコニウム、スズ、タングステン、モリブデン、バナジウム、バリウム、カルシウム、ストロンチウム、シリコン、アルミニウム、リン等の卑金属、金、銀、白金、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム、レニウム、ネオジウム、ニオブ、ホロニウム、ディスプロヂウム、イットリウム等の貴金属、希土類金属を挙げることができる。これらは、単独で又は2種以上含有していてもよく、また水素、炭素、窒素、硫黄、ボロン等の金属元素以外の元素を含有していてもよいし、これらの合金であってもよい。   In the composite nickel particles of the present embodiment, the metal nickel particles contain a nickel element. The content of nickel element may be appropriately selected according to the purpose of use, but the amount of nickel element is preferably 90 parts by mass or more, more preferably 95 parts by mass or more with respect to 100 parts by mass of the composite nickel particles. It is good to do. Examples of metals other than nickel include titanium, cobalt, copper, chromium, manganese, iron, aluminum, sodium, potassium, magnesium, zirconium, tin, tungsten, molybdenum, vanadium, barium, calcium, strontium, silicon, aluminum, and phosphorus. Base metals such as gold, silver, platinum, palladium, iridium, osmium, ruthenium, rhodium, rhenium, neodymium, niobium, holonium, dysprodium, yttrium and the like, and rare earth metals. These may be contained alone or in combination of two or more, may contain elements other than metal elements such as hydrogen, carbon, nitrogen, sulfur and boron, and may be alloys thereof. .

本実施の形態の複合ニッケル粒子において、金属ニッケル粒子の表面に存在する水酸化物又は酸化物の被膜(酸素含有被膜)として、例えば水酸化ニッケル(Ni(OH))又は酸化ニッケル(NiO)の被膜が形成されている。このような被膜は、金属ニッケル粒子の表面に部分的に存在していてもよいが、金属ニッケル粒子の全表面に亘る被膜がより好ましい。その被膜の最大厚みは、複合ニッケル粒子の凝集を効果的に抑制する観点から、例えば1〜8nmの範囲内であることが好ましい。このような水酸化物又は酸化物の被膜により、複合ニッケル粒子の表面活性が抑制され、脱バインダー工程におけるバインダーの低温燃焼又は急激な熱分解を抑制することができるが、このとき、酸素含有被膜が水酸化物の被膜である場合、脱水によって酸化物の被膜となり、複合ニッケル粒子の焼結が抑制されると考えられる。また、還元雰囲気下での熱処理により、複合ニッケル粒子における酸化物の被膜が還元されて存在しなくなると、金属ニッケル粒子の焼結が開始される。 In the composite nickel particles of the present embodiment, for example, nickel hydroxide (Ni (OH) 2 ) or nickel oxide (NiO) is used as the hydroxide or oxide film (oxygen-containing film) present on the surface of the metal nickel particles. The film is formed. Such a coating may be partially present on the surface of the metallic nickel particles, but a coating over the entire surface of the metallic nickel particles is more preferable. The maximum thickness of the coating is preferably in the range of 1 to 8 nm, for example, from the viewpoint of effectively suppressing aggregation of the composite nickel particles. By such a hydroxide or oxide coating, the surface activity of the composite nickel particles is suppressed, and low temperature combustion or rapid thermal decomposition of the binder in the debinding step can be suppressed. Is a hydroxide film, it becomes an oxide film by dehydration, and it is considered that sintering of the composite nickel particles is suppressed. Further, when the oxide film on the composite nickel particles is reduced and no longer exists by the heat treatment in a reducing atmosphere, the sintering of the metal nickel particles is started.

本実施の形態の複合ニッケル粒子は、酸素元素を含有している。複合ニッケル粒子における酸素元素の含有量(Mo)は0.1〜4.0質量%の範囲内、好ましくは0.2〜2.0質量%の範囲内がよい。この酸素元素の含有量は、複合ニッケル粒子の元素分析により確認することができる。酸素元素の含有量(Mo)が、0.1質量%未満であると、複合ニッケル粒子の表面活性を抑制する効果が小さくなる傾向があり、4.0質量%を超えると、焼結時に体積変化が生じやすくなるとともに酸化物の拡散が生じる傾向がある。酸素元素は、水酸化物又は酸化物の被膜に含有する酸素量に由来するものと考えられる。このことは、複合ニッケル粒子の水酸化物又は酸化物の被膜の厚みが、平均粒子径(L)の大小によらず殆ど大差がないのに対し、複合ニッケル粒子の平均粒子径(L)が小さくなるにつれ、酸素元素の含有量(Mo)が高くなる傾向があることから推察される。すなわち、複合ニッケル粒子の平均粒子径(L)が小さいほど、その総表面積(全ての複合ニッケル粒子の合計の表面積)が大きいので、複合ニッケル粒子全体に占める酸素元素の含有量(Mo)が相対的に大きくなることによるものと考えられる。 The composite nickel particles of the present embodiment contain an oxygen element. The content (Mo) of the oxygen element in the composite nickel particles is in the range of 0.1 to 4.0% by mass, preferably in the range of 0.2 to 2.0% by mass. The oxygen element content can be confirmed by elemental analysis of the composite nickel particles. If the oxygen element content (Mo) is less than 0.1% by mass, the effect of suppressing the surface activity of the composite nickel particles tends to be small, and if it exceeds 4.0% by mass, the volume during sintering is increased. Changes tend to occur and oxide diffusion tends to occur. The oxygen element is considered to be derived from the amount of oxygen contained in the hydroxide or oxide film. This thickness of the coating of hydroxides or oxides of nickel composite particles, whereas little significant difference regardless of the magnitude of the average particle diameter (L 1), the average particle size of the composite nickel particles (L 1 ) Tends to increase as the oxygen element content (Mo) tends to increase. That is, the smaller the average particle diameter (L 1 ) of the composite nickel particles, the greater the total surface area (the total surface area of all composite nickel particles), so the content (Mo) of the oxygen element in the entire composite nickel particles is larger. This is thought to be due to the relatively large size.

また、本実施の形態の複合ニッケル粒子は、例えば焼結時におけるセラミックス誘電体への酸化物の拡散を抑制するという観点から、水酸化物又は酸化物の被膜の緻密度を中程度に制御することが好ましい。より具体的には、被膜を透過するX線で金属ニッケルを同定するX線光電子分光分析法(以下「XPS」と略することがある。)により測定した金属ニッケルの含有率が、好ましくは25〜75atm%の範囲内、より好ましくは40〜60atm%の範囲内がよい。XPSにより、金属ニッケル、水酸化ニッケル及び酸化ニッケルに起因するニッケル原子を同定及び定量することができるが、水酸化物又は酸化物の被膜の緻密度と金属ニッケルの含有率との関係に相関があり、当該被膜の緻密度が低ければ金属ニッケルの比率は高くなり、緻密度が高ければ金属ニッケルの比率は低くなる。被膜の緻密度が高い場合、複合ニッケル粒子が見掛け上のニッケル酸化物の粒子として、拡散係数が大きな酸化物が、MLCCにおいて相対的に拡散係数が小さいセラミックス誘電体層へ拡散しやすくなる。一方、被膜の緻密度が低い場合、脱バインダー時に酸化されやすくなり、急激な体積膨張を生じやすくなる。   Further, the composite nickel particles of the present embodiment control the density of the hydroxide or oxide film to a moderate level from the viewpoint of suppressing the diffusion of the oxide into the ceramic dielectric during sintering, for example. It is preferable. More specifically, the content of metallic nickel measured by X-ray photoelectron spectroscopy (hereinafter sometimes abbreviated as “XPS”) for identifying metallic nickel with X-rays transmitted through the coating is preferably 25. It is preferable to be within a range of ˜75 atm%, more preferably within a range of 40 to 60 atm%. XPS can identify and quantify nickel atoms resulting from metallic nickel, nickel hydroxide and nickel oxide, but there is a correlation between the density of the hydroxide or oxide coating and the content of metallic nickel. The ratio of metallic nickel is high when the density of the coating is low, and the ratio of metallic nickel is low when the density is high. When the density of the coating is high, the oxide having a large diffusion coefficient is easily diffused into the ceramic dielectric layer having a relatively small diffusion coefficient in MLCC as the composite nickel particles are apparently nickel oxide particles. On the other hand, when the density of the coating is low, it is likely to be oxidized at the time of debinding, and a rapid volume expansion is likely to occur.

本実施の形態に係る複合ニッケル粒子は、走査型電子顕微鏡観察による平均粒子径(L)が20〜250nmの範囲内、好ましくは40〜150nmの範囲内がよい。別の観点から、BET測定による平均粒子径(L)が20〜250nmの範囲内、好ましくは40〜150nmの範囲内がよい。複合ニッケル粒子の平均粒子径(L)が上記下限値を下回ると、脱バインダー時の加熱で複合ニッケル粒子同士が凝集又溶融しやすくなり、また酸素を取り込みやすくなるため、複合ニッケル粒子の体積膨張や収縮変化が大きくなる。一方、複合ニッケル粒子の平均粒子径(L)が上記上限値を上回ると、最小径の粒子及び最大径の粒子の分布幅が大きくなり、複合ニッケル粒子をMLCCの電極に利用した場合に、巨大粒子の存在によりショート不良を起こしやすい。 The composite nickel particles according to the present embodiment have an average particle diameter (L 1 ) by scanning electron microscope observation in the range of 20 to 250 nm, preferably in the range of 40 to 150 nm. From another viewpoint, the average particle diameter (L 1 ) by BET measurement is in the range of 20 to 250 nm, preferably in the range of 40 to 150 nm. If the average particle diameter (L 1 ) of the composite nickel particles is below the lower limit, the composite nickel particles tend to aggregate or melt with heating at the time of binder removal, and it is easy to take in oxygen. Expansion and contraction changes increase. On the other hand, when the average particle diameter (L 1 ) of the composite nickel particles exceeds the above upper limit, the distribution width of the minimum diameter particles and the maximum diameter particles becomes large, and when the composite nickel particles are used as an MLCC electrode, Due to the presence of large particles, short-circuit defects are likely to occur.

本実施の形態に係る複合ニッケル粒子は、粒子径の変動係数(CV)が0.2以下であることが好ましい。変動係数を0.2以下とすることで、ペースト塗布後の乾燥塗膜の表面平滑性も得られやすい。   The composite nickel particles according to the present embodiment preferably have a coefficient of variation (CV) in particle diameter of 0.2 or less. By setting the coefficient of variation to 0.2 or less, it is easy to obtain the surface smoothness of the dried coating film after applying the paste.

本実施の形態に係る複合ニッケル粒子の結晶子径(L)は、10nm以上である。結晶子径(L)は大きいほど好ましいため、上限には制限がなく、例えば粒子径と同じでもよい。複合ニッケル粒子は、平均粒子径(L)が小さくなるほど量子効果による融点降下に起因して、融点の絶対値が大きく減少する。従って、複合ニッケル粒子の焼結温度は、平均粒子径(L)が小さくなるほど低くなるが、平均粒子径(L)に対する結晶子径(L)の割合を大きくすることによって、焼結温度を高くすることができる。また、前述した複合ニッケル粒子の酸素元素の含有量(Mo)と平均粒子径(L)の相対的な関係を考慮して、本実施の形態に係る複合ニッケル粒子は、酸素元素の含有量(Mo)と平均粒子径(L)と結晶子径(L)がMo×L/L≦9の関係を有するものとしており、好ましくは2≦Mo×L/L≦9がよい。このような範囲内にすることで、焼結時に粒子同士の融着が抑制され、低温での収縮を防ぐことができる。Mo×L/Lが9より大きい場合は、焼結温度が低くなり、優れた耐焼結性が得られない。このように、本実施の形態に係る複合ニッケル粒子は、酸素含有量(Mo)を平均粒子径(L)及び結晶子径(L)のバランスを考慮して制御することによって、脱バインダー時における金属ニッケル粒子の酸化及び焼結時の炭化物の生成を抑制するとともに、粒子同士の融着を防止し、低温での収縮を防いでいる。 The crystallite diameter (L 2 ) of the composite nickel particles according to the present embodiment is 10 nm or more. Since the crystallite diameter (L 2 ) is preferably as large as possible, the upper limit is not limited and may be the same as the particle diameter, for example. In the composite nickel particles, as the average particle diameter (L 1 ) decreases, the absolute value of the melting point decreases greatly due to the melting point drop due to the quantum effect. Therefore, although the sintering temperature of the composite nickel particles decreases as the average particle size (L 1 ) decreases, sintering can be achieved by increasing the ratio of the crystallite size (L 2 ) to the average particle size (L 1 ). The temperature can be increased. In consideration of the relative relationship between the oxygen element content (Mo) and the average particle diameter (L 1 ) of the composite nickel particles described above, the composite nickel particles according to the present embodiment have an oxygen element content. (Mo) and the average particle diameter (L 1) and the crystallite size (L 2) has been assumed to have the relationship of Mo × L 1 / L 2 ≦ 9, preferably 2 ≦ Mo × L 1 / L 2 ≦ 9 Is good. By making it within such a range, the fusion of particles can be suppressed during sintering, and shrinkage at a low temperature can be prevented. When Mo × L 1 / L 2 is larger than 9, the sintering temperature becomes low, and excellent sintering resistance cannot be obtained. As described above, the composite nickel particles according to the present embodiment are controlled by controlling the oxygen content (Mo) in consideration of the balance between the average particle size (L 1 ) and the crystallite size (L 2 ). In addition to suppressing the oxidation of metal nickel particles at the time and the formation of carbides during sintering, the particles are prevented from fusing together to prevent shrinkage at low temperatures.

[複合ニッケル粒子の製造方法]
次に、本実施の形態の複合ニッケル粒子の製造方法について説明する。まず、金属ニッケル粒子の製造方法について説明する。
[Production method of composite nickel particles]
Next, the manufacturing method of the composite nickel particle of this Embodiment is demonstrated. First, a method for producing metallic nickel particles will be described.

金属ニッケル粒子は、気相法や液相法などの方法により得られるが、その製造方法については特に限定されない。気相法では、例えば、気化部、反応部、冷却部を有する反応装置を用いるとともに、原料として塩化ニッケルを用い、この塩化ニッケルを気化部で加熱気化した後にキャリアガスで反応部に移送し、ここで水素と接触させることによって粒子状に金属を析出させ、その後、得られた金属ニッケル粒子を冷却部で冷却するようにして得ることができる。反応温度は、例えば950℃〜1100℃程度に制御すればよい。   The metallic nickel particles can be obtained by a method such as a gas phase method or a liquid phase method, but the production method is not particularly limited. In the vapor phase method, for example, using a reaction apparatus having a vaporization section, a reaction section, and a cooling section, and using nickel chloride as a raw material, the nickel chloride is heated and vaporized in the vaporization section and then transferred to the reaction section with a carrier gas, Here, the metal can be deposited in the form of particles by contacting with hydrogen, and then the obtained nickel metal particles can be cooled in the cooling section. What is necessary is just to control reaction temperature to about 950 degreeC-1100 degreeC, for example.

この方法における粒径制御は、例えばキャリアガスの流速を制御することによって実施できる。一般に、キャリアガスの流速を上昇させれば、得られる金属ニッケル粒子の粒径は小さくなる傾向がある。また、得られた金属ニッケル粒子は、例えば遠心力を用いた分級手段などを用いることによっても変動係数を制御することもできる。   The particle size control in this method can be performed by controlling the flow rate of the carrier gas, for example. In general, if the flow rate of the carrier gas is increased, the particle diameter of the obtained metallic nickel particles tends to be small. Further, the coefficient of variation of the obtained metallic nickel particles can be controlled also by using, for example, a classification means using centrifugal force.

また、気相法は液相法に比べて製造コストが高価になりがちであるので、液相法を適用することは有利である。液相法のなかでも、粒子径分布が狭い金属ニッケル粒子を短時間で容易に製造する方法として、下記の工程A〜C;
A)金属ニッケル粒子の前駆体であるニッケル塩を有機溶媒に溶解して、ニッケル錯体を生成させた錯化反応液を得る工程、
B)前記錯化反応液を、マイクロ波照射によって加熱して、前記金属ニッケル粒子のスラリーを得る工程、
C)前記金属ニッケル粒子のスラリーから前記金属ニッケル粒子を単離する工程、
を具えることが好ましい。
Further, since the vapor phase method tends to be expensive to produce compared with the liquid phase method, it is advantageous to apply the liquid phase method. Among the liquid phase methods, as a method for easily producing metallic nickel particles having a narrow particle size distribution in a short time, the following steps A to C;
A) A step of obtaining a complexing reaction solution in which a nickel salt, which is a precursor of metallic nickel particles, is dissolved in an organic solvent to form a nickel complex,
B) The complexing reaction solution is heated by microwave irradiation to obtain a slurry of the metal nickel particles,
C) isolating the metal nickel particles from the metal nickel particle slurry;
It is preferable to comprise.

マイクロ波照射による錯化反応液の加熱は、該反応液内の均一加熱を可能とし、かつエネルギーを媒体に直接与えることができるため、急速加熱を行なうことができる。これにより、反応液全体を所望の温度に均一にすることができ、ニッケル錯体(又はニッケルイオン)の還元、核生成、核成長各々の過程を溶液全体において同時に生じさせ、結果として粒子径分布の狭い単分散な粒子を短時間で容易に製造することができる。特に、走査型電子顕微鏡観察による平均粒子径(L)が20〜150nmの範囲内にある金属ニッケル粒子を製造するのに好適である。 Heating of the complexing reaction solution by microwave irradiation enables uniform heating in the reaction solution and can directly apply energy to the medium, so that rapid heating can be performed. As a result, the entire reaction solution can be made uniform at a desired temperature, and the processes of reduction, nucleation, and nucleation of the nickel complex (or nickel ions) occur simultaneously in the entire solution. Narrow monodisperse particles can be easily produced in a short time. In particular, it is suitable for producing metallic nickel particles having an average particle diameter (L 1 ) in the range of 20 to 150 nm by observation with a scanning electron microscope.

工程A)錯化反応液生成工程:
ニッケル塩の種類は特に限定されず、例えば水酸化ニッケル、塩化ニッケル、硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、カルボン酸ニッケル、Ni(acac)(β−ジケトナト錯体)、ステアリン酸ニッケル等が挙げられる。この中でも、還元過程での解離温度(分解温度)が比較的低いカルボン酸ニッケルを用いることが有利であるが、得られる金属ニッケル粒子における結晶子が小さい傾向となるので、後述する熱処理工程を行なうことが好ましい。
Step A) Complexation reaction solution generation step:
The kind of nickel salt is not particularly limited, and examples thereof include nickel hydroxide, nickel chloride, nickel nitrate, nickel sulfate, nickel carbonate, nickel carboxylate, Ni (acac) 2 (β-diketonato complex), nickel stearate and the like. . Among these, it is advantageous to use nickel carboxylate having a relatively low dissociation temperature (decomposition temperature) in the reduction process, but since the crystallites in the obtained metal nickel particles tend to be small, a heat treatment step described later is performed. It is preferable.

有機溶媒は、ニッケル塩を溶解できるものであれば、特に限定されず、例えばエチレングリコール、アルコール類、有機アミン類、N,N−ジメチルホルムアミド、ジメチルスルホキシド、アセトン等が挙げられるが、金属塩に対して還元作用があるエチレングリコール、アルコール類、有機アミン類等の有機溶媒が好ましい。このなかでも特に、1級の有機アミン(以下、「1級アミン」と略称する。)は、ニッケル塩との混合物を溶解することにより、ニッケルイオンとの錯体を形成することができ、ニッケル錯体(又はニッケルイオン)に対する還元能を効果的に発揮しやすく、加熱による還元温度が高温のニッケル塩に対して有利に使用できる。1級アミンは、ニッケルイオンとの錯体を形成できるものであれば、特に限定するものではなく、常温で固体又は液体のものが使用できる。ここで、常温とは、20℃±15℃をいう。   The organic solvent is not particularly limited as long as it can dissolve the nickel salt, and examples thereof include ethylene glycol, alcohols, organic amines, N, N-dimethylformamide, dimethyl sulfoxide, acetone, and the like. On the other hand, organic solvents such as ethylene glycol, alcohols and organic amines having a reducing action are preferred. Among these, primary organic amines (hereinafter abbreviated as “primary amines”) can form a complex with nickel ions by dissolving a mixture with a nickel salt. It is easy to effectively exhibit the reducing ability for (or nickel ions), and can be advantageously used for nickel salts whose reduction temperature by heating is high. The primary amine is not particularly limited as long as it can form a complex with nickel ions, and can be a solid or liquid at room temperature. Here, room temperature means 20 ° C. ± 15 ° C.

常温で液体の1級アミンは、ニッケル錯体を形成する際の有機溶媒としても機能する。なお、常温で固体の1級の有機アミンであっても、加熱によって液体であるか、又は有機溶媒を用いて溶解するものであれば、特に問題はない。   The primary amine that is liquid at room temperature also functions as an organic solvent for forming the nickel complex. Even if it is a primary organic amine that is solid at room temperature, there is no particular problem as long as it is liquid by heating or can be dissolved using an organic solvent.

1級アミンは、芳香族1級アミンであってもよいが、反応液におけるニッケル錯体形成の容易性の観点からは脂肪族1級アミンが好適である。脂肪族1級アミンは、例えばその炭素鎖の長さを調整することによって生成する金属ニッケル粒子の粒径を制御することができる。金属ニッケル粒子の粒径を制御する観点から、脂肪族1級アミンは、その炭素数が6〜20程度のものから選択して用いることが好適である。炭素数が多いほど得られる金属ニッケル粒子の粒径が小さくなる。このようなアミンとして、例えばオクチルアミン、トリオクチルアミン、ジオクチルアミン、ヘキサデシルアミン、ドデシルアミン、テトラデシルアミン、ステアリルアミン、オレイルアミン、ミリスチルアミン、ラウリルアミン等を挙げることができる。   The primary amine may be an aromatic primary amine, but an aliphatic primary amine is preferred from the viewpoint of easy nickel complex formation in the reaction solution. The aliphatic primary amine can control the particle size of the metallic nickel particles produced by adjusting the length of the carbon chain, for example. From the viewpoint of controlling the particle diameter of the metallic nickel particles, the aliphatic primary amine is preferably selected from those having about 6 to 20 carbon atoms. The larger the number of carbons, the smaller the particle size of the metallic nickel particles obtained. Examples of such amines include octylamine, trioctylamine, dioctylamine, hexadecylamine, dodecylamine, tetradecylamine, stearylamine, oleylamine, myristylamine, and laurylamine.

1級アミンは、還元反応後の生成した金属ニッケル粒子の固体成分と溶剤または未反応の1級アミン等を分離する洗浄工程における処理操作の容易性の観点からは室温で液体のものが好ましい。更に、1級アミンは、ニッケル錯体を還元して金属ニッケル粒子を得るときの反応制御の容易性の観点からは還元温度より沸点が高いものが好ましい。1級アミンの量は、ニッケル塩1molに対して2mol以上用いることが好ましく、2.2mol以上用いることがより好ましい。1級アミンの量が2mol未満では、得られる金属ニッケル粒子の粒子径の制御が困難となり、粒子径がばらつきやすくなる。また、1級アミンの量の上限は特にはないが、例えば生産性の観点からは20mol以下とすることが好ましい。   The primary amine is preferably a liquid at room temperature from the viewpoint of ease of processing operation in the washing step of separating the solid component of the metallic nickel particles produced after the reduction reaction and the solvent or the unreacted primary amine. Further, the primary amine preferably has a boiling point higher than the reduction temperature from the viewpoint of ease of reaction control when the nickel complex is reduced to obtain metallic nickel particles. The amount of the primary amine is preferably 2 mol or more, more preferably 2.2 mol or more, relative to 1 mol of the nickel salt. When the amount of primary amine is less than 2 mol, it is difficult to control the particle diameter of the resulting nickel metal particles, and the particle diameters are likely to vary. The upper limit of the amount of primary amine is not particularly limited, but is preferably 20 mol or less from the viewpoint of productivity, for example.

均一溶液での反応をより効率的に進行させるために、1級アミンとは別の有機溶媒を新たに添加してもよい。使用できる有機溶媒としては、1級アミンとニッケルイオンとの錯形成を阻害しないものであれば、特に限定するものではなく、例えば炭素数4〜30のエーテル系有機溶媒、炭素数7〜30の飽和又は不飽和の炭化水素系有機溶媒、炭素数8〜18のアルコール系有機溶媒等を使用することができる。また、マイクロ波照射による加熱条件下でも使用を可能とする観点から、使用する有機溶媒は、沸点が170℃以上のものを選択することが好ましく、より好ましくは200〜300℃の範囲内にあるものを選択することがよい。このような有機溶媒の具体例としては、例えばテトラエチレングリコール、n−オクチルエーテル等が挙げられる。   In order to proceed the reaction in a homogeneous solution more efficiently, an organic solvent other than the primary amine may be newly added. The organic solvent that can be used is not particularly limited as long as it does not inhibit the complex formation between the primary amine and the nickel ion. For example, the organic solvent having 4 to 30 carbon atoms, 7 to 30 carbon atoms, and the like. A saturated or unsaturated hydrocarbon organic solvent, an alcohol organic solvent having 8 to 18 carbon atoms, or the like can be used. Moreover, from the viewpoint of enabling use even under heating conditions by microwave irradiation, it is preferable to select an organic solvent having a boiling point of 170 ° C. or higher, more preferably in the range of 200 to 300 ° C. It is better to choose one. Specific examples of such an organic solvent include tetraethylene glycol and n-octyl ether.

錯形成反応は室温に於いても進行することができるが、十分且つ、より効率の良い錯形成反応を行うために、例えば100℃〜165℃の範囲内に加熱して反応を行う。この加熱は、後に続くニッケル錯体(又はニッケルイオン)のマイクロ波照射による加熱還元の過程と確実に分離し、前記の錯形成反応を完結させるという観点から、上記上限を適宜設定することができる。なお、この加熱の方法は、特に制限されず、例えばオイルバスなどの熱媒体による加熱であっても、マイクロ波照射による加熱であってもよい。   Although the complex formation reaction can proceed even at room temperature, in order to perform a sufficient and more efficient complex formation reaction, for example, the reaction is performed by heating within a range of 100 ° C. to 165 ° C. This heating can be appropriately set from the viewpoint of separating from the subsequent heat reduction process by microwave irradiation of the nickel complex (or nickel ions) and completing the complex formation reaction. The heating method is not particularly limited, and may be heating by a heat medium such as an oil bath or heating by microwave irradiation.

工程B)金属ニッケル粒子スラリー生成工程:
本工程では、ニッケル塩と有機溶媒との錯形成反応によって得られた錯化反応液を、マイクロ波照射によって加熱し、錯化反応液中のニッケルイオンを還元して金属ニッケル粒子のスラリーを得る。マイクロ波照射によって加熱する温度は、得られる金属ニッケル粒子の形状のばらつきを抑制するという観点から、好ましくは170℃以上、より好ましくは180℃以上とすることがよい。加熱温度の上限は特にないが、処理を効率的に行う観点からは例えば270℃以下とすることが好適である。なお、マイクロ波の使用波長は、特に限定するものではなく、例えば2.45GHzである。
Step B) Metal nickel particle slurry generation step:
In this step, the complexing reaction solution obtained by the complex formation reaction between the nickel salt and the organic solvent is heated by microwave irradiation to reduce the nickel ions in the complexing reaction solution to obtain a slurry of metallic nickel particles. . The temperature for heating by microwave irradiation is preferably 170 ° C. or higher, and more preferably 180 ° C. or higher, from the viewpoint of suppressing variation in the shape of the resulting nickel metal particles. The upper limit of the heating temperature is not particularly limited, but is preferably 270 ° C. or less, for example, from the viewpoint of efficiently performing the treatment. In addition, the use wavelength of a microwave is not specifically limited, For example, it is 2.45 GHz.

均一な粒径を有する金属ニッケル粒子を生成させるには、錯化反応液生成工程の加熱温度を特定の範囲内で調整し、金属ニッケル粒子スラリー生成工程におけるマイクロ波による加熱温度よりも確実に低くしておくことで、粒径・形状の整った粒子が生成し易い。例えば、錯化反応液生成工程で加熱温度が高すぎるとニッケル錯体の生成とニッケル(0価)への還元反応が同時に進行し異種の金属種が発生することで、金属ニッケル粒子スラリー生成工程での粒子形状の整った粒子の生成が困難となるおそれがある。また、金属ニッケル粒子スラリー生成工程の加熱温度が低すぎるとニッケル(0価)への還元反応速度が遅くなり核の発生が少なくなるため粒子が大きくなるだけでなく、粒子の大きさが不揃いになり、金属ニッケル粒子の収率の点からも好ましくはない。   In order to produce metallic nickel particles having a uniform particle size, the heating temperature in the complexing reaction liquid production step is adjusted within a specific range, and is surely lower than the heating temperature by microwaves in the metallic nickel particle slurry production step. By doing so, particles having a uniform particle diameter and shape are easily generated. For example, if the heating temperature is too high in the complexing reaction liquid generation process, the formation of a nickel complex and the reduction reaction to nickel (zero valence) proceed simultaneously, and different metal species are generated. It may be difficult to produce particles having a uniform particle shape. In addition, if the heating temperature in the metal nickel particle slurry generation process is too low, the reduction reaction rate to nickel (zero valence) is slowed and the generation of nuclei is reduced. This is not preferable from the viewpoint of the yield of metallic nickel particles.

金属ニッケル粒子スラリー生成工程においては、必要に応じ、前述した有機溶媒を加えてもよい。なお、前記したように、錯形成反応に使用する1級アミンを有機溶媒としてそのまま用いることは、本発明の好適な実施の形態である。   In the metallic nickel particle slurry generation step, the organic solvent described above may be added as necessary. As described above, it is a preferred embodiment of the present invention to use the primary amine used in the complex formation reaction as an organic solvent as it is.

工程C)金属ニッケル粒子単離工程:
本工程では、マイクロ波照射によって加熱して得られる金属ニッケル粒子スラリーを、例えば、静置分離し、上澄み液を取り除いた後、適当な溶媒を用いて洗浄し、乾燥することで、金属ニッケル粒子が得られる。
Process C) Metal nickel particle isolation process:
In this step, the metallic nickel particle slurry obtained by heating by microwave irradiation is, for example, statically separated, and after removing the supernatant, washed with an appropriate solvent and dried to obtain metallic nickel particles. Is obtained.

上記にようにして金属ニッケル粒子を製造することができるが、例えば金属ニッケル粒子スラリーの状態で有機溶媒中に所定時間保持することや、金属ニッケル粒子スラリーを低酸素状態で乾燥させることなどによって、金属ニッケル粒子の表面に所定の水酸化物又は酸化物の被膜を形成することができる。   Metal nickel particles can be produced as described above, for example, by holding for a predetermined time in an organic solvent in the state of metal nickel particle slurry, by drying the metal nickel particle slurry in a low oxygen state, etc. A predetermined hydroxide or oxide film can be formed on the surface of the metallic nickel particles.

金属ニッケル粒子の平均粒子径(L)に対する結晶子径(L)の割合を大きくする方法として、金属ニッケル粒子を芳香族系炭化水素又はその水素化物を主成分とする沸点が200℃以上の非極性有機溶媒中で、200℃〜320℃の範囲内の温度で加熱する熱処理する工程と、を備えることが好ましい。このような熱処理は、例えば液相法、気相法等のニッケル塩を還元することにより調製した金属ニッケル粒子に好適である。 As a method of increasing the ratio of the crystallite diameter (L 2 ) to the average particle diameter (L 1 ) of the metal nickel particles, the boiling point of the metal nickel particles whose main component is an aromatic hydrocarbon or a hydride thereof is 200 ° C. or higher. In the nonpolar organic solvent, it is preferable to include a heat treatment step of heating at a temperature in the range of 200 ° C to 320 ° C. Such heat treatment is suitable for metallic nickel particles prepared by reducing nickel salt such as liquid phase method and gas phase method.

[熱処理工程]
熱処理工程は、金属ニッケル粒子を、芳香族系炭化水素又はその水素化物を主成分とする沸点が200℃以上の非極性有機溶媒(以下、単に「非極性有機溶媒」と記すことがある)中で、200℃〜320℃の範囲内で加熱することにより行われる。ここで、主成分とするとは、全非極性有機溶媒中に芳香族系炭化水素又はその水素化物を合計で50体積%以上含むことを意味する。
[Heat treatment process]
In the heat treatment step, the metallic nickel particles are contained in a nonpolar organic solvent (hereinafter, simply referred to as “nonpolar organic solvent”) having a boiling point of 200 ° C. or higher mainly composed of an aromatic hydrocarbon or a hydride thereof. Then, heating is performed within a range of 200 ° C to 320 ° C. Here, the main component means that the total amount of aromatic hydrocarbons or hydrides thereof is 50% by volume or more in the total nonpolar organic solvent.

本実施の形態の複合ニッケル粒子の製造方法に使用する非極性有機溶媒としては、金属ニッケル粒子と化学反応を起こし難く、またそれ自体の熱分解を生じないという観点から、芳香族系炭化水素又はその水素化物を使用するが、2〜3個の芳香環が縮合若しくは単結合した芳香族系炭化水素、前記芳香族系炭化水素の1個以上の芳香環が水素化された水素化物、2〜3個の芳香環が酸素元素によって連結した芳香族系エーテル化合物、前記芳香族系エーテル化合物の1個以上の芳香環が水素化された水素化物などが好ましく、このような化合物の具体例として、例えばナフタレン、フェナントレン、メチルナフタレン、ビフェニル、ジエチルジフェニル、ジフェニルエーテル、ジベンジルトルエン及びベンジルジフェニルなどの芳香族系炭化水素、例えば水素化トリフェニル、テトラリン、ジシクロヘキシルベンゼン、シクロヘキシルビフェニルなどの前記芳香族系炭化水素の水素化物等を含む溶媒が挙げられ、これらは単独又は2種以上を混合して使用してもよい。また、非極性有機溶媒の沸点を200℃以上とすることによって、金属ニッケル粒子の結晶子の成長を効率的に進行させることができる。   As the nonpolar organic solvent used in the method for producing composite nickel particles of the present embodiment, it is difficult to cause a chemical reaction with metallic nickel particles, and from the viewpoint of not causing thermal decomposition of itself, aromatic hydrocarbons or The hydride is used, but an aromatic hydrocarbon in which 2 to 3 aromatic rings are condensed or single-bonded, a hydride in which one or more aromatic rings of the aromatic hydrocarbon are hydrogenated, 2 to 2 An aromatic ether compound in which three aromatic rings are connected by an oxygen element, a hydride in which one or more aromatic rings of the aromatic ether compound are hydrogenated, and the like are preferable. Specific examples of such compounds include: For example, aromatic charcoal such as naphthalene, phenanthrene, methylnaphthalene, biphenyl, diethyldiphenyl, diphenylether, dibenzyltoluene and benzyldiphenyl Examples thereof include solvents containing hydrogen, such as hydrides of the above aromatic hydrocarbons such as hydrogenated triphenyl, tetralin, dicyclohexylbenzene, and cyclohexylbiphenyl. These may be used alone or in combination of two or more. . Moreover, by making the boiling point of the nonpolar organic solvent 200 ° C. or higher, the growth of crystallites of the metal nickel particles can be efficiently advanced.

熱処理工程は、複合ニッケル粒子の耐焼結性を十分に高めるために、金属ニッケル粒子を基準にして、熱処理後に得られる複合ニッケル粒子の結晶子径(L)を好ましくは3〜300%、より好ましくは10〜100%の範囲内で増加させる条件で行う。熱処理の温度は、おおむね200℃〜320℃の範囲内が好ましく、250〜300℃の範囲内がより好ましい。熱処理温度が、200℃未満では金属ニッケル粒子の結晶子の成長が進まないため、結晶子を大きくして耐焼結性を向上させる効果が十分に得られず、逆に320℃を超えると、金属が溶融して金属ニッケル粒子どうしの融着が生じ、凝集が発生することがある。さらに、溶媒または粒子表面に付着している有機物が炭化してニッケル内に固溶化して炭化ニッケルに変化する。また、同様の観点から、熱処理の時間は、上記温度範囲において、1〜300分の範囲内とすることが好ましく、5〜60分の範囲内がより好ましい。 In the heat treatment step, in order to sufficiently enhance the sintering resistance of the composite nickel particles, the crystallite diameter (L 2 ) of the composite nickel particles obtained after the heat treatment is preferably 3 to 300%, based on the metal nickel particles. Preferably, it is performed under the condition of increasing within a range of 10 to 100%. The temperature of the heat treatment is generally preferably in the range of 200 ° C to 320 ° C, more preferably in the range of 250 to 300 ° C. When the heat treatment temperature is less than 200 ° C., the growth of crystallites of the metal nickel particles does not proceed, so that the effect of increasing the crystallite and improving the sintering resistance cannot be sufficiently obtained. May melt to cause fusion of metallic nickel particles, and aggregation may occur. Furthermore, the organic substance adhering to the solvent or the particle surface is carbonized and solidified in nickel to be changed to nickel carbide. From the same viewpoint, the heat treatment time is preferably in the range of 1 to 300 minutes, more preferably in the range of 5 to 60 minutes, in the above temperature range.

熱処理工程では、非極性有機溶媒中で、金属ニッケル粒子を加熱する。熱処理工程は、金属ニッケル粒子を非極性溶媒中に均一に分散させた状態で行うことが好ましい。非極性有機溶媒を加熱する手段は特に限定されるものではなく、例えば、マイクロ波照射、オイルバス、マントルヒーター等の方法で行うことができる。これらの中でも、非極性有機溶媒中に分散した金属ニッケル粒子に対し局所的エネルギーを与え、均一かつ急速な加熱が可能なマイクロ波照射が好ましい。   In the heat treatment step, the metallic nickel particles are heated in a nonpolar organic solvent. The heat treatment step is preferably performed in a state where the metallic nickel particles are uniformly dispersed in the nonpolar solvent. The means for heating the nonpolar organic solvent is not particularly limited, and can be performed by a method such as microwave irradiation, oil bath, mantle heater or the like. Among these, microwave irradiation is preferable, in which local energy is given to metallic nickel particles dispersed in a nonpolar organic solvent and uniform and rapid heating is possible.

熱処理工程で使用するマイクロ波の使用波長は、特に限定されるものではなく、例えば2.45GHzを用いることができる。   The use wavelength of the microwave used in the heat treatment step is not particularly limited, and for example, 2.45 GHz can be used.

本実施の形態では、マイクロ波が非極性有機溶媒内に浸透し、非極性有機溶媒中に分散した金属ニッケル粒子に直接エネルギーを与えて加熱するため、均一かつ、急速加熱を行うことができる。すなわち、表面に水酸化物又は酸化物の被膜を有する金属ニッケル粒子を非極性有機溶媒に分散させ、マイクロ波照射することにより、磁性体である金属ニッケル粒子が局部的にマイクロ波を吸収し、加熱される。マイクロ波を照射するメリットとして、金属ニッケル粒子が局部的に加熱されることから結晶子を成長させることが可能となり、結晶子を大きくして焼結温度を高めることができる。   In the present embodiment, since microwaves penetrate into the nonpolar organic solvent and heat is applied directly to the metallic nickel particles dispersed in the nonpolar organic solvent, uniform and rapid heating can be performed. That is, by dispersing metal nickel particles having a hydroxide or oxide coating on the surface in a nonpolar organic solvent and irradiating them with microwaves, the metal nickel particles that are magnetic materials locally absorb microwaves, Heated. As a merit of irradiating microwaves, since the metal nickel particles are locally heated, crystallites can be grown, and the crystallites can be enlarged to increase the sintering temperature.

マイクロ波の照射方法としては、連続照射でもよいし、パルス照射でもよい。例えば、予め金属ニッケル粒子が非極性有機溶媒中で高い分散状態を保持できる処理(高分散処理)を施されているものを使用する場合は、金属ニッケル粒子同士の接触が抑制され、金属ニッケル粒子を局部加熱する際の金属ニッケル粒子同士の焼結による凝集が抑制されるので連続照射が好ましい。一方、高分散処理が施されていない金属ニッケル粒子を使用する場合には、連続照射では非極性有機溶媒中で金属ニッケル粒子にエネルギーが集中し、局部加熱による金属ニッケル粒子の焼結や放電が生じやすくなる傾向があるので、パルス照射が好ましい。パルス照射の条件としては、例えば0.5〜2秒間照射と0.5〜5秒間停止を繰り返すことが好ましい。   The microwave irradiation method may be continuous irradiation or pulse irradiation. For example, when using a metal nickel particle that has been subjected to a treatment (high dispersion treatment) that can maintain a high dispersion state in a nonpolar organic solvent in advance, contact between the metal nickel particles is suppressed, and the metal nickel particles Continuous irradiation is preferable because aggregation due to sintering of metallic nickel particles during local heating is suppressed. On the other hand, when using metallic nickel particles that have not been subjected to high dispersion treatment, energy is concentrated on the metallic nickel particles in a non-polar organic solvent in continuous irradiation, and sintering and discharge of the metallic nickel particles due to local heating. Pulse irradiation is preferred because it tends to occur. As conditions for pulse irradiation, it is preferable to repeat irradiation for 0.5 to 2 seconds and stop for 0.5 to 5 seconds, for example.

次に、本発明を実施例によって具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、本発明の実施例において特にことわりのない限り、各種測定、評価は下記によるものである。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples. In the examples of the present invention, various measurements and evaluations are as follows unless otherwise specified.

[複合ニッケル粒子の平均粒子径]
金属粒子の平均粒子径は、SEM(走査電子顕微鏡)により試料の写真を撮影して、その中から無作為に200個を抽出して、その平均粒径(面積平均径)と標準偏差を求めた。具体的には、抽出した微粒子のそれぞれについて面積を求め、真球に換算したときの粒子径を個数基準として一次粒子の平均粒子径とした。
また、BET測定による平均粒子径(BET換算径)は、ニッケルナノ粒子の単位重量当たりの表面積(BET値)を実測し、そのBET値から下記式を用いてBET換算径を算出した。
BET換算径(nm)={[6÷BET値(m/g)]÷真密度(g/cm)}×1000
また、CV値(変動係数)は、(標準偏差)÷(平均粒子径)によって算出した。なお、CV値が小さいほど、粒子径がより均一であることを示す。
[Average particle diameter of composite nickel particles]
The average particle size of the metal particles is obtained by taking a photograph of the sample with an SEM (scanning electron microscope), randomly extracting 200 samples from the sample, and obtaining the average particle size (area average size) and standard deviation. It was. Specifically, the area of each of the extracted fine particles was obtained, and the average particle size of the primary particles was determined based on the particle size when converted to a true sphere.
Moreover, the average particle diameter (BET conversion diameter) by BET measurement measured the surface area (BET value) per unit weight of nickel nanoparticle, and calculated the BET conversion diameter from the BET value using the following formula.
BET equivalent diameter (nm) = {[6 ÷ BET value (m 2 / g)] ÷ true density (g / cm 3 )} × 1000
The CV value (coefficient of variation) was calculated by (standard deviation) / (average particle diameter). In addition, it shows that a particle diameter is so uniform that a CV value is small.

[複合ニッケル粒子の結晶子径]
粉末X線回折(XRD)結果からシェラーの式により算出した。
[Crystal diameter of composite nickel particles]
It calculated from the X-ray powder diffraction (XRD) result according to Scherrer's equation.

[熱機械分析(TMA)、熱重量分析(TGA)、5%熱収縮温度]
試料を5Φ×2mmの円柱状成型器に入れ、プレス成型して得られる成型体を作製し、窒素ガス(水素ガス3%含有)の雰囲気下で、熱機械分析(TMA)および熱重量分析(TGA)を行った。また、熱機械分析装置(TMA)により測定される5%熱収縮の温度を5%熱収縮温度とした。
[Thermomechanical analysis (TMA), thermogravimetric analysis (TGA), 5% heat shrinkage temperature]
A sample is put into a 5Φ × 2 mm cylindrical molding machine, and a molded body obtained by press molding is prepared. Under an atmosphere of nitrogen gas (containing 3% hydrogen gas), thermomechanical analysis (TMA) and thermogravimetric analysis ( TGA). Moreover, the temperature of 5% heat shrinkage measured by a thermomechanical analyzer (TMA) was taken as 5% heat shrinkage temperature.

[金属ニッケル粒子のXPSによる金属ニッケル含有率]
X線光電子分光分析法において、Ni(2p3/2)のピークのナロウスキャンにおいて文献値でNi:852.9eV、NiO:853.5eV、Ni(OH):856eVと考えられるピークの波形分離を行い、それぞれの元素比を算出して全体のニッケルに対しての金属ニッケル含有率を測定した。
[Metallic nickel content by XPS of metallic nickel particles]
In X-ray photoelectron spectroscopic analysis, Ni (2p3 / 2) peak narrow separation is performed with reference values of Ni: 852.9 eV, NiO: 853.5 eV, and Ni (OH) 2 : 856 eV. Each element ratio was calculated, and the metal nickel content with respect to the whole nickel was measured.

[比較例1−1]
144.9gのミリスチルアミンに18.5gのギ酸ニッケル二水和物を加え、窒素フロー下、120℃で10分間加熱することによって、ギ酸ニッケルを溶解させて錯化反応液を得た。次いで、その錯化反応液に、さらに96.6gのミリスチルアミンを加え、マイクロ波を用いて180℃で10分間加熱することによって、金属ニッケル粒子スラリー1−1aを得た。
[Comparative Example 1-1]
By adding 18.5 g of nickel formate dihydrate to 144.9 g of myristylamine and heating at 120 ° C. for 10 minutes under a nitrogen flow, the nickel formate was dissolved to obtain a complexing reaction solution. Next, 96.6 g of myristylamine was further added to the complexing reaction solution, and the mixture was heated at 180 ° C. for 10 minutes using a microwave to obtain metallic nickel particle slurry 1-1a.

金属ニッケル粒子スラリー1−1aを静置分離し、上澄み液を取り除いた後、ヘキサンとメタノールを用いて洗浄した後、60℃に維持される真空乾燥機で6時間乾燥して金属ニッケル粒子1−1b(ニッケル含有率;96.4wt%、平均粒子径L;80nm、BET値;8.8m/g、真密度;8.7g/cm、結晶子径L;20nm、CV値;0.16、5%熱収縮温度;280℃)を得た。この金属ニッケル粒子1−1bは、元素分析の結果、C;1.1、N;0.1以下、O;2.5(単位は重量%)であった。Mo×L/L=10である。X線光電子分光分析法により得られた金属ニッケル含有率は、65atm%であった。 After the metallic nickel particle slurry 1-1a was left and separated, the supernatant was removed, washed with hexane and methanol, and then dried for 6 hours in a vacuum dryer maintained at 60 ° C. 1b (Nickel content: 96.4 wt%, average particle diameter L 1 ; 80 nm, BET value; 8.8 m 2 / g, true density; 8.7 g / cm 3 , crystallite diameter L 2 ; 20 nm, CV value; 0.16, 5% heat shrink temperature; 280 ° C.). As a result of elemental analysis, the metal nickel particles 1-1b were C; 1.1, N; 0.1 or less, O; 2.5 (unit: wt%). Mo × L 1 / L 2 = 10. The metal nickel content obtained by X-ray photoelectron spectroscopy was 65 atm%.

[実施例1−1]
ガラス製の反応容器中で、非極性有機溶媒の水素化トリフェニル(沸点350℃)の200g中に比較例1−1で得られた金属ニッケル粒子1−1bを20g分散させた。この反応容器をマイクロ波照射装置にセットし、2.45GHz、1.0kWのマイクロ波を照射することによって、300℃、30分間加熱処理を行い、複合ニッケル粒子1−1(平均粒子径L;80nm、BET値;8.8m/g、真密度;8.8g/cm、CV値;0.16)を得た。得られた複合ニッケル粒子1−1の5%熱収縮温度は530℃であり、XRD分析による結晶子径(L)は23nmであり、結晶子径(L)の増加率は15%であった。なお、平均粒子径(L)は、熱処理前と変わらなかった。複合ニッケル粒子1−1の透過型電子顕微鏡(TEM)による観察の結果、水酸化物又は酸化物の被膜(厚み2〜5nm)が確認された。元素分析の結果、C;1.1、N;0.1以下、O;2.0(単位は重量%)であった。Mo×L/L=7.0である。X線光電子分光分析法により得られた金属ニッケル含有率は、53atm%であった。
[Example 1-1]
In a glass reaction vessel, 20 g of the metallic nickel particles 1-1b obtained in Comparative Example 1-1 were dispersed in 200 g of non-polar organic solvent triphenyl hydride (boiling point 350 ° C.). This reaction container was set in a microwave irradiation apparatus, and was irradiated with microwaves of 2.45 GHz and 1.0 kW, so that heat treatment was performed at 300 ° C. for 30 minutes, and composite nickel particles 1-1 (average particle diameter L 1 80 nm, BET value; 8.8 m 2 / g, true density; 8.8 g / cm 3 , CV value; 0.16). The obtained composite nickel particles 1-1 had a 5% heat shrinkage temperature of 530 ° C., a crystallite diameter (L 2 ) by XRD analysis of 23 nm, and an increase rate of the crystallite diameter (L 2 ) of 15%. there were. The average particle diameter (L 1 ) was not different from that before the heat treatment. As a result of observing the composite nickel particles 1-1 with a transmission electron microscope (TEM), a hydroxide or oxide coating (thickness 2 to 5 nm) was confirmed. As a result of elemental analysis, it was C; 1.1, N; 0.1 or less, O; 2.0 (unit:% by weight). Mo × is L 1 / L 2 = 7.0. The metal nickel content obtained by X-ray photoelectron spectroscopy was 53 atm%.

[実施例1−2]
実施例1−1における2.45GHz、1.0kWのマイクロ波照射による300℃、30分間加熱処理の代わりに、2.45GHz、1.0kWでパルス間隔をオン1.5秒、オフ
0.5秒の条件でマイクロ波照射による300℃、30分間加熱処理を行ったこと以外、実施例1−1と同様にして、複合ニッケル粒子1−2(平均粒子径L;80nm、BET値;8.8m/g、真密度;8.8g/cm、CV値;0.16)を得た。得られた複合ニッケル粒子1−2の5%熱収縮温度は660℃であり、XRD分析による結晶子径(L)は25nmであり、結晶子径(L)の増加率は24%であった。なお、平均粒子径(L)は、熱処理前と変わらなかった。複合ニッケル粒子1−2の透過型電子顕微鏡(TEM)による観察の結果、水酸化物又は酸化物の被膜(厚み2〜5nm)が確認された。元素分析の結果、C;1.0、N;0.1以下、O;1.7(単位は重量%)であった。Mo×L/L=5.4である。X線光電子分光分析法により得られた金属ニッケル含有率は、45atm%であった。
[Example 1-2]
Instead of heat treatment at 300 ° C. for 30 minutes by microwave irradiation of 2.45 GHz and 1.0 kW in Example 1-1, the pulse interval at 2.45 GHz and 1.0 kW was turned on for 1.5 seconds and turned off by 0.5 seconds. Composite nickel particles 1-2 (average particle diameter L 1 ; 80 nm, BET value; 8) in the same manner as in Example 1-1 except that heat treatment was performed at 300 ° C. for 30 minutes by microwave irradiation under the condition of seconds. 0.8 m 2 / g, true density; 8.8 g / cm 3 , CV value: 0.16). The obtained composite nickel particles 1-2 had a 5% heat shrinkage temperature of 660 ° C., a crystallite diameter (L 2 ) by XRD analysis of 25 nm, and an increase rate of the crystallite diameter (L 2 ) of 24%. there were. The average particle diameter (L 1 ) was not different from that before the heat treatment. As a result of observation of the composite nickel particles 1-2 by a transmission electron microscope (TEM), a hydroxide or oxide coating (thickness 2 to 5 nm) was confirmed. As a result of elemental analysis, C was 1.0, N was 0.1 or less, and O was 1.7 (unit: wt%). Mo × L 1 / L 2 = 5.4. The metal nickel content obtained by X-ray photoelectron spectroscopy was 45 atm%.

[比較例1−2]
比較例1−1における241.5gのミリスチルアミンの代わりに、300.1gのトリオクチルアミンを使用したこと以外、比較例1−1と同様にして、金属ニッケル粒子スラリー1−2a及び金属ニッケル粒子1−2bを(ニッケル含有率;91.7wt%、平均粒子径L;30nm、BET値;18.2m/g、真密度;7.9g/cm、結晶子径L;12nm、CV値;0.18、5%熱収縮温度;250℃)得た。この金属ニッケル粒子1−2bは、元素分析の結果、C;3.1、N;0.1以下、O;4.5(単位は重量%)であった。Mo×L/L=11.3である。X線光電子分光分析法により得られた金属ニッケル含有率は、38atm%であった。
[Comparative Example 1-2]
Instead of 241.5 g myristylamine in Comparative Example 1-1, except that 300.1 g of trioctylamine was used, in the same manner as Comparative Example 1-1, the metallic nickel particle slurry 1-2a and the metallic nickel particles 1-2b (nickel content: 91.7 wt%, average particle diameter L 1 ; 30 nm, BET value; 18.2 m 2 / g, true density; 7.9 g / cm 3 , crystallite diameter L 2 ; 12 nm, CV value: 0.18, 5% heat shrink temperature; 250 ° C.). As a result of elemental analysis, the metal nickel particles 1-2b were C; 3.1, N; 0.1 or less, O; 4.5 (unit: wt%). Mo × L 1 / L 2 = 11.3. The metal nickel content obtained by X-ray photoelectron spectroscopy was 38 atm%.

[実施例1−3]
実施例1−1における金属ニッケル粒子1−1bの代わりに、比較例1−2で得られた金属ニッケル粒子1−2bを使用したこと以外、実施例1−1と同様にして、複合ニッケル粒子1−3(ニッケル含有率;94wt%、平均粒子径L;30nm、BET値;17.6m/g、真密度;8.1g/cm、結晶子径L;15nm、CV値;0.17、5%熱収縮温度;295℃)を得た。(元の粒子のTMAを250℃としたので結晶子が大きくなってTMAが上昇した。)複合ニッケル粒子1−3の透過型電子顕微鏡(TEM)による観察の結果、水酸化物又は酸化物の被膜(厚み2〜3nm)が確認された。元素分析の結果、C;2.8、N;0.1以下、O;3.8(単位は質量%)であった。Mo×L/L=7.6である。X線光電子分光分析法により得られた金属ニッケル含有率は、31atm%であった。
[Example 1-3]
Composite nickel particles in the same manner as in Example 1-1 except that instead of the metal nickel particles 1-1b in Example 1-1, the metal nickel particles 1-2b obtained in Comparative Example 1-2 were used. 1-3 (nickel content: 94 wt%, average particle diameter L 1 ; 30 nm, BET value; 17.6 m 2 / g, true density; 8.1 g / cm 3 , crystallite diameter L 2 ; 15 nm, CV value; 0.17, 5% heat shrink temperature; 295 ° C.). (Because the TMA of the original particles was 250 ° C., the crystallites increased and the TMA increased.) As a result of observation of the composite nickel particles 1-3 with a transmission electron microscope (TEM), hydroxide or oxide A film (thickness 2 to 3 nm) was confirmed. As a result of elemental analysis, C was 2.8, N was 0.1 or less, and O was 3.8 (unit: mass%). Mo × is L 1 / L 2 = 7.6. The metal nickel content obtained by X-ray photoelectron spectroscopy was 31 atm%.

[比較例1−3]
比較例1−1における241.5gのミリスチルアミンの代わりに、600.4gのトリオクチルアミンを使用したこと以外、比較例1−1と同様にして、金属ニッケル粒子スラリー1−3a及び金属ニッケル粒子1−3bを(ニッケル含有率;90.6wt%、平均粒子径L;18nm、BET値;28.3m/g、真密度;7.2g/cm、結晶子径L;9nm、CV値;0.21、5%熱収縮温度;220℃)得た。この金属ニッケル粒子1−3bは、元素分析の結果、C;4.1、N;0.1以下、O;5.2(単位は重量%)であった。Mo×L/L=10.4である。X線光電子分光分析法により得られた金属ニッケル含有率は、17atm%であった。
[Comparative Example 1-3]
Instead of 241.5 g of myristylamine in Comparative Example 1-1, except that 600.4 g of trioctylamine was used, in the same manner as in Comparative Example 1-1, the metallic nickel particle slurry 1-3a and the metallic nickel particles 1-3b (nickel content: 90.6 wt%, average particle diameter L 1 ; 18 nm, BET value; 28.3 m 2 / g, true density; 7.2 g / cm 3 , crystallite diameter L 2 ; 9 nm, CV value; 0.21, 5% heat shrink temperature; 220 ° C.). As a result of elemental analysis, the metal nickel particles 1-3b were C; 4.1, N; 0.1 or less, O; 5.2 (unit: wt%). Mo × L 1 / L 2 = 10.4. The metal nickel content obtained by X-ray photoelectron spectroscopy was 17 atm%.

[実施例1−4]
窒素フロー下で、20.0gの酢酸ニッケル四水和物、及び226.0gのオレイルアミンを混合した後、撹拌しながら、120℃で20分間加熱することによって、青色の反応液1−4を得た。
[Example 1-4]
Under a nitrogen flow, 20.0 g of nickel acetate tetrahydrate and 226.0 g of oleylamine were mixed and then heated at 120 ° C. for 20 minutes with stirring to obtain a blue reaction mixture 1-4. It was.

次いで反応液1−4にマイクロ波を照射して250℃で5分間加熱することによって、金属ニッケル粒子スラリー1−4を得た。   Next, the reaction liquid 1-4 was irradiated with microwaves and heated at 250 ° C. for 5 minutes to obtain a metal nickel particle slurry 1-4.

得られた金属ニッケル粒子スラリー1−4を100℃で30分間保持した後、室温まで徐冷却して静置分離し、上澄み液を取り除いた後、メタノールとトルエンの体積比率が1:4の混合溶媒を用いて3回洗浄した後、室温で風乾し、続いて60℃に維持される真空乾燥機で6時間乾燥して、平均粒子径L;100nm、BET値;6.8m/g、真密度;8.7g/cm、結晶子径L;22nm、CV値;0.18、5%熱収縮温度;290℃の球状の均一な複合ニッケル粒子1−4を得た。複合ニッケル粒子1−4は、元素分析の結果、C;0.5、N;0.1以下、O;1.6(単位は質量%)であった。Mo×L/L=7.3である。X線光電子分光分析法により得られた金属ニッケル含有率は、54atm%であった。 After the obtained metallic nickel particle slurry 1-4 was kept at 100 ° C. for 30 minutes, it was gradually cooled to room temperature and allowed to stand and separated, and the supernatant was removed, and then the volume ratio of methanol and toluene was 1: 4. After washing with a solvent three times, it was air-dried at room temperature, followed by drying for 6 hours in a vacuum drier maintained at 60 ° C., average particle diameter L 1 ; 100 nm, BET value; 6.8 m 2 / g , True density; 8.7 g / cm 3 , crystallite diameter L 2 ; 22 nm, CV value; 0.18, 5% heat shrinkage temperature; As a result of elemental analysis, the composite nickel particles 1-4 were C; 0.5, N; 0.1 or less, O; 1.6 (unit: mass%). Mo × is L 1 / L 2 = 7.3. The metal nickel content obtained by X-ray photoelectron spectroscopy was 54 atm%.

以上の結果をまとめて表1及び表2に示した。   The above results are summarized in Table 1 and Table 2.

表1及び表2より、Mo×L/L≦9の関係を満たしている実施例1−1〜1−4では、熱収縮温度が高く、融着も生じていなかった。特に実施例1−1、1−2は、マイクロ波処理でニッケル粒子の表面の水酸基が脱水(酸素減少)して、硬い酸化皮膜となると同時に、結晶子径(L)が大きくなることで熱収縮率温度が顕著に高くなったものを考えられた。また、実施例1−1と1−2との比較から、マイクロ波照射は、パルス状の照射が効果的であることが示された。それに対して、Mo×L/L>9である比較例1−1〜1−3では、熱収縮温度が低く、十分な耐焼結性が得られなかった。なお、比較例1−3は、結晶子に対して平均粒子が小さすぎるため、酸素含有量が多く、Mo×L/Lが大きくなり収縮しやすくなったものと考えられる。 From Table 1 and Table 2, in Examples 1-1 to 1-4 satisfying the relationship of Mo × L 1 / L 2 ≦ 9, the heat shrink temperature was high and no fusion occurred. Particularly, in Examples 1-1 and 1-2, the hydroxyl group on the surface of the nickel particles was dehydrated (oxygen decreased) by the microwave treatment to form a hard oxide film, and at the same time, the crystallite diameter (L 2 ) was increased. It was considered that the heat shrinkage temperature was significantly increased. Moreover, it was shown from the comparison with Example 1-1 and 1-2 that pulsed irradiation is effective for microwave irradiation. On the other hand, in Comparative Examples 1-1 to 1-3 in which Mo × L 1 / L 2 > 9, the heat shrink temperature was low, and sufficient sintering resistance was not obtained. In Comparative Example 1-3, the average particle is too small relative to the crystallites, so that the oxygen content is large, and Mo × L 1 / L 2 becomes large, which is likely to shrink.

[試験例]
実施例1−3及び1−4の複合ニッケル粒子並びに比較例1−2及び1−3の金属ニッケル粒子のそれぞれについて、以下のようなサンプルA〜Dを調製し、各粒子の熱挙動を確認した。
[Test example]
For each of the composite nickel particles of Examples 1-3 and 1-4 and the metal nickel particles of Comparative Examples 1-2 and 1-3, the following samples A to D were prepared, and the thermal behavior of each particle was confirmed. did.

サンプルA
実施例1−3の複合ニッケル粒子1−3の20gに、400gのジヒドロターピニルアセテートを加えた後、分散装置(エム・テクニック社製、商品名;クレアミックス)を用いて、回転数1,500rpmで20分間分散を行った。その後、遠心分離(回転数3,000rpm、10分間)にて濃縮し、複合ニッケル粒子1−3を分散させたサンプルA(固形分濃度80wt%)を調製した。
Sample A
After adding 400 g of dihydroterpinyl acetate to 20 g of the composite nickel particles 1-3 of Example 1-3, the number of revolutions was 1 using a dispersing device (trade name; CLEAMIX, manufactured by M Technique Co., Ltd.). The dispersion was performed at 500 rpm for 20 minutes. Then, it concentrated by centrifugation (rotation speed 3,000 rpm, 10 minutes), and prepared the sample A (solid content concentration 80 wt%) which disperse | distributed the composite nickel particle 1-3.

サンプルB
実施例1−4の複合ニッケル粒子1−4の20gに、400gのジヒドロターピニルアセテートを加えた後、分散装置(エム・テクニック社製、商品名;クレアミックス)を用いて、回転数1,500rpmで20分間分散を行った。その後、遠心分離(回転数3,000rpm、10分間)にて濃縮し、複合ニッケル粒子1−4を分散させたサンプルB(固形分濃度80wt%)を調製した。
Sample B
After adding 400 g of dihydroterpinyl acetate to 20 g of the composite nickel particles 1-4 of Example 1-4, the number of revolutions was 1 using a dispersion apparatus (trade name; CLEAMIX, manufactured by M Technique Co., Ltd.). The dispersion was performed at 500 rpm for 20 minutes. Then, it concentrated by centrifugation (rotation speed 3,000 rpm, 10 minutes), and prepared the sample B (solid content concentration 80 wt%) in which the composite nickel particle | grains 1-4 were disperse | distributed.

サンプルC
比較例1−2の金属ニッケル粒子1−2bの20gに、400gのジヒドロターピニルアセテートを加えた後、分散装置(エム・テクニック社製、商品名;クレアミックス)を用いて、回転数1,500rpmで20分間分散を行った。その後、遠心分離(回転数3,000rpm、10分間)にて濃縮し、金属ニッケル粒子1−2bを分散させたサンプルC(固形分濃度80wt%)を調製した。
Sample C
After adding 400 g of dihydroterpinyl acetate to 20 g of the metallic nickel particles 1-2b of Comparative Example 1-2, the number of revolutions was 1 using a dispersing device (trade name; CLEAMIX, manufactured by M Technique Co., Ltd.). The dispersion was performed at 500 rpm for 20 minutes. Then, it concentrated by centrifugation (rotation speed 3,000 rpm, 10 minutes), and prepared the sample C (solid content concentration 80 wt%) which disperse | distributed the metal nickel particle 1-2b.

サンプルD
比較例1−3の金属ニッケル粒子1−3bの20gに、400gのジヒドロターピニルアセテートを加えた後、分散装置(エム・テクニック社製、商品名;クレアミックス)を用いて、回転数1,500rpmで20分間分散を行った。その後、遠心分離(回転数3,000rpm、10分間)にて濃縮し、金属ニッケル粒子1−3bを分散させたサンプルD(固形分濃度80wt%)を調製した。
Sample D
After adding 400 g of dihydroterpinyl acetate to 20 g of the metallic nickel particles 1-3b of Comparative Example 1-3, the number of revolutions was 1 using a dispersion apparatus (trade name; Cleamix, manufactured by M Technique Co., Ltd.). The dispersion was performed at 500 rpm for 20 minutes. Then, it concentrated by centrifugation (rotation speed 3,000 rpm, 10 minutes), and prepared the sample D (solid content concentration 80 wt%) which disperse | distributed the metal nickel particle 1-3b.

サンプルA〜Dの各サンプルをそれぞれ2枚のガラス板で擦り合わせて試験片A〜Dを調製した。試験片A〜Dをそれぞれ窒素ガス(水素ガス3%含有)の雰囲気下、300℃、30分間の焼成を行ない、そのときのそれぞれのSEM写真を観察した。   Test pieces A to D were prepared by rubbing each sample of samples A to D with two glass plates. The test pieces A to D were each fired at 300 ° C. for 30 minutes in an atmosphere of nitrogen gas (containing 3% hydrogen gas), and SEM photographs at that time were observed.

SEM写真より、試験片Aでは、ほぼ100%近くが元の複合ニッケル粒子の原形を留めており、融着がほぼ完全に抑制されていることが確認された。   From the SEM photograph, almost 100% of the specimen A retained the original shape of the original composite nickel particles, and it was confirmed that the fusion was almost completely suppressed.

SEM写真より、試験片Bでは、全体の90%以上が元の複合ニッケル粒子の原形を留めており、複合ニッケル粒子の融着が抑制されていることが確認された。   From the SEM photograph, it was confirmed that in the test piece B, 90% or more of the whole retained the original shape of the composite nickel particles, and the fusion of the composite nickel particles was suppressed.

SEM写真より、試験片Cでは、全体の50%以上が元の金属ニッケル粒子の原形を留めておらず、金属ニッケル粒子の融着が進行していることが確認された。   From the SEM photograph, it was confirmed that in the test piece C, 50% or more of the whole did not retain the original shape of the original metal nickel particles, and the fusion of the metal nickel particles proceeded.

SEM写真より、試験片Dでは、殆ど元の金属ニッケル粒子の原形を留めておらず、金属ニッケル粒子の融着が進行していることが確認された。   From the SEM photograph, it was confirmed that in the test piece D, the original shape of the original metal nickel particles was hardly retained, and the fusion of the metal nickel particles proceeded.

[実施例2−1]
塩化ニッケル六水和物1297g(5.47mol)とギ酸ニッケル二水和物226.4g(1.23mol)にオレイルアミン7087g(26.5mol)を加え、窒素フロー下で120℃、120分間加熱することによって、塩化ニッケルとギ酸ニッケルのアミン錯体を形成させた。
[Example 2-1]
Add 7087 g (26.5 mol) of oleylamine to 1297 g (5.47 mol) of nickel chloride hexahydrate and 226.4 g (1.23 mol) of nickel formate dihydrate, and heat at 120 ° C. for 120 minutes under a nitrogen flow. To form an amine complex of nickel chloride and nickel formate.

次いで、上記アミン錯体を含む溶液を、マイクロ波を用いて250℃まで加熱し、その温度を5分間保持することによって、複合ニッケル粒子2−1を含むスラリーを得た。収率は100%であった。   Next, the solution containing the amine complex was heated to 250 ° C. using a microwave, and the temperature was maintained for 5 minutes to obtain a slurry containing the composite nickel particles 2-1. The yield was 100%.

得られたスラリーを静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いて3回洗浄した後、70℃に維持される真空乾燥機で6時間乾燥して、複合ニッケル粒子2−1(平均粒子径L;150nm、CV値;0.19、5%、熱収縮温度;420℃、結晶子径L;40nm)を得た。収率は100%であった。また、元素分析の結果、C;0.3、O;1.0、Cl;0.10(単位は質量%)であった(C/O比=0.30)。Mo×L/L=3.8である。X線光電子分光分析法により得られた金属ニッケル含有率は、70atm%であった。実施例2−1で得られた複合ニッケル粒子2−1のSEM写真(×5万倍)を図1に示した。また、複合ニッケル粒子2−1のTMAのチャートを図2に示した。 The resulting slurry was allowed to stand and separated, the supernatant was removed, washed with toluene and methanol three times, and then dried in a vacuum dryer maintained at 70 ° C. for 6 hours to obtain composite nickel particles 2- 1 (average particle diameter L 1 ; 150 nm, CV value; 0.19, 5%, heat shrink temperature; 420 ° C., crystallite diameter L 2 ; 40 nm). The yield was 100%. As a result of elemental analysis, it was C; 0.3, O; 1.0, Cl; 0.10 (unit: mass%) (C / O ratio = 0.30). Mo × is L 1 / L 2 = 3.8. The metal nickel content obtained by X-ray photoelectron spectroscopy was 70 atm%. The SEM photograph (x50,000 times) of the composite nickel particle 2-1 obtained in Example 2-1 is shown in FIG. Further, a TMA chart of the composite nickel particles 2-1 is shown in FIG.

上記の複合ニッケル粒子2−1の10gに、炭酸水(純水にCOガスをバブリングさせて、pHが4.5となるように炭酸水を調製したもの)の100gを加えて1回洗浄を行い、メタノールでさらに1回洗浄した後、70℃に維持される真空乾燥機で6時間乾燥して、複合ニッケル粒子2−1’を得た。元素分析の結果、C;0.3、O;1.2、Cl;<0.01(単位は質量%)であった(C/O比=0.25)。 100 g of carbonated water (prepared by bubbling CO 2 gas into pure water and preparing carbonated water so that the pH is 4.5) was added to 10 g of the composite nickel particle 2-1, and washed once. After washing with methanol once more, it was dried for 6 hours with a vacuum dryer maintained at 70 ° C. to obtain composite nickel particles 2-1 ′. As a result of elemental analysis, it was C; 0.3, O; 1.2, Cl; <0.01 (unit: mass%) (C / O ratio = 0.25).

[実施例2−2]
塩化ニッケル六水和物1297g(5.47mol)、ギ酸ニッケル二水和物166g(0.9mol)、及びオレイルアミン10700g(40mol)を使用したこと以外、実施例2−1と同様にして、複合ニッケル粒子2−2(平均粒子径L;120nm、CV値;0.16、5%熱収縮温度;390℃、結晶子径L;39nm)を得た。収率は100%であった。また、元素分析の結果、C;0.3、O;0.6、Cl;0.09(単位は質量%)であった(C/O比=0.50)。Mo×L/L=1.8である。X線光電子分光分析法により得られた金属ニッケル含有率は、65atm%であった。実施例2−2で得られた複合ニッケル粒子2−2のSEM写真(×5万倍)を図3に示した。また、複合ニッケル粒子2−2のTMAのチャートを図4に示した。
[Example 2-2]
Composite nickel was obtained in the same manner as in Example 2-1, except that 1297 g (5.47 mol) of nickel chloride hexahydrate, 166 g (0.9 mol) of nickel formate dihydrate, and 10700 g (40 mol) of oleylamine were used. Particles 2-2 (average particle diameter L 1 ; 120 nm, CV value; 0.16, 5% heat shrink temperature; 390 ° C., crystallite diameter L 2 ; 39 nm) were obtained. The yield was 100%. As a result of elemental analysis, it was C; 0.3, O; 0.6, Cl; 0.09 (unit: mass%) (C / O ratio = 0.50). Mo × is L 1 / L 2 = 1.8. The metal nickel content obtained by X-ray photoelectron spectroscopy was 65 atm%. The SEM photograph (x50,000 times) of the composite nickel particle 2-2 obtained in Example 2-2 is shown in FIG. Further, a TMA chart of the composite nickel particles 2-2 is shown in FIG.

[実施例2−3]
塩化ニッケル六水和物581g(2.45mol)、ギ酸ニッケル二水和物193g(1.05mol)、及びドデシルアミン9360g(35mol)を使用したこと以外、実施例2−1と同様にして、複合ニッケル粒子2−3(平均粒子径L;80nm、CV値;0.15、5%熱収縮温度;345℃、結晶子径L;32nm)を得た。収率は100%であった。また、元素分析の結果、C;0.8、O;1.6、Cl;0.12(単位は質量%)であった(C/O比=0.50)。Mo×L/L=4.0である。X線光電子分光分析法により得られた金属ニッケル含有率は、58atm%であった。実施例2−3で得られた複合ニッケル粒子2−3のSEM写真を図5に示した。また、複合ニッケル粒子3のTEM写真を図6A示した。また、図6Bは、図6Aに示した複合ニッケル粒子2−3の結晶格子を模式的に示した説明図であり、一点鎖線の斜線は結晶格子模様を表している。図6Aでは、図6Bに示したように、結晶格子模様がはっきりと観察されており、単結晶に近いことが推測された。
[Example 2-3]
Compound as in Example 2-1, except that 581 g (2.45 mol) of nickel chloride hexahydrate, 193 g (1.05 mol) of nickel formate dihydrate, and 9360 g (35 mol) of dodecylamine were used. Nickel particles 2-3 (average particle diameter L 1 ; 80 nm, CV value; 0.15, 5% heat shrink temperature; 345 ° C., crystallite diameter L 2 ; 32 nm) were obtained. The yield was 100%. In addition, as a result of elemental analysis, it was C; 0.8, O; 1.6, Cl; 0.12 (unit: mass%) (C / O ratio = 0.50). Mo × L 1 / L 2 = 4.0. The metal nickel content obtained by X-ray photoelectron spectroscopy was 58 atm%. An SEM photograph of the composite nickel particles 2-3 obtained in Example 2-3 is shown in FIG. A TEM photograph of the composite nickel particle 3 is shown in FIG. 6A. FIG. 6B is an explanatory diagram schematically showing the crystal lattice of the composite nickel particle 2-3 shown in FIG. 6A, and the dashed line with a dashed line represents the crystal lattice pattern. In FIG. 6A, as shown in FIG. 6B, the crystal lattice pattern was clearly observed, and it was estimated that it was close to a single crystal.

[実施例2−4]
塩化ニッケル六水和物1896g(8mol)とギ酸ニッケル二水和物368g(2mol)にオレイルアミン10700g(40mol)を加え、窒素フロー下で120℃、120分間加熱することによって、塩化ニッケルとギ酸ニッケルのアミン錯体を形成させた。
[Example 2-4]
By adding 10700 g (40 mol) of oleylamine to 1896 g (8 mol) of nickel chloride hexahydrate and 368 g (2 mol) of nickel formate dihydrate, and heating at 120 ° C. for 120 minutes under a nitrogen flow, nickel chloride and nickel formate An amine complex was formed.

次いで、上記アミン錯体を含む溶液を90℃まで冷却して、硝酸銀8.5g(0.05mol)を添加して、30分間撹拌して硝酸銀を溶解した後、マイクロ波を用いて250℃まで加熱し、その温度を5分間保持することによって、複合ニッケル粒子2−4を含むスラリーを得た。収率は100%であった。   Next, the solution containing the amine complex is cooled to 90 ° C., 8.5 g (0.05 mol) of silver nitrate is added, stirred for 30 minutes to dissolve the silver nitrate, and then heated to 250 ° C. using microwaves. And the slurry containing the composite nickel particle 2-4 was obtained by hold | maintaining the temperature for 5 minutes. The yield was 100%.

実施例2−1と同様にして、得られたスラリーを乾燥して、複合ニッケル粒子2−4(平均粒子径L;90nm、CV値;0.16、5%熱収縮温度;360℃、結晶子径L;25nm)を得た。収率は100%であった。また、元素分析の結果、C;0.4、O;1.2、Cl;0.12(単位は質量%)であった(C/O比=0.33)。Mo×L/L=4.3である。X線光電子分光分析法により得られた金属ニッケル含有率は、59atm%であった。 The obtained slurry was dried in the same manner as in Example 2-1, and composite nickel particles 2-4 (average particle diameter L 1 ; 90 nm, CV value; 0.16, 5% heat shrink temperature; 360 ° C., Crystallite diameter L 2 ; 25 nm) was obtained. The yield was 100%. As a result of elemental analysis, it was C; 0.4, O; 1.2, Cl; 0.12 (unit: mass%) (C / O ratio = 0.33). Mo × L 1 / L 2 = is 4.3. The metal nickel content obtained by X-ray photoelectron spectroscopy was 59 atm%.

[実施例2−5]
塩化ニッケル六水和物2133g(9mol)、ギ酸ニッケル二水和物184g(1mol)、硝酸銀0.85g(0.005mol)及びドデシルアミン13375g(50mol)を使用したこと以外、実施例2−4と同様にして、複合ニッケル粒子2−5(平均粒子径L;130nm、CV値;0.17、5%熱収縮温度;415℃、結晶子径L;38nm)を得た。収率は100%であった。また、元素分析の結果、C;0.3、O;0.7、Cl;0.11(単位は質量%)であった(C/O比=0.43)。Mo×L/L=2.4である。X線光電子分光分析法により得られた金属ニッケル含有率は、66atm%であった。実施例2−5で得られた複合ニッケル粒子2−5のSEM写真を図7に示した。
[Example 2-5]
Example 2-4 with the exception that 2133 g (9 mol) of nickel chloride hexahydrate, 184 g (1 mol) of nickel formate dihydrate, 0.85 g (0.005 mol) of silver nitrate and 13375 g (50 mol) of dodecylamine were used. In the same manner, composite nickel particles 2-5 (average particle diameter L 1 ; 130 nm, CV value; 0.17, 5% heat shrink temperature; 415 ° C., crystallite diameter L 2 ; 38 nm) were obtained. The yield was 100%. In addition, as a result of elemental analysis, it was C; 0.3, O; 0.7, Cl; 0.11 (unit: mass%) (C / O ratio = 0.43). Mo × L 1 / L 2 = 2.4. The metal nickel content obtained by X-ray photoelectron spectroscopy was 66 atm%. An SEM photograph of the composite nickel particles 2-5 obtained in Example 2-5 is shown in FIG.

[実施例2−6]
塩化ニッケル六水和物1659g(7mol)、ギ酸ニッケル二水和物552g(3mol)、硝酸銀2.55g(0.015mol)及びオレイルアミン10700g(40mol)を使用したこと以外、実施例2−4と同様にして、複合ニッケル粒子2−6(平均粒子径L;70nm、CV値;0.15、5%熱収縮温度;360℃、結晶子径L;25nm)を得た。収率は100%であった。また、元素分析の結果、C;0.8、O;1.6、Cl;0.07(単位は質量%)であった(C/O比=0.50)。Mo×L/L=4.5である。X線光電子分光分析法により得られた金属ニッケル含有率は、52atm%であった。実施例2−6で得られた複合ニッケル粒子2−6のSEM写真を図8に示した。
[Example 2-6]
Example 2-4, except that 1659 g (7 mol) of nickel chloride hexahydrate, 552 g (3 mol) of nickel formate dihydrate, 2.55 g (0.015 mol) of silver nitrate and 10700 g (40 mol) of oleylamine were used. Thus, composite nickel particles 2-6 (average particle diameter L 1 ; 70 nm, CV value; 0.15, 5% heat shrinkage temperature: 360 ° C., crystallite diameter L 2 ; 25 nm) were obtained. The yield was 100%. As a result of elemental analysis, it was C; 0.8, O; 1.6, Cl; 0.07 (unit: mass%) (C / O ratio = 0.50). Mo × L 1 / L 2 = 4.5. The metal nickel content obtained by X-ray photoelectron spectroscopy was 52 atm%. An SEM photograph of the composite nickel particles 2-6 obtained in Example 2-6 is shown in FIG.

[実施例2−7]
塩化ニッケル六水和物1896g(8mol)、ギ酸ニッケル二水和物368g(2mol)、及びドデシルアミン16050g(60mol)を使用したこと以外、実施例2−1と同様にして、複合ニッケル粒子2−7(平均粒子径L;90nm、CV値;0.17、5%熱収縮温度;430℃、結晶子径L;32nm)を得た。収率は100%であった。また、元素分析の結果、C;0.6、O;1.3、Cl;0.13(単位は質量%)であった(C/O比=0.46)。Mo×L/L=3.7である。X線光電子分光分析法により得られた金属ニッケル含有率は、57atm%であった。
[Example 2-7]
In the same manner as in Example 2-1, except that 1896 g (8 mol) of nickel chloride hexahydrate, 368 g (2 mol) of nickel formate dihydrate, and 16050 g (60 mol) of dodecylamine were used, composite nickel particles 2- 7 (average particle diameter L 1 ; 90 nm, CV value; 0.17, 5% heat shrink temperature; 430 ° C., crystallite diameter L 2 ; 32 nm). The yield was 100%. As a result of elemental analysis, it was C; 0.6, O; 1.3, Cl; 0.13 (unit: mass%) (C / O ratio = 0.46). Mo × is L 1 / L 2 = 3.7. The metal nickel content obtained by X-ray photoelectron spectroscopy was 57 atm%.

[実施例2−8]
塩化ニッケル六水和物2133g(9mol)、ギ酸ニッケル二水和物184g(1mol)、硝酸銀5.1g(0.03mol)及びドデシルアミン16050g(60mol)を使用したこと以外、実施例2−4と同様にして、複合ニッケル粒子2−8(平均粒子径L;60nm、CV値;0.15、5%熱収縮温度;420℃、結晶子径L;30nm)を得た。収率は100%であった。また、元素分析の結果、C;1.2、O;1.8、Cl;0.14(単位は質量%)であった(C/O比=0.67)。Mo×L/L=3.6である。X線光電子分光分析法により得られた金属ニッケル含有率は、51atm%であった。
[Example 2-8]
Example 2-4 except that 2133 g (9 mol) of nickel chloride hexahydrate, 184 g (1 mol) of nickel formate dihydrate, 5.1 g (0.03 mol) of silver nitrate and 16050 g (60 mol) of dodecylamine were used. In the same manner, composite nickel particles 2-8 (average particle diameter L 1 ; 60 nm, CV value; 0.15, 5% heat shrink temperature; 420 ° C., crystallite diameter L 2 ; 30 nm) were obtained. The yield was 100%. As a result of elemental analysis, it was C; 1.2, O; 1.8, Cl; 0.14 (unit: mass%) (C / O ratio = 0.67). Mo × is an L 1 / L 2 = 3.6. The metal nickel content obtained by X-ray photoelectron spectroscopy was 51 atm%.

[実施例2−9]
塩化ニッケル六水和物1297g(5.47mol)とギ酸銅四水和物 189g(1.23mol)にオレイルアミン7087g(26.5mol)を加え、窒素フロー下で120℃、120分間加熱することによって、塩化ニッケルとギ酸ニッケルのアミン錯体を形成させた。
[Example 2-9]
7087 g (26.5 mol) of oleylamine was added to 1297 g (5.47 mol) of nickel chloride hexahydrate and 189 g (1.23 mol) of copper formate tetrahydrate, and heated at 120 ° C. for 120 minutes under a nitrogen flow. An amine complex of nickel chloride and nickel formate was formed.

次いで、上記アミン錯体を含む溶液を、マイクロ波を用いて250℃まで加熱し、その温度を5分間保持することによって、複合ニッケル粒子2−9を含むスラリーを得た。収率は100%であった。   Next, a slurry containing the composite nickel particles 2-9 was obtained by heating the solution containing the amine complex to 250 ° C. using a microwave and maintaining the temperature for 5 minutes. The yield was 100%.

得られたスラリーを静置分離し、上澄み液を取り除いた後、トルエンとメタノールを用いて3回洗浄した後、70℃に維持される真空乾燥機で6時間乾燥して、複合ニッケル粒子2−9(平均粒子径L;170nm、CV値;0.17、5%熱収縮温度;400℃、結晶子径L;38nm)を得た。収率は100%であった。また、元素分析の結果、C;0.4、O;1.3、Cl;0.08(単位は質量%)であった(C/O比=0.31)。Mo×L/L=5.8である。X線光電子分光分析法により得られた金属ニッケル含有率は、71atm%であった。実施例2−9で得られた複合ニッケル粒子2−9のSEM写真を図9に示した。 The resulting slurry was allowed to stand and separated, the supernatant was removed, washed with toluene and methanol three times, and then dried in a vacuum dryer maintained at 70 ° C. for 6 hours to obtain composite nickel particles 2- 9 (average particle diameter L 1 ; 170 nm, CV value; 0.17, 5% heat shrink temperature; 400 ° C., crystallite diameter L 2 ; 38 nm). The yield was 100%. As a result of elemental analysis, it was C; 0.4, O; 1.3, Cl; 0.08 (unit: mass%) (C / O ratio = 0.31). Mo × is L 1 / L 2 = 5.8. The metal nickel content obtained by X-ray photoelectron spectroscopy was 71 atm%. An SEM photograph of the composite nickel particles 2-9 obtained in Example 2-9 is shown in FIG.

[実施例2−10]
塩化ニッケル六水和物1297g(5.47mol)、ギ酸ニッケル二水和物74g(0.4mol)、及びオレイルアミン10700g(40mol)を使用したこと以外、実施例2−1と同様にして、複合ニッケル粒子2−10(平均粒子径L;180nm、CV値;0.19、5%熱収縮温度;430℃、結晶子径L;41nm)を得た。収率は100%であった。また、元素分析の結果、C;0.4、O;1.1、Cl;0.08(単位は質量%)であった(C/O比=0.36)。Mo×L/L=4.8である。X線光電子分光分析法により得られた金属ニッケル含有率は、72atm%であった。
[Example 2-10]
Compound nickel was obtained in the same manner as in Example 2-1, except that 1297 g (5.47 mol) of nickel chloride hexahydrate, 74 g (0.4 mol) of nickel formate dihydrate, and 10700 g (40 mol) of oleylamine were used. Particles 2-10 (average particle diameter L 1 ; 180 nm, CV value; 0.19, 5% heat shrink temperature; 430 ° C., crystallite diameter L 2 ; 41 nm) were obtained. The yield was 100%. Moreover, it was C; 0.4, O; 1.1, Cl; 0.08 (a unit is the mass%) as a result of the elemental analysis (C / O ratio = 0.36). Mo × is L 1 / L 2 = 4.8. The metal nickel content obtained by X-ray photoelectron spectroscopy was 72 atm%.

[実施例2−11]
塩化ニッケル六水和物1297g(5.47mol)、ギ酸ニッケル二水和物828g(4.5mol)、及びオレイルアミン10700g(40mol)を使用したこと以外、実施例2−1と同様にして、複合ニッケル粒子2−11(平均粒子径L;85nm、CV値;0.17、5%熱収縮温度;410℃、結晶子径L;27nm)を得た。収率は100%であった。また、元素分析の結果、C;0.8、O;1.1、Cl;0.11(単位は質量%)であった(C/O比=0.73)。Mo×L/L=3.5である。X線光電子分光分析法により得られた金属ニッケル含有率は、58atm%であった。
[Example 2-11]
Composite nickel was obtained in the same manner as in Example 2-1, except that 1297 g (5.47 mol) of nickel chloride hexahydrate, 828 g (4.5 mol) of nickel formate dihydrate, and 10700 g (40 mol) of oleylamine were used. Particles 2-11 (average particle diameter L 1 ; 85 nm, CV value; 0.17, 5% heat shrink temperature; 410 ° C., crystallite diameter L 2 ; 27 nm) were obtained. The yield was 100%. In addition, as a result of elemental analysis, it was C; 0.8, O; 1.1, Cl; 0.11 (unit: mass%) (C / O ratio = 0.73). Mo × L 1 / L 2 = 3.5. The metal nickel content obtained by X-ray photoelectron spectroscopy was 58 atm%.

表3〜表4から、実施例2−1〜2−11では、粒子径が200nm以下に制御され、結晶性が高く、低温焼結が抑制されていた。   From Tables 3 to 4, in Examples 2-1 to 2-11, the particle diameter was controlled to 200 nm or less, the crystallinity was high, and low-temperature sintering was suppressed.

以上、本発明の実施の形態を例示の目的で詳細に説明したが、本発明は上記実施の形態に制約されることはなく、種々の変形が可能である。
As mentioned above, although embodiment of this invention was described in detail for the purpose of illustration, this invention is not restrict | limited to the said embodiment, A various deformation | transformation is possible.

Claims (3)

金属ニッケル粒子の表面に、水酸化物又は酸化物の被膜を有する複合ニッケル粒子であって、前記複合ニッケル粒子は、酸素含有量(Mo)が0.1〜4.0質量%の範囲内、走査型電子顕微鏡観察による平均粒子径(L)が20〜180nmの範囲内、粒子径の変動係数(標準偏差/平均粒子径)が0.2以下であり、結晶子径(L)が10nm以上であって、前記Mo(単位;質量%)、L(単位;nm)及びL(単位;nm)が、Mo×L/L≦9(単位;質量%)の関係を満足する複合ニッケル粒子。 Composite nickel particles having a hydroxide or oxide coating on the surface of the metal nickel particles, the composite nickel particles having an oxygen content (Mo) in the range of 0.1 to 4.0% by mass, The average particle diameter (L 1 ) by scanning electron microscope observation is in the range of 20 to 180 nm , the particle diameter variation coefficient (standard deviation / average particle diameter) is 0.2 or less, and the crystallite diameter (L 2 ) is It is 10 nm or more, and Mo (unit: mass%), L 1 (unit: nm) and L 2 (unit: nm) have a relationship of Mo × L 1 / L 2 ≦ 9 (unit: mass%). Satisfactory composite nickel particles. X線光電子分光分析法におけるNi(2p 3/2 )のピークのナロウスキャンにおいて、Ni:852.9eV、NiO:853.5eV及びNi(OH) :856eVのピークの波形分離から、金属ニッケル(Ni)、NiO及びNi(OH) のそれぞれのニッケル元素の比を算出したとき、前記ニッケル元素の比の合計に対する前記金属ニッケルの含有率が25〜75atm%の範囲内である請求項1に記載の複合ニッケル粒子。 In the narrow scan of the peak of Ni (2p 3/2 ) in the X-ray photoelectron spectroscopic analysis method, from the waveform separation of the peaks of Ni: 852.9 eV, NiO: 853.5 eV and Ni (OH) 2 : 856 eV, metallic nickel ( The ratio of the nickel elements of Ni), NiO, and Ni (OH) 2 is calculated, and the content of the metallic nickel with respect to the sum of the ratios of the nickel elements is in the range of 25 to 75 atm%. The composite nickel particles described. 前記平均粒子径が40〜150nmの範囲内である請求項1又は2に記載の複合ニッケル粒子。
The average composite nickel particle according to claim 1 or 2 particle size is in the range of 40 to 150 nm.
JP2013061308A 2012-04-04 2013-03-25 Composite nickel particles Active JP5993765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013061308A JP5993765B2 (en) 2012-04-04 2013-03-25 Composite nickel particles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2012085834 2012-04-04
JP2012085834 2012-04-04
JP2012145294 2012-06-28
JP2012145294 2012-06-28
JP2013061308A JP5993765B2 (en) 2012-04-04 2013-03-25 Composite nickel particles

Publications (2)

Publication Number Publication Date
JP2014029014A JP2014029014A (en) 2014-02-13
JP5993765B2 true JP5993765B2 (en) 2016-09-14

Family

ID=50201752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013061308A Active JP5993765B2 (en) 2012-04-04 2013-03-25 Composite nickel particles

Country Status (1)

Country Link
JP (1) JP5993765B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993764B2 (en) * 2012-04-04 2016-09-14 新日鉄住金化学株式会社 Composite nickel particles
KR102589697B1 (en) * 2016-01-12 2023-10-16 도호 티타늄 가부시키가이샤 nickel powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106351A (en) * 1996-09-30 1998-04-24 Kyocera Corp Conductive paste
US6391084B1 (en) * 1998-07-27 2002-05-21 Toho Titanium Co., Ltd. Metal nickel powder
JP3984712B2 (en) * 1998-07-27 2007-10-03 東邦チタニウム株式会社 Nickel powder for conductive paste
JP4986356B2 (en) * 2000-02-18 2012-07-25 カナディアン・エレクトロニクス・パウダーズ・コーポレーション Method for producing nickel powder
JP2004330247A (en) * 2003-05-08 2004-11-25 Murata Mfg Co Ltd Nickel powder, conductive paste, laminate ceramic electronic component
JP6061427B2 (en) * 2011-06-16 2017-01-18 学校法人早稲田大学 Electronic component bonding material, bonding composition, bonding method, and electronic component
JP5831967B2 (en) * 2011-07-25 2015-12-16 新日鉄住金化学株式会社 Composite nickel nanoparticles and method for producing the same
JP5993764B2 (en) * 2012-04-04 2016-09-14 新日鉄住金化学株式会社 Composite nickel particles

Also Published As

Publication number Publication date
JP2014029014A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP5993764B2 (en) Composite nickel particles
KR101635664B1 (en) Process for production of nickel nanoparticles
CN108430673B (en) Nickel powder
JP7042372B2 (en) Nickel powder and its manufacturing method, nickel paste
JP5818318B2 (en) Method for producing nickel nanoparticles
KR20130056852A (en) Nickel-cobalt nanoparticle and manufacturing method therefor
JP5831967B2 (en) Composite nickel nanoparticles and method for producing the same
CN112705235A (en) Carbon-coated nickel carbide nano composite material and preparation method and application thereof
JP5993765B2 (en) Composite nickel particles
JP6425367B1 (en) Nickel powder and nickel paste
JP6082278B2 (en) Method for surface modification of nickel nanoparticles
JP2015049973A (en) Conductive paste and method for manufacturing composite nickel fine particle used therefor
JP2017014545A (en) Nickel fine particle-containing composition and manufacturing method therefor
JP2015151558A (en) Nickel fine particle slurry, metal fine particle and method for producing the same
JP5993763B2 (en) Composite nickel particles
CN110523970B (en) Carbon-coated nickel nanoparticle and preparation method thereof
JP6494338B2 (en) Method for producing nickel particles
JP2013231229A (en) Nickel composite particle
JP6558750B2 (en) Nickel fine particle-containing composition and method for producing the same
JP6608378B2 (en) Method for producing nickel particles
JP6284363B2 (en) Nickel particles
Wang et al. Preparation of spherical ultrafine copper powder via hydrogen reduction-densification of Mg (OH) 2-coated Cu 2 O powder
JP2017066525A (en) Copper-nickel-cobalt ternary nanoparticle and method for producing the same, sintered body, current collector, and fuel cell
TW200831679A (en) Nickel-rhenium alloy powder and conductor paste containing the same
JP2012246521A (en) Method for producing metal porous body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R150 Certificate of patent or registration of utility model

Ref document number: 5993765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250