JPH10106351A - Conductive paste - Google Patents

Conductive paste

Info

Publication number
JPH10106351A
JPH10106351A JP8258819A JP25881996A JPH10106351A JP H10106351 A JPH10106351 A JP H10106351A JP 8258819 A JP8258819 A JP 8258819A JP 25881996 A JP25881996 A JP 25881996A JP H10106351 A JPH10106351 A JP H10106351A
Authority
JP
Japan
Prior art keywords
base metal
conductive paste
main component
oxygen
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8258819A
Other languages
Japanese (ja)
Inventor
Kenichi Iwasaki
健一 岩崎
Shinichi Osawa
真一 大沢
Yoshihiro Fujioka
芳博 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP8258819A priority Critical patent/JPH10106351A/en
Publication of JPH10106351A publication Critical patent/JPH10106351A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent crack and delamination occurrence at the time of burning by adding a base metal with specified average particle size and oxygen content as a main component to a conductive paste and oxidizing the surface of the base metal. SOLUTION: A conductive paste is produced by adding a base metal with 0.1-0.8μm average particle size and 0.5-5.0wt.% of oxygen content as a main component. Ni is preferable as the base metal since the sintering temperature is the same as that of a common dielectric material. In order to add oxygen to the base metal, the base metal is brought into contact with oxygen gas at high temperature. A particle 2 of the base metal exists as aggregated state of a plurality of crystallites in the paste or as single state of respective crystallites. In the case Ni particles are used as the base metal, an inside part 3 comprises Ni and a surface part 4 comprises NiO. The conductive paste contains a base metal as a main component and may further contain a prescribed amount of raw material powders as same as these of a ceramic green sheet as coexisting materials.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性ペーストに関
するものであり、特に、積層セラミックコンデンサの内
部電極として好適に用いられる導電性ペーストに関する
ものである。
The present invention relates to a conductive paste, and more particularly to a conductive paste suitably used as an internal electrode of a multilayer ceramic capacitor.

【0002】[0002]

【従来技術】積層セラミックコンデンサは誘電体層と内
部電極とが交互に積層され、各誘電体層が内部電極によ
って各々挟持されるような構造になっている。ここで誘
電体層は未焼成のセラミックグリーンシートを高温で焼
成して焼結させたものからなり、内部電極は導電性ペー
ストを高温で焼成して導電性の金属薄膜としたものから
なる。
2. Description of the Related Art A multilayer ceramic capacitor has a structure in which dielectric layers and internal electrodes are alternately laminated, and each dielectric layer is sandwiched between the internal electrodes. Here, the dielectric layer is formed by firing and firing an unfired ceramic green sheet at a high temperature, and the internal electrode is formed by firing a conductive paste at a high temperature to form a conductive metal thin film.

【0003】近年、各種電子部品に対しては、軽量小型
化の要求がより厳しくなり、その要求を満足するために
一層当たりのシート厚みを薄くしたり、さらに多層化を
進めたり、また積層セラミックコンデンサにあっては、
より小型、大容量化を実現するために比誘電率の高い誘
電体材料を用いて、更にシート厚みを薄くすること等が
行われている。
[0003] In recent years, the demands for lighter and smaller electronic components have become more stringent, and in order to satisfy the demands, the sheet thickness per layer has been reduced, the number of layers has been further increased, and multilayer ceramics have been developed. For capacitors,
In order to achieve a smaller size and a larger capacity, a dielectric material having a high relative dielectric constant is used, and the sheet thickness is further reduced.

【0004】また、内部電極をPd等の貴金属を主成分
とする内部電極用導電性ペーストによって形成すると、
積層数の増加にともなって電極形成コストが著しく上昇
してしまうため、Ni等の卑金属を主成分とする内部電
極用導電性ペーストが開発され、このペーストによって
内部電極が形成された積層コンデンサが実用化されてい
る。
Further, when the internal electrodes are formed of a conductive paste for internal electrodes containing a noble metal such as Pd as a main component,
As the number of layers increases, the cost of forming the electrodes increases significantly. Therefore, a conductive paste for internal electrodes mainly composed of a base metal such as Ni has been developed. Has been

【0005】Niなどの卑金属を内部電極として使用す
る場合、卑金属類は一般に低い平衡酸素分圧を有するた
め、高温にて焼成する際に酸化物が形成され、導電性が
低下するという問題がある。したがって焼成はNiが酸
化されない非酸化性雰囲気で行わなければならず、誘電
体材料にも当然耐還元性が要求される。
[0005] When a base metal such as Ni is used as an internal electrode, the base metal generally has a low equilibrium oxygen partial pressure. Therefore, there is a problem that an oxide is formed when firing at a high temperature and the conductivity is reduced. . Therefore, firing must be performed in a non-oxidizing atmosphere in which Ni is not oxidized, and the dielectric material naturally requires reduction resistance.

【0006】Niを内部電極とする従来の積層セラミッ
クコンデンサは、一般に表面に内部電極用の導電性ペー
ストが塗布されたセラミックグリーンシートを複数枚積
層した未焼結積層体を、焼成コスト低減のため大気中4
00℃で脱バインダー処理(以下脱バイという)し、内
部電極が酸化されないようなきわめて酸素分圧の低い窒
素雰囲気下や非酸化性雰囲気で焼結一体化することによ
り作製されていた。
In order to reduce the firing cost, a conventional multilayer ceramic capacitor using Ni as an internal electrode is generally formed by laminating a plurality of ceramic green sheets each having a surface coated with a conductive paste for an internal electrode. Atmosphere 4
It has been manufactured by performing a binder removal treatment (hereinafter referred to as debuying) at 00 ° C., and sintering and unifying in a nitrogen atmosphere having a very low oxygen partial pressure or a non-oxidizing atmosphere such that the internal electrodes are not oxidized.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
製造方法においては、大気中400℃で脱バイしていた
ため、Niが部分的に酸化され内部電極が膨張し、脱バ
イ時に積層体にクラックが発生する虞があった。400
℃以上で脱バイした場合も同様の問題がある。
However, in the conventional manufacturing method, since de-buying is performed at 400 ° C. in the air, Ni is partially oxidized, the internal electrodes expand, and cracks occur in the laminated body during de-buying. There was a risk of occurrence. 400
There is a similar problem when debuying at a temperature of not less than ° C.

【0008】一方、内部電極の酸化膨張を防止するた
め、400℃以下の温度で脱バイすると、脱バイを完全
に行うことができず、炭素として残留し、焼成時に過焼
結を引き起してNiが溶融し、端面のNiが外部に吹き
出し、容量抜けが発生する虞があった。
[0008] On the other hand, if the internal electrode is deburied at a temperature of 400 ° C. or less in order to prevent oxidative expansion, the debuy cannot be performed completely, and remains as carbon, causing oversintering during firing. Therefore, there is a possibility that Ni on the end face blows out to the outside and capacity loss occurs.

【0009】即ち、焼成コスト等の点で大気中において
脱バイが行われているが、大気中で脱バイする場合に
は、グリーンシートに用いられる有機バインダーおよび
導電性ペーストに用いられる有機バインダーを完全に飛
散除去することが困難であったり、設計通りの容量が得
られなかったり、内部電極が酸化膨張し、積層コンデン
サにデラミネーションやクラックが発生するなどの問題
が発生していた。
[0009] That is, although de-buying is performed in the air in terms of the firing cost and the like, when de-buying is performed in the air, the organic binder used for the green sheet and the organic binder used for the conductive paste are used. There have been problems such as difficulty in completely scattering and removing, failure to obtain the capacity as designed, oxidative expansion of the internal electrodes, and delamination and cracks in the multilayer capacitor.

【0010】本発明は、容量の低下を防止できるととも
に、焼成時に、積層セラミックコンデンサにおけるクラ
ックやデラミネーションの発生を防止することができる
導電性ペーストを提供することを目的とする。
An object of the present invention is to provide a conductive paste capable of preventing a decrease in capacity and preventing occurrence of cracks and delamination in a multilayer ceramic capacitor during firing.

【0011】[0011]

【課題を解決するための手段】本発明の導電性ペースト
は、平均粒径0.1〜0.8μm、酸素含有量0.5〜
5.0重量%の卑金属を主成分とするものであり、卑金
属粒子の表層部が酸化されていることが望ましく、卑金
属はNiであることが望ましい。
Means for Solving the Problems The conductive paste of the present invention has an average particle size of 0.1 to 0.8 μm and an oxygen content of 0.5 to 0.8 μm.
The base metal is mainly composed of 5.0% by weight of the base metal, the surface layer of the base metal particles is preferably oxidized, and the base metal is preferably Ni.

【0012】[0012]

【作用】本発明の導電性ペーストでは、有機バインダー
を完全に飛散除去することが困難な大気中400℃以下
の温度で脱バイした場合であっても、酸素を0.5〜
5.0重量%含有する卑金属を主成分とするため、有機
バインダーの分解生成物である炭素を酸化し除去でき
る。また、卑金属は酸素を0.5〜5.0重量%含有す
るため、特に、卑金属粒子の表層部が酸化されている場
合には卑金属のさらなる酸化が防止される。
According to the conductive paste of the present invention, even when the organic binder is removed at a temperature of 400 ° C. or less in the atmosphere where it is difficult to completely scatter and remove the organic binder, oxygen is reduced to 0.5 to 0.5%.
Since the base metal contains 5.0% by weight as a main component, carbon which is a decomposition product of the organic binder can be oxidized and removed. Further, since the base metal contains 0.5 to 5.0% by weight of oxygen, further oxidation of the base metal is prevented particularly when the surface layer of the base metal particles is oxidized.

【0013】さらに、脱バイによっても卑金属中に酸素
が残存していたとしても、非酸化性雰囲気での焼成にお
いて消費される。
Furthermore, even if oxygen is left in the base metal even after de-buying, it is consumed in firing in a non-oxidizing atmosphere.

【0014】即ち、卑金属粒子に所定量の酸素を含有さ
せることによって、積層セラミックコンデンサを作製し
た後の残炭素量を減少させることができ、クラックやデ
ラミネーションの発生と容量の低下を防ぐことができ
る。そして、このような条件で平均粒径が0.1〜0.
8μmのNi粉末を用いることによって、内部電極の薄
層化が可能となり、誘電体層の薄層化と共に高積層化が
可能となり、積層コンデンサの小型大容量化を実現でき
る。
That is, by adding a predetermined amount of oxygen to the base metal particles, the amount of carbon remaining after the multilayer ceramic capacitor is manufactured can be reduced, and the occurrence of cracks and delamination and the reduction in capacity can be prevented. it can. Then, under such conditions, the average particle size is 0.1 to 0.1.
By using 8 μm Ni powder, the internal electrodes can be made thinner, the dielectric layers can be made thinner and the lamination can be made higher, and the miniaturization and large capacity of the multilayer capacitor can be realized.

【0015】また、従来の導電性ペーストでは、グリー
ンシートに比べて低い温度で焼結を開始すること、ま
た、収縮率が大きいこと、球状になる性格が強く、網目
状となることなどの問題があったが、このような問題に
ついても、平均粒径0.1〜0.8μm、酸素含有量
0.5〜5.0重量%の卑金属を主成分とする導電性ペ
ーストを用いることにより、解消することができ、グリ
ーンシートと同時焼成してセラミックコンデンサを作製
する際のデラミネーションやクラックの発生及び電気特
性の劣化を防止することができる。
Further, the conventional conductive paste has problems such as starting sintering at a temperature lower than that of the green sheet, having a large shrinkage, being strongly spherical, and having a mesh shape. However, even with respect to such a problem, the use of a conductive paste containing a base metal as a main component having an average particle size of 0.1 to 0.8 μm and an oxygen content of 0.5 to 5.0% by weight allows It is possible to prevent the occurrence of delamination and cracks and the deterioration of electric characteristics when a ceramic capacitor is manufactured by firing simultaneously with the green sheet.

【0016】[0016]

【発明の実施の形態】本発明の導電性ペーストは、平均
粒径0.1〜0.8μm、酸素含有量0.5〜5.0重
量%の卑金属を主成分とするものである。卑金属として
は、Ni、Co、Cuがあり、金属の焼成温度が一般の
誘電体の焼成温度と一致する点、およびコストが安いと
いう点からNiが望ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The conductive paste of the present invention comprises a base metal having an average particle size of 0.1 to 0.8 μm and an oxygen content of 0.5 to 5.0% by weight as a main component. Base metals include Ni, Co, and Cu. Ni is desirable because the firing temperature of the metal matches the firing temperature of general dielectrics and the cost is low.

【0017】卑金属の平均粒径を0.1〜0.8μmと
したのは、平均粒径が0.1μm未満であると卑金属粒
子同士の凝集が起こり易く、卑金属の分散性が低下した
り、卑金属を分散するバインダー溶液の使用量が多くな
るため、コンデンサを作製した後に誘電体セラミッ層に
残存する炭素量が多くなるからである。一方、平均粒径
が0.8μmを越えると、導電性ペーストをセラミック
グリーンシートに塗布した際の表面粗さが粗くなり、デ
ラミネーションの発生の原因となり易く、また十分に緻
密な電極膜が得られないからである。バインダー溶液と
の混練性を考慮すると、卑金属の平均粒径は0.2〜
0.6μmが望ましい。
The reason why the average particle size of the base metal is set to 0.1 to 0.8 μm is that if the average particle size is less than 0.1 μm, the base metal particles tend to agglomerate, the dispersibility of the base metal decreases, This is because the amount of the binder solution in which the base metal is dispersed increases, and the amount of carbon remaining in the dielectric ceramic layer after the capacitor is manufactured increases. On the other hand, when the average particle size exceeds 0.8 μm, the surface roughness when the conductive paste is applied to the ceramic green sheet becomes rough, which is likely to cause delamination, and a sufficiently dense electrode film is obtained. It is not possible. Considering the kneadability with the binder solution, the average particle size of the base metal is 0.2 to
0.6 μm is desirable.

【0018】卑金属の酸素含有量を0.5〜5重量%と
したのは、酸素含有量が0.5重量%未満であると卑金
属の粒子表面の活性が非常に高いので、脱バイ中に酸化
膨張し、クラックやデラミネーションを生じる。また、
完全に有機バインダーを飛散させようとすると焼成の際
に卑金属の表面が酸化されやすくなり、内部電極の導電
性が低下する。一方、酸素含有量が5重量%を越える
と、卑金属の割合が減少するので、非酸化性雰囲気で焼
成したとしても、卑金属中に酸素が残存し、内部電極の
導電性が低下し好ましくない。卑金属中の酸素含有量
は、内部電極の導電性の向上という観点から1.5〜4
重量%、特には2〜4重量%であることが望ましい。
The reason why the oxygen content of the base metal is 0.5 to 5% by weight is that when the oxygen content is less than 0.5% by weight, the activity of the surface of the base metal particles is very high. Oxidative expansion causes cracks and delamination. Also,
If an attempt is made to completely scatter the organic binder, the surface of the base metal is easily oxidized during firing, and the conductivity of the internal electrode is reduced. On the other hand, if the oxygen content exceeds 5% by weight, the proportion of the base metal decreases, so that even if fired in a non-oxidizing atmosphere, oxygen remains in the base metal and the conductivity of the internal electrode is undesirably reduced. The oxygen content in the base metal is 1.5 to 4 from the viewpoint of improving the conductivity of the internal electrode.
% By weight, especially 2 to 4% by weight.

【0019】卑金属中に酸素を含有せしめるには、卑金
属を高温下で酸素ガスに接触させることにより達成でき
る。そして、卑金属中の酸素含有量は、高温下で酸素ガ
スに接触させる時間や熱処理温度をコントロールするこ
とにより制御できる。
The oxygen can be contained in the base metal by bringing the base metal into contact with oxygen gas at a high temperature. The oxygen content in the base metal can be controlled by controlling the time of contact with oxygen gas at a high temperature and the heat treatment temperature.

【0020】卑金属粒子は、ペースト中に、図1に示す
ように複数の結晶子1が集合した形で存在したり、図2
に示すように一つの結晶子1(単結晶)の状態で存在し
たりするが、結晶子1の平均結晶粒径は0.01〜0.
8μmであることが望ましい。即ち、卑金属粒子2が一
つの結晶子(単結晶)の状態で存在する場合は、卑金属
粒子の粒径がそのまま結晶子の粒径となる。
The base metal particles are present in the paste in a form in which a plurality of crystallites 1 are aggregated as shown in FIG.
As shown in the figure, the crystallite 1 exists in the state of one crystallite (single crystal), but the average crystal grain size of the crystallite 1 is 0.01 to 0.1.
It is preferably 8 μm. That is, when the base metal particles 2 exist in a state of one crystallite (single crystal), the particle diameter of the base metal particle becomes the particle diameter of the crystallite as it is.

【0021】結晶子の平均結晶粒径を0.01〜0.8
μmとしたのは、結晶子の結晶粒径が0.01μm未満
であるとNiの焼結が進み、焼結時の内部電極の収縮が
大きくなるためにクラックが発生し易いからである。一
方結晶子の平均結晶粒径は大きいほど好ましいが、特に
一般的な卑金属、例えば、Ni粉末の製法を考慮すると
結晶子の平均結晶粒径は0.01〜0.25μmが好ま
しい。結晶子サイズはX線回折の(111)面の半価幅
からHall plot を行い求めることができる。
The average crystal grain size of crystallites is 0.01 to 0.8.
The reason for making μm is that if the crystal grain size of the crystallite is less than 0.01 μm, the sintering of Ni proceeds and the shrinkage of the internal electrode during sintering increases, so that cracks are likely to occur. On the other hand, the average crystal grain size of the crystallites is preferably as large as possible, but the average crystal grain size of the crystallites is preferably 0.01 to 0.25 μm, particularly in consideration of the production method of a general base metal, for example, Ni powder. The crystallite size can be determined by performing a Hall plot from the half width of the (111) plane of X-ray diffraction.

【0022】本発明では、卑金属粒子の表層部が酸化さ
れていることが望ましい。即ち、卑金属粒子の表層が酸
化され、例えば、Ni粒子の場合、図1および図2に示
したように、内部3がNiであるが表層部4はNiOと
なっている。
In the present invention, it is desirable that the surface layer of the base metal particles is oxidized. That is, the surface layer of the base metal particles is oxidized. For example, in the case of Ni particles, as shown in FIGS. 1 and 2, the inside 3 is Ni but the surface layer portion 4 is NiO.

【0023】本発明の導電性ペーストの卑金属として
は、コバルト、ニッケル、銅またはそれらの合金などが
用いられる。これらの卑金属粒子の形状は球状、フレー
ク状、突起状あるいは不定形であり、特に限定するもの
でない。この場合の平均粒径は比表面積径を用いる。
As the base metal of the conductive paste of the present invention, cobalt, nickel, copper or an alloy thereof is used. The shape of these base metal particles is spherical, flake-like, protruding or irregular, and is not particularly limited. In this case, the specific particle size is used as the average particle size.

【0024】また、導電性ペーストには、卑金属を主成
分とし、これに、例えば積層セラミックコンデンサを作
製する際のセラミックグリーンシートとの密着性を向上
させるために、共材として前記セラミックグリーンシー
トと同様の原料粉末を所定量添加しても良い。さらに、
粒子の凝集や分散不良による電極間の短絡の発生を防止
するため、用いる粉末は十分に分散されていることが望
ましい。そのため、有機性添加物として各種樹脂や分散
剤等が種々組み合わされて使用される。
The conductive paste contains a base metal as a main component, and is used as a common material with the ceramic green sheet as a co-material in order to improve the adhesion to the ceramic green sheet when, for example, manufacturing a multilayer ceramic capacitor. A predetermined amount of the same raw material powder may be added. further,
It is desirable that the powder used is sufficiently dispersed in order to prevent the occurrence of a short circuit between the electrodes due to agglomeration of the particles or poor dispersion. Therefore, various resins, dispersants and the like are used in various combinations as organic additives.

【0025】前記樹脂としては、セルロース系樹脂、ロ
ジン系樹脂、ポリビニール系樹脂、ブチラール系樹脂、
ポリエステル系樹脂、アクリル系樹脂、エポキシ系樹
脂、ポリアミド系樹脂、ポリウレタン系樹脂、アルキッ
ド系樹脂、マレイン酸系樹脂、ポリアマイド系樹脂、石
油系樹脂等があり、該樹脂を単独もしくは複数で用いる
ことができる。粒子の凝集を抑制し分散を向上する樹脂
としては、他の樹脂や溶媒との相溶性という理由から、
セルロース系樹脂が望ましい。
The resin includes a cellulose resin, a rosin resin, a polyvinyl resin, a butyral resin,
There are polyester resin, acrylic resin, epoxy resin, polyamide resin, polyurethane resin, alkyd resin, maleic resin, polyamide resin, petroleum resin, etc., and these resins may be used alone or in combination. it can. As a resin that suppresses agglomeration of particles and improves dispersion, because of compatibility with other resins and solvents,
Cellulosic resins are desirable.

【0026】また、分散剤は、一般にペーストの調合に
用いられる任意の界面活性剤を用いることができるが、
ペーストの安定化から高分子界面活性剤が望ましい。
As the dispersant, any surfactant generally used for preparing a paste can be used.
A polymer surfactant is desirable from the viewpoint of stabilizing the paste.

【0027】また、溶媒は用いる有機性添加物と相溶す
るものであれば、特に限定するものでなく、例えば、エ
タノール、カルビトール、トルエン、酢酸エステル、キ
シレン等のアルコール類、炭化水素類、エステル類、エ
ーテルアルコール類、ケトン類、塩化炭化水素類等が使
用できる。
The solvent is not particularly limited as long as it is compatible with the organic additive to be used. Examples thereof include alcohols such as ethanol, carbitol, toluene, acetate, and xylene, hydrocarbons, and the like. Esters, ether alcohols, ketones, chlorinated hydrocarbons and the like can be used.

【0028】さらに、所望量の有機添加物と溶媒の均一
溶液を調製する際、必要に応じて助剤として界面活性
剤、可塑剤、静電気防止剤、消泡剤、酸化防止剤、滑
剤、硬化剤等を適宜用いることができる。
Further, in preparing a homogeneous solution of a desired amount of an organic additive and a solvent, a surfactant, a plasticizer, an antistatic agent, an antifoaming agent, an antioxidant, a lubricant, and a curing agent may be used as necessary. Agents and the like can be appropriately used.

【0029】本発明の導電性ペーストを用いて積層セラ
ミックコンデンサを作製する方法について記載する。先
ず、所定の組成からなるセラミックグリーンシートを、
引き上げ法、ドクターブレード法、リバースロールコー
タ法、グラビアコータ法、スクリーン印刷法、グラビア
印刷その他の方法で製造する。グリーンシートの厚み
は、小型、大容量化という理由から0.5〜50μmで
あることが望ましい。
A method for manufacturing a multilayer ceramic capacitor using the conductive paste of the present invention will be described. First, a ceramic green sheet having a predetermined composition is
It is manufactured by a pulling method, a doctor blade method, a reverse roll coater method, a gravure coater method, a screen printing method, a gravure printing method or the like. The thickness of the green sheet is desirably 0.5 to 50 μm for reasons of miniaturization and large capacity.

【0030】また、導電性ペーストは、スクリーン印刷
法、押し出し法、グラビア印刷、オフセット印刷法その
他の方法でセラミックグリーンシートに形成され、その
厚みは、小型、高信頼性化という点から2μm以下、特
には1μm以下であることが望ましい。
The conductive paste is formed on the ceramic green sheet by a screen printing method, an extrusion method, a gravure printing method, an offset printing method, or another method, and the thickness thereof is 2 μm or less from the viewpoint of miniaturization and high reliability. In particular, it is desirable that the thickness be 1 μm or less.

【0031】そして、導電性ペーストが塗布されたグリ
ーンシートを複数積層し、この積層成形体を大気中30
0〜450℃で脱バイし、非酸化性雰囲気で1100〜
1350℃で2〜3時間焼成することにより得られる。
Then, a plurality of green sheets to which the conductive paste has been applied are laminated, and the laminated molded body is exposed to air in an air atmosphere.
Debubble at 0-450 ° C and 1100-000 in non-oxidizing atmosphere
It is obtained by firing at 1350 ° C. for 2 to 3 hours.

【0032】[0032]

【実施例】先ず、高温下で酸素ガスに接触させる時間を
制御して、酸素含有量をコントロールしたNi粉末、C
o粉末を準備した。酸素含有量は赤外吸収スペクトル装
置及び原子吸光装置を用いて定量分析を行った。また、
上記卑金属粉末をTEM(透過電子顕微鏡)および結晶
構造分析により観察した結果、卑金属粒子の表層部が酸
化されていることを確認した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, Ni powder with a controlled oxygen content by controlling the time of contact with oxygen gas at a high temperature, C
o Powder was prepared. The oxygen content was quantitatively analyzed using an infrared absorption spectrum device and an atomic absorption device. Also,
As a result of observing the base metal powder by TEM (transmission electron microscope) and crystal structure analysis, it was confirmed that the surface layer of the base metal particles was oxidized.

【0033】次に、上記した卑金属粉末40重量%、エ
チルセルロース5.5重量%とα−テルピネオール9
4.5重量%からなるビヒクル55重量%と、誘電体セ
ラミック層の構成材料であるBaTiO3 粉末をいわゆ
る共材として5重量%とを3本ロールで混練して導電性
ペーストを作製した。
Next, 40% by weight of the base metal powder, 5.5% by weight of ethylcellulose and α-terpineol 9
A conductive paste was prepared by kneading 55% by weight of a vehicle consisting of 4.5% by weight and 5% by weight of BaTiO 3 powder, which is a constituent material of the dielectric ceramic layer, as a so-called co-material using three rolls.

【0034】次に、BaTiO3 97.5モル%とC
aZrO3 2.0モル%とMnO0.5モル%とから
なる主成分100モル部に対して、Y2 3 を0.5モ
ル部添加した組成のセラミックスラリーを、ポリエステ
ルまたはポリプロピレン等の合成樹脂より成る帯状のキ
ャリアフィルム上に、ドクターブレード法で成膜し、乾
燥させることにより帯状のセラミックグリーンシートを
得た。次に、セラミックグリーンシートをキャリアフィ
ルムから剥離し、縦200mm、横200mmのサイズ
に打ち抜いた。なお、セラミックグリーンシートの厚み
を10μmとした。
Next, 97.5 mol% of BaTiO 3 and C
aZrO 3 2.0 mol% and with respect to 100 moles of the main component parts consisting of MnO0.5 mol%, the ceramic slurry composition having a Y 2 O 3 was added 0.5 parts by mole, synthetic resin such as polyester or polypropylene A belt-like ceramic green sheet was obtained by forming a film on a belt-like carrier film formed by a doctor blade method and drying the film. Next, the ceramic green sheet was peeled from the carrier film and punched into a size of 200 mm in length and 200 mm in width. The thickness of the ceramic green sheet was 10 μm.

【0035】得られたセラミックグリーンシートの一方
主面に、スクリーン印刷装置を用いて、上記した導電性
ペーストを印刷した。この塗布膜が形成されたセラミッ
クグリーンシートを複数枚積層し積層成形体を得た。
The above-mentioned conductive paste was printed on one main surface of the obtained ceramic green sheet using a screen printing apparatus. A plurality of ceramic green sheets on which the coating film was formed were laminated to obtain a laminated molded body.

【0036】次に、得られた積層成形体を大気中400
℃の温度に加熱し、バインダーを燃焼させた後、還元雰
囲気中にて1250℃で2時間焼成し、さらに、窒素雰
囲気中にて900℃で再酸化処理を行い、セラミック焼
結体を得た。このセラミック焼結体の炭素量を赤外吸収
スペクトル装置及び原子吸光装置を用いて定量分析を行
った。
Next, the obtained laminated molded product was placed in air at 400
After heating to a temperature of 0.degree. C. to burn the binder, it was fired at 1250.degree. C. for 2 hours in a reducing atmosphere, and further re-oxidized at 900.degree. C. in a nitrogen atmosphere to obtain a ceramic sintered body. . The carbon content of the ceramic sintered body was quantitatively analyzed using an infrared absorption spectrum device and an atomic absorption device.

【0037】焼成後、得られたセラミック焼結体の各端
面にインジウム−ガリウムペーストを塗布し、内部電極
と電気的に接続された外部電極を形成した。
After firing, indium-gallium paste was applied to each end face of the obtained ceramic sintered body to form external electrodes electrically connected to internal electrodes.

【0038】このようにして得られた積層セラミックコ
ンデンサの外形寸法は、幅1.6mm、長さ3.2m
m、厚さ1.0mmであり、内部電極間に介在する誘電
体セラミックス層の厚みは8μmであった。また、誘電
体セラミックス層の有効積層数は50層であり、一層当
たりの対向内部電極の面積は2.1mm2 であった。
The external dimensions of the multilayer ceramic capacitor thus obtained are 1.6 mm in width and 3.2 m in length.
m, the thickness was 1.0 mm, and the thickness of the dielectric ceramic layer interposed between the internal electrodes was 8 μm. The effective number of laminated dielectric ceramic layers was 50, and the area of the opposed internal electrode per layer was 2.1 mm 2 .

【0039】上述のようにして得られた積層コンデンサ
を、各試料100個ずつ樹脂で固めて研磨し、倍率40
0倍の金属顕微鏡観察を行い、クラック及びデラミネー
ションの有無を検査した。また、100個の試料につい
て、1kHz、1Vrmsを印加し、温度25℃の条件
にて静電容量を測定した。卑金属粒子の平均粒径は、比
表面積径により求めた。その結果を表1に示す。
The multilayer capacitor obtained as described above was polished by solidifying 100 pieces of each sample with resin, and the magnification was 40%.
A metallographic observation at a magnification of 0 was performed to check for cracks and delamination. Further, 1 kHz and 1 Vrms were applied to 100 samples, and the capacitance was measured at a temperature of 25 ° C. The average particle diameter of the base metal particles was determined from the specific surface area diameter. Table 1 shows the results.

【0040】[0040]

【表1】 [Table 1]

【0041】この表1から、平均粒径が0.1〜0.8
μmでかつ、酸素含有量が0.5〜5.0重量%のNi
粉末を用いた本発明の試料では、クラックやデラミネー
ションの発生がなく、取得容量も大きかった。特に、酸
素含有量が2〜4重量%である試料No.4〜8、11で
は炭素量が0.03%以下と小さく、クラックやデラミ
ネーションの発生がなく、静電容量が310μF以上と
大きかった。
From Table 1, it can be seen that the average particle size is 0.1 to 0.8.
μm and an oxygen content of 0.5 to 5.0% by weight
In the sample of the present invention using powder, cracks and delamination did not occur, and the acquisition capacity was large. In particular, in Samples Nos. 4 to 8 and 11 having an oxygen content of 2 to 4% by weight, the carbon content was as small as 0.03% or less, no crack or delamination occurred, and the capacitance was as large as 310 μF or more. Was.

【0042】一方、試料No.15の比較例から判るよう
に酸素含有量が0.5重量%より小さくなると、積層セ
ラミックコンデンサ中の有機バインダーの分解生成物の
炭素によってNiの焼結が促進され、電極層が玉状とな
り、その結果、多くのクラックが発生した。一方、酸素
含有量が5重量%を越える場合には、試料No.16から
判るように、内部電極の一部が通電不良のために容量の
低下がみられた。
On the other hand, as can be seen from the comparative example of Sample No. 15, when the oxygen content is smaller than 0.5% by weight, the sintering of Ni is promoted by the carbon as a decomposition product of the organic binder in the multilayer ceramic capacitor. As a result, the electrode layer became ball-shaped, and as a result, many cracks occurred. On the other hand, when the oxygen content exceeded 5% by weight, as can be seen from Sample No. 16, the capacity of a part of the internal electrodes was reduced due to poor conduction.

【0043】[0043]

【発明の効果】以上述べたように、平均粒径が0.1〜
0.8μmであり、0.5〜5重量%の酸素を含有する
卑金属粒子を主成分とする本発明の導電性ペーストによ
れば、積層セラミックコンデンサを作製した後の残炭素
量を減少させることができ、クラックやデラミネーショ
ンの発生と容量の低下を防ぐことができる。そして、こ
のような条件で平均粒径が0.1〜0.8μmのNi粉
末を用いることによって、内部電極の薄層化を可能する
ことができる。したがって、誘電体層の薄層化と共に高
積層化が可能となり、積層コンデンサの小型大容量化を
実現できる。
As described above, the average particle size is 0.1 to
According to the conductive paste of the present invention, which is 0.8 μm and contains base metal particles containing 0.5 to 5% by weight of oxygen as a main component, it is possible to reduce the amount of residual carbon after manufacturing a multilayer ceramic capacitor. And the occurrence of cracks and delaminations and a decrease in capacity can be prevented. By using Ni powder having an average particle size of 0.1 to 0.8 μm under such conditions, it is possible to make the internal electrodes thinner. Therefore, the dielectric layers can be made thinner and more highly laminated, and the multilayer capacitor can be made smaller and larger in capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】複数の結晶子が集合した卑金属粒子を示す説明
図である。
FIG. 1 is an explanatory diagram showing base metal particles in which a plurality of crystallites are aggregated.

【図2】一つの結晶子からなる卑金属粒子を示す説明図
である。
FIG. 2 is an explanatory diagram showing base metal particles composed of one crystallite.

【符号の説明】[Explanation of symbols]

1・・・結晶子 2・・・卑金属粒子 3・・・内部 4・・・表層部 DESCRIPTION OF SYMBOLS 1 ... Crystallite 2 ... Base metal particle 3 ... Inside 4 ... Surface layer part

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】平均粒径0.1〜0.8μm、酸素含有量
0.5〜5.0重量%の卑金属を主成分とすることを特
徴とする導電性ペースト。
1. A conductive paste comprising a base metal having an average particle size of 0.1 to 0.8 μm and an oxygen content of 0.5 to 5.0% by weight as a main component.
【請求項2】卑金属粒子の表層部が酸化されている請求
項1記載の導電性ペースト。
2. The conductive paste according to claim 1, wherein the surface layer of the base metal particles is oxidized.
【請求項3】卑金属はNiである請求項1または2記載
の導電性ペースト。
3. The conductive paste according to claim 1, wherein the base metal is Ni.
JP8258819A 1996-09-30 1996-09-30 Conductive paste Pending JPH10106351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8258819A JPH10106351A (en) 1996-09-30 1996-09-30 Conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8258819A JPH10106351A (en) 1996-09-30 1996-09-30 Conductive paste

Publications (1)

Publication Number Publication Date
JPH10106351A true JPH10106351A (en) 1998-04-24

Family

ID=17325489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8258819A Pending JPH10106351A (en) 1996-09-30 1996-09-30 Conductive paste

Country Status (1)

Country Link
JP (1) JPH10106351A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283441A (en) * 1998-03-30 1999-10-15 Kyocera Corp Conductive paste and electronic part
JP2006169634A (en) * 2004-12-15 2006-06-29 Samsung Electro Mech Co Ltd Surface treatment method for nickel particle using acid solution
EP1800773A1 (en) * 2005-12-07 2007-06-27 Shoei Chemical Inc. Nickel powder, conductive paste, and multilayer electronic component using same
DE10032850B4 (en) * 1999-07-06 2008-07-10 Murata Mfg. Co., Ltd., Nagaokakyo Electroceramic multilayer component
US7520914B2 (en) * 2000-02-18 2009-04-21 Canadian Electronic Powders Corporation Nickel powder for use as electrodes in base metal electrode multilayered ceramic capacitors
WO2009054502A1 (en) * 2007-10-24 2009-04-30 Sekisui Chemical Co., Ltd. Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
JP2013251251A (en) * 2012-06-04 2013-12-12 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrode, multilayer ceramic capacitor, and fabrication method thereof
JP2014029014A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle
JP2015086465A (en) * 2013-10-30 2015-05-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Nickel nanopowder and production method thereof
JP2017212272A (en) * 2016-05-24 2017-11-30 太陽誘電株式会社 Multilayer ceramic capacitor
JP2022051945A (en) * 2015-03-03 2022-04-01 積水化学工業株式会社 Conductive particle, method for producing conductive particle, conductive material and connection structure

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555075A (en) * 1991-08-29 1993-03-05 Dai Ichi Kogyo Seiyaku Co Ltd Conductor paste for electrode of ceramic capacitor
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555075A (en) * 1991-08-29 1993-03-05 Dai Ichi Kogyo Seiyaku Co Ltd Conductor paste for electrode of ceramic capacitor
JPH08246001A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Nickel superfine powder for multilayer ceramic capacitor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11283441A (en) * 1998-03-30 1999-10-15 Kyocera Corp Conductive paste and electronic part
DE10032850B4 (en) * 1999-07-06 2008-07-10 Murata Mfg. Co., Ltd., Nagaokakyo Electroceramic multilayer component
US7520914B2 (en) * 2000-02-18 2009-04-21 Canadian Electronic Powders Corporation Nickel powder for use as electrodes in base metal electrode multilayered ceramic capacitors
JP2006169634A (en) * 2004-12-15 2006-06-29 Samsung Electro Mech Co Ltd Surface treatment method for nickel particle using acid solution
JP4602238B2 (en) * 2004-12-15 2010-12-22 三星電機株式会社 Surface treatment method of nickel particles using acid solution
KR100853599B1 (en) * 2005-12-07 2008-08-22 소에이 가가쿠 고교 가부시키가이샤 Nickel powder, conductive paste, and multilayer electronic component using same
US7618474B2 (en) 2005-12-07 2009-11-17 Shoei Chemical Inc. Nickel powder, conductive paste, and multilayer electronic component using same
EP1800773A1 (en) * 2005-12-07 2007-06-27 Shoei Chemical Inc. Nickel powder, conductive paste, and multilayer electronic component using same
WO2009054502A1 (en) * 2007-10-24 2009-04-30 Sekisui Chemical Co., Ltd. Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
US8981226B2 (en) 2007-10-24 2015-03-17 Sekisui Chemical Co., Ltd. Electrically conductive microparticle, anisotropic electrically conductive material, connection structure, and method for production of electrically conductive microparticle
JP2014029014A (en) * 2012-04-04 2014-02-13 Nippon Steel & Sumikin Chemical Co Ltd Complex nickel particle
JP2013251251A (en) * 2012-06-04 2013-12-12 Samsung Electro-Mechanics Co Ltd Conductive paste composition for internal electrode, multilayer ceramic capacitor, and fabrication method thereof
CN103456493A (en) * 2012-06-04 2013-12-18 三星电机株式会社 Conductive paste composition for internal electrode, multilayer ceramic capacitor, and fabrication method thereof
US8861182B2 (en) 2012-06-04 2014-10-14 Samsung Electro-Mechanics Co., Ltd. Conductive paste composition for internal electrode, multilayer ceramic capacitor, and fabrication method thereof
JP2015086465A (en) * 2013-10-30 2015-05-07 サムソン エレクトロ−メカニックス カンパニーリミテッド. Nickel nanopowder and production method thereof
JP2022051945A (en) * 2015-03-03 2022-04-01 積水化学工業株式会社 Conductive particle, method for producing conductive particle, conductive material and connection structure
JP2017212272A (en) * 2016-05-24 2017-11-30 太陽誘電株式会社 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
KR100859646B1 (en) Conductive particle manufacturing method, conductive paste, and electronic component manufacturing method
KR100826388B1 (en) Electronic parts and method for manufacture thereof
JPH11251173A (en) Laminated ceramic electronic component
JP2003068564A (en) Manufacturing method for laminated ceramic electronic component and laminated ceramic electronic component
JPH10106351A (en) Conductive paste
JP3744439B2 (en) Conductive paste and multilayer ceramic electronic components
JP3561115B2 (en) Conductive paste and multilayer ceramic capacitors
KR100814206B1 (en) Inhibitor particles, method of production of same, electrode paste, method of production of electronic device
JP2000340450A (en) Laminated ceramic capacitor and manufacture thereof
JP3527854B2 (en) Conductive paste composition, method for manufacturing multilayer ceramic capacitor using the same, and multilayer ceramic capacitor
JP2007234588A (en) Conductive paste, electronic component, laminated ceramic capacitor, and manufacturing method therefor
JP2007234330A (en) Conductor paste and electronic part
JP4552260B2 (en) Nickel powder, electrode paste, and electronic component manufacturing method
JP3527822B2 (en) Conductive paste
US7867349B2 (en) Thick film green sheet slurry, production method of thick film green sheet slurry, production method of thick film green sheet and production methods of thick film green sheet and electronic device
JP3534999B2 (en) Conductive paste
JP4506755B2 (en) Green sheet, green sheet manufacturing method, and electronic component manufacturing method
JP2003115416A (en) Conductive paste, method of manufacturing laminated ceramic electronic component, and laminated ceramic electronic component
JP4548897B2 (en) Conductive paste, multilayer electronic component and method for producing the same
JP2004080048A (en) Electronic component
JPH11283441A (en) Conductive paste and electronic part
JP3756885B2 (en) Paint for thick film green sheet, method for producing paint for thick film green sheet, method for producing thick film green sheet, method for producing thick film green sheet and electronic component
CN114641835A (en) Conductive paste composition for internal electrode of multilayer ceramic capacitor, method for producing same, and conductive paste
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JP2004221304A (en) Method for manufacturing electronic parts having internal electrode

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040203