JP5655516B2 - レーダ装置 - Google Patents

レーダ装置 Download PDF

Info

Publication number
JP5655516B2
JP5655516B2 JP2010253928A JP2010253928A JP5655516B2 JP 5655516 B2 JP5655516 B2 JP 5655516B2 JP 2010253928 A JP2010253928 A JP 2010253928A JP 2010253928 A JP2010253928 A JP 2010253928A JP 5655516 B2 JP5655516 B2 JP 5655516B2
Authority
JP
Japan
Prior art keywords
signal
reception
phase
receiving antennas
target object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010253928A
Other languages
English (en)
Other versions
JP2012103201A (ja
Inventor
玲義 水谷
玲義 水谷
夏目 一馬
一馬 夏目
好浩 阿部
好浩 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010253928A priority Critical patent/JP5655516B2/ja
Priority to US13/292,438 priority patent/US9097796B2/en
Priority to CN201110371822.7A priority patent/CN102565789B/zh
Priority to DE102011086113A priority patent/DE102011086113A1/de
Publication of JP2012103201A publication Critical patent/JP2012103201A/ja
Application granted granted Critical
Publication of JP5655516B2 publication Critical patent/JP5655516B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/345Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using triangular modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/465Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the aerials being frequency modulated and the frequency difference of signals therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、周波数変調されたレーダ波を送受信することにより、少なくとも目標物体が存在する方位を検出するレーダ装置に関する。
近年レーダ装置を自動車に搭載し、衝突防止等の安全装置として応用する試みがなされているが、車載用のレーダ装置としては、目標物体の距離と相対速度とを同時に検出可能であり、しかも構成が比較的簡単で小型化・低価格化に適したFMCW方式のレーダ装置(以下、FMCWレーダ装置とよぶ)が用いられている。
FMCW方式のレーダ装置では、三角波状の変調信号により周波数変調され、周波数が時間に対して直線的に漸次増減する送信信号Ssを送信波として送信し、目標物体から反射された受信波を受信信号Srとして受信する。
このとき、受信信号Srは、送受信波がレーダ装置と目標物体との間を往復するのに要する時間、すなわち、目標物体までの距離に応じた時間Tdだけ遅延し、レーダ装置と目標物体の相対速度に応じた周波数Fdだけドップラシフトする。
このような受信信号Srと送信信号Ssとをミキサで混合することにより、受信信号Srと送信信号Ssとの差の周波数成分であるビート信号Bを生成し、送信信号Ssの周波数が増加するときのビート信号B(以下、アップビート信号Buともよぶ)の周波数(以下、上り変調時のビート周波数とよぶ)をfu、送信信号Ssの周波数が減少するときのビート信号(以下、ダウンビート信号Bdともよぶ)の周波数(以下、下り変調時のビート周波数とよぶ)fdとして、目標物体との距離R及び相対速度Vを、以下の式1、式2を用いて算出するように構成されている。
なお、cは電波伝搬速度、Tは送信信号を変調する三角波の周期、△Fは送信信号の周波数変動幅、Foは送信信号の中心周波数である。
ところで、車載用のレーダ装置では、上記のようにして検出された距離や速度に加え、目標物体が自車に対してどのような位置関係にあるかという、いわゆる方位情報の検出も重要となる。
そこで、受信アンテナを複数の受信グループに分割し、各受信グループに属する受信アンテナのいずれかからの受信信号を択一的に受信器に供給する受信スイッチを、送信信号の周波数が変動する周期よりも短い周期で切り替えて受信器に供給し、受信器では、各受信グループに属する受信アンテナからの受信信号をローカル信号で混合して、受信信号Srとするようにし、ミキサが出力するアップビート信号Buとダウンビート信号Bdのピークのペアマッチングにより、距離や相対速度に加え、そのとき選択された受信アンテナの配置から方位情報を得るものがある(例えば特許文献1参照)。
特許第3622565号公報
ところが、FMCW方式を用いて、アップビート信号Buとダウンビート信号Bdのピークのペアマッチにより、目標物体の位置などの情報を導出するレーダ装置においては、FFTなどのデジタル信号処理を行うと、受信信号のサンプリングを行う周波数に対するナイキスト周波数以降の距離にある目標物体の受信信号がナイキスト周波数以内の距離に折り返してしまうため、遠距離の目標物体が近距離に現れ、誤検出してしまうという問題がある。
本発明は、こうした問題に鑑みなされたもので、目標物体の誤検出を起こさないレーダ装置を提供することを目的とする。
この欄においては、発明に対する理解を容易にするため、必要に応じて「発明を実施するための形態」欄において用いた符号を付すが、この符号によって請求の範囲を限定することを意味するものではない。
上記「発明が解決しようとする課題」において述べた問題を解決するためになされた発明は、送信部(10)、受信部(20)及び信号処理部(30)を備えたレーダ装置(1)である。
送信部(10)は、周波数が時間とともに周期的に変動する送信信号を生成し、送信信号をレーダ波として送信する。また、受信部(20)は、送信部(10)から送信され、目標物体に反射したレーダ波を受信し、レーダ波の受信信号及び送信信号と同じ周波数を有するローカル信号に基づいてビート信号Bを生成する。
信号処理部(30)は、受信部(20)が生成するビート信号Bを所定のサンプリング周期Tsでサンプリングし、該所定のサンプリング周期Tsでサンプリングしたビート信号Bの上り変調信号(アップビート信号Bu)と下り変調信号(ダウンビート信号Bd)のピークのペアマッチにより、少なくとも目標物体の位置情報を導出する、
さらに、受信部(20)は、所定の間隔で配置された複数の受信アンテナ(22)、受信器(24)を備えている。
受信器(24)は、複数の受信アンテナ(22)の各々に接続され、各受信アンテナ(22)からの受信信号をローカル信号と混合して出力する。また、信号処理部(30)は、複数の受信アンテナ(22)で受信した受信波の位相差に基づいて目標物体の位置情報を導出する際に、複数の受信器(24)を、所定のサンプリング周期の1/2よりも小さい選択周期で配列順に選択することにより各受信アンテナ(22)間の位相をずらし、位相をずらした各受信アンテナ(22)間の位相に所定の位相補正を行い、位相補正を行った複数の受信アンテナ(22)の位相から目標物体の方位を導出し、導出した目標物の方位からペアマッチングを行って、ペアマッチが可能な場合に、導出した方位を目標物の位置情報とし、ペアマッチングができない場合には、導出した方位を目標物の位置情報としない。
このようなレーダ装置(1)では、目標物体の誤検出を起こさないレーダ装置(1)とすることができる。以下説明する。
一般的に、図9に示すように、ビート信号Bのサンプリングを行うと、サンプリング周波数fsに対するナイキスト周波数fnより高い周波数に対応する距離にある目標物体(図9中Qで示す)のビート信号Bが、図9中に矢印で示すように、ナイキスト周波数fnを対称軸として、ナイキスト周波数fnより低い周波数側に線対称周波数の位置に折り返してしまうエリアシング(図9中に破線Q’で示す)が発生する。したがって、実際には遠距離にある目標物体が近距離に現れることになる。
このとき、図10に示すように、ナイキスト周波数fnより低い周波数を有するビート信号では、実際のビート信号(図9中Pで示す)をサンプリングするため、受信アンテナ間(図10中Ch1、Ch2で示す)の位相差をX°とすると、アップビート信号Buでは、位相差がX°、ダウンビート信号Bdでは位相差が−X°となる、
つまり、アップビート信号Buとダウンビート信号Bdの位相差X°の正負が逆となる。したがって、アップビート信号Buとダウンビート信号Bdのピークのペアマッチングが可能となるため、目標物体の位置情報を正確に得ることができる。
これに対し、ナイキスト周波数fnより高い周波数を有するビート信号の場合には、前述のように、ナイキスト周波数fnを対称軸として、ナイキスト周波数fnよりも低い周波数の線対称の位置に折り返され、いわゆるエリアスが現れる。
この状態で、サンプリング周波数fsでサンプリングを行うと、図11に示すように、実際の波形(図11中に点線で示す波形)に対し、ナイキスト周波数fnで折り返されたビート信号(エリアス)(図11中に実線で示す波形)をサンプリングすることとなる。
したがって、図11に示すように、各受信アンテナ(図11中Ch1、Ch2で示す)間のアップビート信号Buの位相差が(X+α)°、ダウンビート信号Bdの位相差が−(X−α)°となり、アップビート信号Buとダウンビート信号Bdとが正負逆の信号とならなくなる。
したがって、アップビート信号Buとダウンビート信号Bdのピークのペアマッチングが不可能となってしまい、目標物体の位置情報が得られなくなってしまう。なお、αは、受信アンテナ(22)間の位相差の補正値を示している。
すなわち、αは、受信アンテナ(22)間の入力経路差からくる時間差を吸収するためにその時間差を位相に変換した場合、ナイキスト周波数より高い周波数と低い周波数との時間差により発生する位相差を意味している。
ここで、ビート信号Bのサンプリングの際に、ナイキスト周波数fnを対称軸とした折り返しを防止し、サンプリングしたアップビート信号Buとダウンビート信号Bdのピークのペアマッチにより、目標物体の位置情報を導出するには、アップビート信号Buとダウンビート信号Bdの検知角が離れるようにすればよい。
そこで、信号処理部(30)では、複数の受信器(24)の出力を、サンプリング周期の1/2よりも小さい選択周期で配列順に選択するようにすると、サンプリングしたアップビート信号Buとダウンビート信号Bdのアップビート信号Buとダウンビート信号Bdの検知角が離れるので、ピークのペアマッチにより、目標物体の位置情報を導出することができる。
また、請求項2に記載のように、送信部(10)、受信部(200)及び信号処理部(300)を備え、受信部(200)は、複数の受信アンテナ(22)、受信器(24)、受信スイッチ(26)及び選択制御手段(28)を備えるレーダ装置(2)としてもよい。
ここで、受信器(24)は、所定の間隔で配置された複数の受信アンテナ(22)からの受信信号をローカル信号と混合し、受信スイッチ(26)は、複数の受信アンテナ(22)のいずれかからの受信信号を択一的に受信器(24)に供給する。
また、選択制御手段(28)は、受信スイッチ(26)を、信号処理部(300)における所定のサンプリング周期の1/2より小さい選択周期で、複数の受信アンテナ(22)の配列順に切り替わるように制御する。
さらに、信号処理部は、複数の受信アンテナで受信した受信波の位相差に基づいて目標物体の位置情報を導出する際に、選択制御手段で、受信スイッチを、信号処理部における所定のサンプリング周期の1/2より小さい選択周期で、複数の受信アンテナの配列順に切り替わるように制御することにより、各受信アンテナ間の位相をずらし、位相をずらした各受信アンテナ間の位相に所定の位相補正を行い、位相補正を行った複数の受信アンテナの位相から目標物体の方位を導出し、導出した目標物の方位からペアマッチングを行って、ペアマッチが可能な場合に、導出した方位を目標物の位置情報とし、ペアマッチングができない場合には、導出した方位を目標物の位置情報としない。
このように、複数の受信アンテナ(22)を、受信スイッチ(26)を切り替えることによって配列順に順次選択するようにしても、請求項1に記載のレーダ装置(1)と同じ効果を有するレーダ装置(2)とすることができる。
また、比較的大きくて高価な受信器(24)が1個で済むため、レーダ装置(1)を小型かつ安価に製作することができる。
ところで、ビート信号Bのサンプリングの際に、ナイキスト周波数fnを対称軸とした折り返しを防止し、サンプリングしたアップビート信号Buとダウンビート信号Bdのピークのペアマッチにより、目標物体の位置情報を導出するには、アップビート信号Buとダウンビート信号Bdの検知角が最も離れるようにすることが望ましい。
そこで、請求項3に記載のように、選択周期をサンプリング周期の1/4とすると、
アップビート信号Buとダウンビート信号Bdの検知角が最も離れるので、エリアスが発生しない。したがって、目標位置の位置情報を正確に導出できる。
つまり、図12(a)に示すよう実際の目標物体に対し、ナイキスト周波数fnを対称軸として折り返されたビート信号Bに対しては、図12(b)に示すように、各受信アンテナ(22)を選択する場合の各受信アンテナ(22)の位相ずれが90°となるようにする必要がある。各受信アンテナ(22)の位相ずれが90°となる選択時間間隔は、下記式3を満たすことが必要である。
位相ずれ(90°)=360°×受信アンテナ選択時間間隔tc×サンプリング周波数fs・・・式3
この式3より、受信アンテナ選択時間間隔tcとサンプリング周波数fsとの関係は、下記式4に示すように、
受信アンテナ選択時間間隔tc×サンプリング周波数fs=90°/360°=1/4・・・式4
となる。
したがって、受信アンテナ選択時間間隔tcをサンプリング周期Ts(1/fs)の1/4とすることで、ビート信号のサンプリングの際に、ナイキスト周波数fnを対称軸とした折り返しを防止し、サンプリングしたアップビート信号Buとダウンビート信号Bdのピークのペアマッチを可能とすることができる。
つまり、ビート信号のサンプリング周波数fsに対するナイキスト周波数fnより高い距離にある目標物体の受信信号がナイキスト周波数fnより低い距離に折り返さないようにし、遠距離の目標物体を近距離の目標物体として誤検出しないレーダ装置(1)とすることができる。
また、ビート信号のサンプリング周波数fsに対するナイキスト周波数fnより高い周波数の信号を遮断するために一般的に用いられるアンチエリアシングフィルタが必要となくなるので、レーダ装置(1)を簡易な構成とすることができる。
また、請求項4に記載のレーダ装置は、受信部(20)の複数の受信アンテナ(22)を略直線上に配置されていることを特徴とする。
この場合、各受信アンテナ(22)からの受信信号に基づくビート信号の強度成分及び位相成分を比較することにより、受信アンテナ(22)の法線(正面)方向及び配列方向を含む面内での目標物体の方位(例えば、正面方向を0°とした、左右方向の角度)が検出可能となるため、例えば、受信アンテナの配列方向を水平方向に一致させれば、車載用前方監視レーダ等に好適に用いることができる。
ここで、図13は、一列に配置された受信アンテナ(22)の受信信号の位相に基づいて、方位検出を行う際の原理を示す説明図である。すなわち、隣接する受信アンテナ(22)の中心間の距離をdwとした場合、受信アンテナ(22)の正面方向に対して角度αから到来するレーダ波を考える。なお、図面を見やすくするため、ここでは、3つの受信チャネルch1,ch2,ch3を有する場合、すなわち3つの受信アンテナにて受信する場合について示す。
まず、単一の送信アンテナ(16)から送信され、受信アンテナ(22)前方の少なくとも数m以上の距離に存在する目標物体によって反射されたレーダ波は、各受信アンテナ(22)の所に、ほとんど平行に到来すると考えることができる。
したがって、隣接する受信チャネルch1,2(又はch2,3)の受信アンテナ(22)に到来するレーダ波は、角度αに応じた行路差dl(=dw・sinα)が生じることになる。
この行路差dlにより、両受信チャネルch1,2(又はch2,3)の受信信号には、位相差が生じ、更にこの位相差は、受信器(24)で周波数変換されてビート信号の位相差となって、信号処理部(30)に伝達される。FMCWレーダ装置(1)の場合、行路差dlによって、ビート信号に発生する位相差ζは、送信信号の平均波長をλとして、次の式5にて表される。
ここで行路差dlを上述の受信アンテナ間の距離dw及び角度αにて示した式で置き換え、αについて解くと、次の式6が得られる。
したがって、各受信チャネルch1,2,3のビート信号を解析して、チャネル間の位相差ζを求めることにより、式6から方位情報を求めることができるのである。
なお、この場合、送信ビームのビーム範囲内に存在する目標物体について、方位情報を漏らさず検出できるようにするには、隣接する一対の受信アンテナ(22)の中心間の距離dwを、送信部(10)から送出されるレーダ波のビーム幅をφ、送信信号の平均波長をλとした場合、次の式7に示すように、
に設定することが望ましい。すなわち、式6をdwについて解くと、式8が得られる。
そして、位相比較により判定可能な位相差ζは、−π<ζ<πの範囲であり、送信ビームのビーム幅をφとした場合、検出可能な角度αは、−φ/2<α<φ/2の範囲であるため、式8に、ζ=π,α=φ/2を代入すると、式9が得られる。
実際には、余裕を持って送信ビームのビーム幅より広い範囲を検出できるように設定することが望ましく、すなわち、受信アンテナの中心間の距離dwを、式7を満たすように設定しておけば、必要な方位情報を漏らさず検出できるのである。
レーダ装置の概略の構成を示すブロック図である。 送信及び受信アンテナのビーム幅の設定を表す説明図である。 信号処理部に供給されるビート信号の波形図である。 信号処理部にて実行される目標物情報検出処理の内容を表すフローチャートである。 受信アンテナのチャネル間の位相ずれとビート信号Bの周波数の関係を示す説明図である。 目標物体の検出方位とビート信号の周波数の関係を示す説明図である。 第2実施形態におけるレーダ装置の概略の構成を示すブロック図である。 受信スイッチの選択タイミングを表す説明図である。 ビート信号Bが、ナイキスト周波数fnを対称軸として、ナイキスト周波数fnより低い周波数側に線対称周波数の位置に折り返してしまうことを示す説明図である。 ナイキスト周波数fnより低い周波数を有するビート信号をサンプリングしたときの様子を示す説明図である。 ナイキスト周波数fnより高い周波数を有するビート信号をサンプリングしたときの様子を示す説明図である。 ナイキスト周波数fnを対称軸として折り返されたビート信号Bに対して各受信アンテナを選択する場合の各受信アンテナの位相ずれが90°となるようにする必要があることを示す説明図である。 一列に配置された受信アンテナの受信信号の位相に基づいて、方位検出を行う際の原理を示す説明図である。
以下、本発明が適用された実施形態について図面を用いて説明する。なお、本発明の実施の形態は、下記の実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態を採りうる。
[第1実施形態]
図1は、本発明が適用されたレーダ装置1の概略の構成を示すブロック図である。図1に示すように、送信部10、受信部20及び信号処理部30を備えている。
送信部10は、周波数が時間とともに周期的に変動する送信信号を生成し、送信信号をレーダ波として送信する装置であり、時間に対して周波数が直線的に漸増、漸減を繰り返すよう変調されたミリ波帯の高周波信号を生成する発振器12と、発振器12の出力を送信信号Ssとローカル信号Lとに電力分配する分配器14と、送信信号Ssに応じたレーダ波を放射する送信アンテナ16とを備えている。
なお、発振器12が生成する高周波信号の周波数は、三角波状に変化し、本第1実施形態では、中心周波数Fo=76.5GHz,周波数変動幅ΔF=100MHz,変動周期Td=1.024msに設定されている。また、送信アンテナ16のビーム幅は、当該レーダ装置1の検出領域をすべてカバーするように設定されている。
受信部20は、送信部10から送信され、目標物体に反射したレーダ波を受信し、レーダ波の受信信号及び送信信号と同じ周波数を有するローカル信号に基づいてビート信号を生成する装置であり、受信アンテナ22及び受信器24を備えている。
受信アンテナ22は、レーダ波を受信する複数(本第1実施形態では8個)のホーンアンテナから構成されている。
受信器24は、複数(8個)の受信アンテナ22の各々に接続された複数(8個)の装置であり、各々の受信器24は、各受信アンテナ22からの受信信号Srにローカル信号Lを混合し、これら信号の差の周波数成分であるビート信号Bを生成する高周波ミキサを備えている。
つまり、受信部20は、各受信アンテナ22に対応して8つの受信チャネルch1〜8を有しており、すべての受信チャネルch1〜8において、受信器24でビート信号Bを生成するように構成されている。
なお、図2に示すように、アンテナが形成するビームにおいて、正面方向に対する利得の低下が3dB以内の角度範囲をビーム幅と規定し、各受信チャネルch1〜ch8の受信アンテナ22は、そのビーム幅が、いずれも、送信アンテナ16のビーム幅(本第1実施形態ではφ=20°)全体を含むように設定されている。
また、隣接する各受信アンテナ22の中心間の距離dwは、送信アンテナ16のビーム範囲を角度分析するために、上述した式7の条件を満たすようにdw=8[mm]に設定されている。すなわち、レーダ波の平均波長がλ=1/Fo=3.92[mm]であることから、式7の右辺は11.3[mm]となり式7を満たすことは明らかである。
信号処理部30は、受信部20が生成するビート信号を所定のサンプリング周期Tsでサンプリングし、ビート信号の上り変調信号と下り変調信号のピークのペアマッチにより、少なくとも目標物体の位置情報を導出する機器である。
また、ビート信号のサンプリングの際、複数(8個)の受信器24を、ビート信号のサンプリング周期Tsの1/4の選択周期tcで順次選択し、各受信器24からのビート信号を順次サンプリング周期Tsでサンプリングする。
信号処理部30は、CPU、ROM、RAM及びI/Oからなる周知のマイクロコンピュータを中心に構成され、受信部20が生成するビート信号Bをサンプリング周期Tsでデジタルデータに変換するサンプリング手段としてのA/D変換器及びA/D変換器を介して取り込んだデータについて、高速フーリエ変換(FFT)を実行するための演算処理装置等(いずれも図示しない)を備えている。
このように構成された本第1実施形態のレーダ装置1では、発振器12が生成した高周波信号を分配器14が電力分配することにより送信信号Ss及びローカル信号Lが生成され、このうち送信信号Ssは、送信アンテナ16を介してレーダ波として送出される。
送信アンテナ16から送出されたレーダ波の反射波は、全ての受信アンテナ22にて受信され、受信チャネルchi(i=1〜8)の受信信号Srが各受信器24へ供給される。
すると、各受信器24では、この受信信号Srに分配器14からのローカル信号Lを混合することによりビート信号Bを生成し信号処理部30へ供給する。そして、信号処理部30では、ビート信号Bを、サンプリング周期Tsでサンプリングした後、後述する目標物情報検出処理を実行する。
なお、信号処理部30では、サンプリング周期Tsの1/4の選択周期tcで受信チャネルchiを順次選択しているため、信号処理部30では、ビート信号Bも、図3(a)に示すように、各受信チャネルch1〜8の受信信号Srに基づくビート信号B1〜B8が時分割多重されたものとなる。
そして、信号処理部30で、各チャネル選択する際の選択時間Txはいずれも一定(本第1実施形態では1μs)であるため、全ての受信チャネルch1〜ch8が一度ずつ選択される選択周期Txは、Tx=8×tc(=8μs)となる。
信号処理部30は、変動周期Tdごとに、全ての受信チャネルch1〜ch8のビート信号B1〜B8を、T/Tx(=512)回ずつサンプリングすることになる。
また、信号処理部30においてビート信号をサンプリングする周期(サンプリング周期Ts)は、受信アンテナ22(及び受信器24)の各チャネル(Ch1〜Ch8)を選択する選択時間間隔tcの4倍(換言すれば、選択時間間隔tcは、サンプリング周期Tsの1/4)となっている。
(目標物情報検出処理の説明)
ここで、信号処理部30が実行する目標物情報検出処理を、図4に示すフローチャートに沿って説明する。目標物情報検出処理は、ROMに格納されたプログラムをCPUが読み出して実行することにより実行される。なお、本処理は、送信信号Ssの一変動周期Td分のサンプリングデータが蓄積されるごとに起動される。
本処理が起動されると、まずS110において、CPUが、蓄積されたサンプリングデータを、受信チャネルch1〜8ごと、すなわち、同じビート信号B1〜B8に基づくものごとに分離する。
続く、S120では、S110にて分離されたサンプリングデータに基づいて、CPUが、複素フーリエ変換(特に、ここでは高速フーリエ変換のアルゴリズムを適用した複素FFT)を実行することにより周波数分析を行う。
但し、複素FFTは、サンプリングデータの前半(上り変調時のデータ)と後半(下り変調時のデータ)とに分けてそれぞれ行う。そして、この複素FFTの演算結果として、周波数成分ごとの信号強度及び位相が得られる。
続くS130では、CPUが、信号強度がピークとなる周波数成分を抽出し、全ての受信チャネルchi(i=1〜8)について、この抽出された周波数成分(周波数fb)の位相θi(fb)を補償する。
つまり、信号処理部30において、受信チャネルchiが選択される時刻をtiとして、時刻t1からの経過時間ti−t1(=(i−1)・tc)と、受信チャネルchiごとに予め測定された、各受信チャネルchiの受信アンテナ22から受信器24に至る経路での受信信号Srの位相遅れ量δiとに基づき、次の式8を用いて、補償された位相θhi(fb)を算出する。
θhi(fb)=θi(fb)・H1・H2 ・・・式8
但し、H1=exp{−j・2π・fb・(i−1)・tc}
H2=exp{−j・δi}
そして、S140では、CPUが、全ての受信チャネルch1〜8について上述の周波数分析(S120)及び位相補償(S130)が終了したか否かを判断し、全ての受信チャネルch1〜8について処理を終了するまで、上述のS120、S130を繰り返し実行する。
その後、全ての受信チャネルch1〜8について処理を終了し、S140にて肯定判定すると、CPUは、処理をS150に移行して、先のS120にて算出された信号強度に基づき、上り変調時及び下り変調時ごとに、信号強度がピークとなる周波数成分(周波数fu,fd)を抽出し、上述の式1、式2を用いて、目標物体との距離Rや相対速度Vを算出する。
なお、各変調時とも複数のピークが存在する場合には、例えば、信号強度に基づいてほぼ同じ信号強度のもの同士をペアリングして、このペアリングされたすべてのものについて、距離Rや相対速度Vを算出する。
続くS160では、CPUが、先のS130にて補償された位相を、各受信チャネルch1〜8間で比較し、目標物体と各受信アンテナ22との位置関係により生じる反射波の行路差dlに基づいた位相差を特定することによって、上述の式5及び式6を用いて目標物体の方位αを算出する。
以上説明したように、本第1実施形態のレーダ装置1においては、各受信チャネルch1〜8のビート信号Bを時分割多重して、サンプリングした後、受信チャネルch1〜8ごとに分離して処理する。
(レーダ装置1の特徴)
本第1実施形態では、各受信チャネルch1〜8を、短い周期(ここでは、μs)で順次選択しており、連続した8個のデータは、ほぼ同時に検出したものと見なすことができるため、各受信チャネルch1〜8のビート信号の位相に基づいて方位検出を行うことができ、信号強度のみを用いる場合と比較して、方位検出の精度を向上させることができる。
さらに、本第1実施形態では、ビート信号のサンプリングタイミングの相違や、受信アンテナ22から受信器24に至る経路の相違に基づいて、受信チャネルch1〜8ごとに生じる位相のずれや遅れを補償し、この補償された位相に基づいて方位情報を算出しているので、これらの要因にかかわらず、高精度な方位検出を行うことができる。
また、本第1実施形態では、送信アンテナ16のビーム幅を20°としたが、受信アンテナ22の中心間の距離がdw=8[mm]に設定されている場合、式6からわかるように、受信アンテナ22は、最大28.4°(±14.2°)の角度範囲の信号を受信できるため、本第1実施形態では、送信アンテナ16のビーム幅を広げるだけで、検出可能な角度範囲を最大28.4°まで簡単に拡張することができる。
また、信号処理部30におけるサンプリング周期Tsの1/4の時間間隔で、複数の受信アンテナ22(Ch1〜Ch8)の配列順に選択するように制御している。
このようなレーダ装置1では、前述のように、目標物体の誤検出を起こさないレーダ装置とすることができる。
ここで、受信アンテナ22のチャネル間の位相ずれとビート信号Bの周波数の関係について図5に基づいて説明する。
受信アンテナ22のCh1〜Ch8を順次選択する時間間隔tc(選択時間間隔tc)、信号処理部30におけるビート信号Bのサンプリング周期Tsの1/4にした場合の受信アンテナ22のチャネル間の位相のずれを図5に示す。
図5に示すようにアップビート信号Buの位相ずれは、周波数が上昇するに従って0°から45°まで増加し、サンプリング周期Ts(1/fs)の1/2のナイキスト周波数より高い周波数は、ナイキスト周波数を対称軸として、低い周波数側に折り返され、折返しアップビート信号Bu’となる。
折返しアップビート信号Bu’の位相ずれは、見かけ上、周波数が減少するに従って45°から90°まで増加する。
同様に、ダウンビート信号Bdの位相ずれも、ナイキスト周波数(1/2fs)までは、周波数が上昇するに従って0°から−45°まで増加し、折返しダウンビート信号Bu’の位相ずれは、見かけ上、周波数が減少するに従って−45°から−90°まで増加する。
このように、選択周期tcをサンプリング周期Tsの1/4とすることにより、サンプリング周波数fsにおける、受信アンテナ22の各チャネル間の位相ずれを90°とできる。
次に、目標物体の検出方位とビート信号の周波数について図6に基づいて説明する。図6は、目標物体が受信アンテナ22の正面(対称物体の方位:0°)、受信アンテナの各チャネル間の間隔を3.92[mm]とし、選択周期tcをサンプリング周期Ts(1/fs)の1/4としたときの、上り変調時の検出方位と下り変調時の検出方位を示している。
検出方位は、図6に示すように、上り変調時(図6中Upで示す)では、周波数が上昇するに従って0°から7°まで増加し、ナイキスト周波数(1/2fs)より高い周波数では、ナイキスト周波数を対称軸として、低い周波数側に折り返され(図6中Up’で示す)Up’の方位は、見かけ上、周波数が減少するに従って7°から14°まで増加する。
同様に、下り変調時(図6中Dnで示す)では、周波数が上昇するに従って0°から−7°まで増加し、ナイキスト周波数(1/2fs)より高い周波数では、ナイキスト周波数を対称軸として、低い周波数側に折り返され(図6中Dn’で示す)Dn’の方位は、見かけ上、周波数が減少するに従って−7°から−14°まで増加する。
このように、サンプリング周波数fsでビート信号Bをサンプリングすることによって発生する折返し目標物体(エリアス)の検出方位が、想定通り離れていることが分かる。
このように、エリアスが発生した場合であっても、その検出方位が、想定通り離れているため、信号処理により、目標物体の方位を正確に検出することができるのである。
また、信号処理により目標物体の方位を正確に検出することができるため、一般的に用いられるアンチエリアシングフィルタが不要となるため、レーダ装置1を小型化することができる。
[第2実施形態]
次に、信号処理部300において各チャネルを選択周期tcで選択する代わりに、受信スイッチ26を用いたレーダ装置2について図7に基づき説明する。なお、第2実施形態におけるレーダ装置2の構成品は、第1実施形態におけるレーダ装置1の構成品と共通しているものが多いため、同じ構成品には同じ符号を付して、その説明を省略する。
図7は、第2実施形態におけるレーダ装置2の概略の構成を示すブロック図である。図7に示すように、受信部200は、受信アンテナ22及び受信器24以外に受信スイッチ26及び選択信号生成器28を備えている。
受信器24は、複数の受信アンテナ22からの受信信号Srにローカル信号Lを混合し、これら信号の差の周波数成分であるビート信号Bを生成する高周波ミキサを備えている。
受信スイッチ26は、受信アンテナ22からの受信信号Srのいずれかを選択信号Xrに従って択一的に選択し、受信器24へ供給する装置であり、PINダイオードスイッチやMESFET(Metal−Semiconductor FETの略)あるいはRF−MEMSスイッチなどの高周波用スイッチが用いられている。
選択信号生成器28は、受信スイッチ26を制御するための選択信号Xrを生成する選択制御手段としての機器であり、図8に示すように、受信器24へ受信信号が供給される受信アンテナ22が、配列順、すなわち受信チャネルch1〜ch8の番号順に従って順番に切り替わるような選択信号Xrを生成するように構成されている。なお、この選択信号Xrは、信号処理部300へも供給されている。
選択信号生成器28が生成する選択信号Xrは、受信スイッチ26を後述する信号処理部300における、ビート信号Bのサンプリング周期Tsの1/4の時間間隔で、複数の受信アンテナ22の配列順に切り替わるよう制御する信号である。
つまり、受信部200は、各受信アンテナ22に対応して8つの受信チャネルch1〜8を有しており、すべての受信チャネルch1〜8が、単一の受信器24を時分割で共用するように構成されている。
なお、第1実施形態のレーダ装置1と同様に、図2に示すように、アンテナが形成するビームにおいて、正面方向に対する利得の低下が3dB以内の角度範囲をビーム幅と規定し、各受信チャネルch1〜ch8の受信アンテナ22は、そのビーム幅が、いずれも、送信アンテナ16のビーム幅(本第2実施形態ではφ=20°)全体を含むように設定されている。
また、隣接する各受信アンテナ22の中心間の距離dwは、第1実施形態と同様に、上述した式7の条件を満たすようにdw=8[mm]に設定されている。
信号処理部300は、CPU、ROM、RAM及びI/Oからなる周知のマイクロコンピュータを中心に構成され、さらに、選択信号Xrに同期して動作し、受信部20が生成するビート信号Bをサンプリング周期Tsでデジタルデータに変換するサンプリング手段としてのA/D変換器及びA/D変換器を介して取り込んだデータについて、高速フーリエ変換(FFT)を実行するための演算処理装置等(いずれも図示しない)を備えている。
このように構成された本第2実施形態のレーダ装置2では、発振器12が生成した高周波信号を分配器14が電力分配することにより送信信号Ss及びローカル信号Lが生成され、このうち送信信号Ssは、送信アンテナ16を介してレーダ波として送出される。
送信アンテナ16から送出されたレーダ波の反射波は、全ての受信アンテナ22にて受信されるが、受信スイッチ26によって選択されている受信チャネルchi(i=1〜8)の受信信号Srのみが受信器24へ供給される。
すると、受信器24では、この受信信号Srに分配器14からのローカル信号Lを混合することによりビート信号Bを生成し信号処理部300へ供給する。そして、信号処理部300では、ビート信号Bを、選択信号Xrのタイミングに従ってサンプリングした後、後述する目標物情報検出処理を実行する。
なお、受信スイッチ26では、選択信号Xrに従って受信チャネルchiを順次選択している(切り替えている)ため、受信器24には、各受信チャネルch1〜8の受信信号Srが時分割多重されて供給されることになる。
その結果、受信器24が生成するビート信号Bも、図3(a)に示すように、各受信チャネルch1〜8の受信信号Srに基づくビート信号B1〜B8が時分割多重されたものとなる。
そして、受信スイッチ26が受信アンテナ22の各チャネル(Ch1〜Ch8)を選択する選択時間Txはいずれも一定(本第2実施形態では1μs)であるため、全ての受信チャネルch1〜ch8が受信スイッチ26によって一度ずつ選択される選択周期Txは、Tx=8×tc(=8μs)となる。
信号処理部300は、変動周期Tdごとに、全ての受信チャネルch1〜ch8のビート信号B1〜B8を、T/Tx(=512)回ずつサンプリングすることになる。
また、信号処理部300においてビート信号をサンプリングする周期(サンプリング周期Ts)は、受信スイッチ26が受信アンテナ22の各チャネル(Ch1〜Ch8)を選択する選択時間間隔tcの4倍(換言すれば、選択時間間隔tcは、サンプリング周期Tsの1/4)となっている。
また、第2実施形態における信号処理部300にて実行される目標物情報検出処理は、S130において、受信スイッチ26により受信チャネルchiが選択される時刻をtiとして、時刻t1からの経過時間ti−t1(=(i−1)・tc)と、受信チャネルchiごとに予め測定された、各受信チャネルchiの受信アンテナ22から受信器24に至る経路での受信信号Srの位相遅れ量δiとに基づき、式8を用いて、補償された位相θhi(fb)を算出することを除けば、第1実施形態における処理と同じであるため、その詳細な説明は省略する。
以上説明したように、本第2実施形態のレーダ装置2においては、第1実施形態のレーダ装置1と異なり、各受信チャネルch1〜8の受信信号Srを、受信スイッチ26を介して時分割で受信器24に供給し、また、信号処理部300では、受信器24から供給される時分割多重されたビート信号を、サンプリングした後、受信チャネルch1〜8ごとに分離して処理する。
(レーダ装置2の特徴)
このように、第2実施形態のレーダ装置2は、第1実施形態のレーダ装置1と同じ特徴を有する他、各受信チャネルch1〜8が受信器24を時分割で共用するようにされているので、高価な受信器24を多数設ける必要がなく、装置を小型かつ安価に構成できる。
[その他の実施形態]
以上、本発明の実施形態について説明したが、本発明は、本実施形態に限定されるものではなく、種々の態様を採ることができる。
(1)上記実施形態では、ビート信号のサンプリングの際、複数(8個)の受信器24又は受信アンテナ22を、ビート信号のサンプリング周期Tsの1/4の選択周期tcで順次選択していたが、選択周期tcはサンプリング周期Tsの1/2未満であれば、検出精度が多少劣化するものの、エリアスが発生しないため、目標物体の誤検出を起こさないレーダ装置とすることができる。
(2)上記実施形態では、受信アンテナ22を複数のホーンアンテナで構成したが、使用する周波数や設置スペースによって、例えば、パッチアンテナなど他の形態や特性を有するアンテナとしてもよい。
1,2…レーダ装置、10…送信部、12…発振器、14…分配器、16…送信アンテナ、20,200…受信部、22…受信アンテナ、24…受信器、26…受信スイッチ、28…選択信号生成器、30,300…信号処理部。

Claims (4)

  1. 周波数が時間とともに周期的に変動する送信信号を生成し、該送信信号をレーダ波として送信する送信部と、
    該送信部から送信され、目標物体に反射したレーダ波を受信し、該レーダ波の受信信号及び前記送信信号と同じ周波数を有するローカル信号に基づいてビート信号を生成する受信部と、
    該受信部が生成するビート信号を所定のサンプリング周期でサンプリングし、該所定のサンプリング周期でサンプリングした前記ビート信号の上り変調信号と下り変調信号のピークのペアマッチにより、少なくとも前記目標物体の位置情報を導出する信号処理部と、
    を備え、
    前記受信部は、
    所定の間隔で配置された複数の受信アンテナと、
    前記複数の受信アンテナの各々に接続され、各受信アンテナからの受信信号を前記ローカル信号と混合して出力する複数の受信器を備え、
    前記信号処理部は、
    前記複数の受信アンテナで受信した受信波の位相差に基づいて前記目標物体の位置情報を導出する際に、
    前記複数の受信器を、前記所定のサンプリング周期の1/2よりも小さい選択周期で配列順に選択することにより前記各受信アンテナ間の位相をずらし、
    該位相をずらした前記各受信アンテナ間の位相に所定の位相補正を行い、
    該位相補正を行った前記複数の受信アンテナの位相から前記目標物体の方位を導出し、
    該導出した前記目標物の方位からペアマッチングを行って、ペアマッチが可能な場合に、前記導出した方位を前記目標物の位置情報とし、ペアマッチングができない場合には、前記導出した方位を前記目標物の位置情報としないことを特徴とするレーダ装置。
  2. 周波数が時間とともに周期的に変動する送信信号を生成し、該送信信号をレーダ波として送信する送信部と、
    該送信部から送信され、目標物体に反射したレーダ波を受信し、該レーダ波の受信信号及び前記送信信号と同じ周波数を有するローカル信号に基づいてビート信号を生成する受信部と、
    該受信部が生成するビート信号を所定のサンプリング周期でサンプリングし、該所定のサンプリング周期でサンプリングした前記ビート信号の上り変調信号と下り変調信号のピークのペアマッチにより、少なくとも前記目標物体の位置情報を導出する信号処理部と、
    を備え、
    前記受信部は、
    所定の間隔で配置された複数の受信アンテナと、
    前記複数の受信アンテナからの受信信号を前記ローカル信号と混合する受信器と、
    前記複数の受信アンテナのいずれかからの受信信号を択一的に前記受信器に供給する受信スイッチと、
    前記受信スイッチを、前記信号処理部における前記所定のサンプリング周期の1/2より小さい選択周期で、前記複数の受信アンテナの配列順に切り替わるように制御する選択制御手段と、
    を備え、
    前記信号処理部は、
    前記複数の受信アンテナで受信した受信波の位相差に基づいて前記目標物体の位置情報を導出する際に、
    前記選択制御手段で、前記受信スイッチを、前記信号処理部における前記所定のサンプリング周期の1/2より小さい選択周期で、前記複数の受信アンテナの配列順に切り替わるように制御することにより、前記各受信アンテナ間の位相をずらし、
    該位相をずらした前記各受信アンテナ間の位相に所定の位相補正を行い、
    該位相補正を行った前記複数の受信アンテナの位相から前記目標物体の方位を導出し、
    該導出した前記目標物の方位からペアマッチングを行って、ペアマッチが可能な場合に、前記導出した方位を前記目標物の位置情報とし、ペアマッチングができない場合には、前記導出した方位を前記目標物の位置情報としないことを特徴とするレーダ装置。
  3. 請求項1又は請求項2に記載のレーダ装置において、
    前記選択周期は、前記サンプリング周期の1/4であることを特徴とするレーダ装置。
  4. 請求項1〜請求項3のいずれか1項に記載のレーダ装置において、
    前記受信部の前記複数の受信アンテナは、
    略直線上に配置されていることを特徴とするレーダ装置。
JP2010253928A 2010-11-12 2010-11-12 レーダ装置 Active JP5655516B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010253928A JP5655516B2 (ja) 2010-11-12 2010-11-12 レーダ装置
US13/292,438 US9097796B2 (en) 2010-11-12 2011-11-09 Radar apparatus
CN201110371822.7A CN102565789B (zh) 2010-11-12 2011-11-10 雷达设备
DE102011086113A DE102011086113A1 (de) 2010-11-12 2011-11-10 Radarvorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010253928A JP5655516B2 (ja) 2010-11-12 2010-11-12 レーダ装置

Publications (2)

Publication Number Publication Date
JP2012103201A JP2012103201A (ja) 2012-05-31
JP5655516B2 true JP5655516B2 (ja) 2015-01-21

Family

ID=45999100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010253928A Active JP5655516B2 (ja) 2010-11-12 2010-11-12 レーダ装置

Country Status (4)

Country Link
US (1) US9097796B2 (ja)
JP (1) JP5655516B2 (ja)
CN (1) CN102565789B (ja)
DE (1) DE102011086113A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2963442B1 (en) * 2014-07-04 2016-11-30 Denso Corporation Radar apparatus
CN104076357A (zh) * 2014-07-07 2014-10-01 武汉拓宝电子***有限公司 一种用于室内活动目标检测的雷达装置及方法
US9784820B2 (en) * 2014-09-19 2017-10-10 Delphi Technologies, Inc. Radar system with phase based multi-target detection
US9880261B2 (en) 2014-09-30 2018-01-30 Texas Instruments Incorporated Loopback techniques for synchronization of oscillator signal in radar
DE102014220513A1 (de) * 2014-09-30 2016-04-14 Siemens Aktiengesellschaft Mehrkanal-Radarverfahren und Mehrkanal-Radarsystem
US20170045613A1 (en) * 2015-08-11 2017-02-16 Zongbo Wang 360-degree electronic scan radar for collision avoidance in unmanned aerial vehicles
DE102017120368A1 (de) * 2017-09-05 2019-03-07 HELLA GmbH & Co. KGaA Verfahren und Vorrichtung zur Erzeugung eines modulierten Dauerstrichradarsignals
WO2019176573A1 (ja) * 2018-03-13 2019-09-19 古河電気工業株式会社 レーダ装置およびレーダ装置の対象物検出方法
KR102046061B1 (ko) * 2018-04-02 2019-11-18 재단법인대구경북과학기술원 레이더를 이용한 타겟 탐지 장치 및 방법
KR102093363B1 (ko) * 2018-04-12 2020-03-25 주식회사 만도 레이더 시스템 및 이를 위한 송신 장치
US11047956B2 (en) * 2018-06-14 2021-06-29 Semiconductor Components Industries, Llc Reconfigurable MIMO radar
CN111308435B (zh) * 2019-12-09 2023-04-25 中国科学院沈阳自动化研究所 一种变载频多时延的集中式mimo雷达信号处理方法
CN111722194B (zh) * 2020-06-12 2023-11-03 零八一电子集团有限公司 搜索雷达方位***误差实时补偿***

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491418B2 (ja) * 1995-12-01 2004-01-26 株式会社デンソー Fmcwレーダ装置
JPH11271430A (ja) * 1998-03-25 1999-10-08 Toyota Central Res & Dev Lab Inc 自動車レーダ装置
JP3534164B2 (ja) * 1998-04-28 2004-06-07 トヨタ自動車株式会社 Fm−cwレーダ装置
JP3622565B2 (ja) * 1999-03-31 2005-02-23 株式会社デンソー レーダ装置
JP4134462B2 (ja) 1999-10-28 2008-08-20 株式会社デンソー レーダ装置,調整方法,調整システム
JP3394941B2 (ja) 2000-05-16 2003-04-07 株式会社ホンダエレシス Fm−cwレーダ装置
JP3988571B2 (ja) * 2001-09-17 2007-10-10 株式会社デンソー レーダ装置
JP2003270341A (ja) * 2002-03-19 2003-09-25 Denso Corp 車載レーダの信号処理装置,プログラム
JP3997837B2 (ja) * 2002-05-27 2007-10-24 株式会社デンソー 車載レーダ装置、プログラム
JP2004205279A (ja) * 2002-12-24 2004-07-22 Denso Corp レーダ装置,プログラム
JP2004233277A (ja) * 2003-01-31 2004-08-19 Denso Corp 車両用レーダ装置
JP3988653B2 (ja) * 2003-02-10 2007-10-10 株式会社デンソー アンテナの配列方法、及びレーダ装置
JP4093109B2 (ja) * 2003-05-15 2008-06-04 株式会社デンソー 車両用レーダ装置
JP4067456B2 (ja) * 2003-06-09 2008-03-26 富士通テン株式会社 レーダ装置及びその信号処理制御方法
WO2005069037A1 (ja) * 2004-01-15 2005-07-28 Fujitsu Ten Limited レーダ装置
JP2006003303A (ja) * 2004-06-21 2006-01-05 Fujitsu Ten Ltd レーダ装置
JP4747652B2 (ja) 2005-04-15 2011-08-17 株式会社デンソー Fmcwレーダ
JP4561507B2 (ja) * 2005-07-08 2010-10-13 株式会社デンソー 道路形状認識装置
JP4602267B2 (ja) * 2006-02-27 2010-12-22 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
JP4769596B2 (ja) * 2006-02-27 2011-09-07 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
JP4433085B2 (ja) * 2006-08-04 2010-03-17 株式会社村田製作所 レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
JP4769684B2 (ja) * 2006-10-12 2011-09-07 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
JP4737165B2 (ja) * 2006-10-31 2011-07-27 株式会社村田製作所 レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
JP4905457B2 (ja) * 2006-11-01 2012-03-28 株式会社村田製作所 レーダの物標検知方法、およびこの物標検知方法を用いたレーダ装置
JP2008145178A (ja) * 2006-12-07 2008-06-26 Denso Corp 調整方法及び方位検出装置及び電子機器
JP5130034B2 (ja) * 2006-12-27 2013-01-30 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
JP2008232832A (ja) * 2007-03-20 2008-10-02 Denso Corp 干渉判定方法,fmcwレーダ
JP4356758B2 (ja) * 2007-03-20 2009-11-04 株式会社デンソー Fmcwレーダ
JP4492628B2 (ja) * 2007-03-20 2010-06-30 株式会社デンソー 干渉判定方法,fmcwレーダ
JP2009025195A (ja) * 2007-07-20 2009-02-05 Denso Corp 到来波数推定方法、レーダ装置
JP4476315B2 (ja) * 2007-08-17 2010-06-09 三菱電機株式会社 車載レーダ装置
JP2009103458A (ja) * 2007-10-19 2009-05-14 Denso Corp レーダ出力最適化方法、およびレーダ出力最適化装置
JP4497190B2 (ja) * 2007-10-19 2010-07-07 株式会社デンソー レーダ装置、および保持部材
JP4656121B2 (ja) * 2007-10-19 2011-03-23 株式会社デンソー レーダ装置、および保持部材
JP5478010B2 (ja) * 2007-11-12 2014-04-23 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
JP4589974B2 (ja) * 2008-02-15 2010-12-01 株式会社デンソー 汚れ判定装置
JP4715871B2 (ja) * 2008-06-10 2011-07-06 株式会社デンソー 方位検出装置、レーダ装置
DE102009024918B4 (de) * 2008-06-17 2022-04-28 Denso Corporation Zielobjekterkennungsvorrichtung zur Erlangung von Informationen betreffend Zielobjekte basierend auf einer Korrelationsmatrix, die aus Signalwerten erhalten wird, welche reflektierten elektromagnetischen Wellen entsprechen
JP5519132B2 (ja) * 2008-07-28 2014-06-11 株式会社デンソー レーダ装置
JP2010071865A (ja) * 2008-09-19 2010-04-02 Fujitsu Ten Ltd 信号処理装置、及びレーダ装置。
JP5102165B2 (ja) * 2008-09-22 2012-12-19 株式会社デンソー レーダ装置
JP4905512B2 (ja) * 2009-07-09 2012-03-28 株式会社デンソー 物標情報推定装置
JP5018943B2 (ja) * 2010-09-07 2012-09-05 株式会社デンソー レーダ装置
JP5267538B2 (ja) * 2010-11-05 2013-08-21 株式会社デンソー ピーク検出閾値の設定方法、物標情報生成装置、プログラム
JP2012103203A (ja) * 2010-11-12 2012-05-31 Denso Corp Fmcwレーダ装置

Also Published As

Publication number Publication date
US9097796B2 (en) 2015-08-04
CN102565789A (zh) 2012-07-11
US20120119939A1 (en) 2012-05-17
DE102011086113A1 (de) 2012-05-16
CN102565789B (zh) 2016-07-06
JP2012103201A (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5655516B2 (ja) レーダ装置
JP3988653B2 (ja) アンテナの配列方法、及びレーダ装置
JP3622565B2 (ja) レーダ装置
JP5062225B2 (ja) 物標検出装置
US7248209B2 (en) Radar apparatus
US8866668B2 (en) Radar apparatus with different operation modes
EP2463683B1 (en) Active radar system and method
US6859168B2 (en) Radar apparatus
US11275172B2 (en) Target detection device
US6674393B2 (en) FM-CW radar processing device
US8947293B2 (en) Radar apparatus
US9194940B2 (en) Signal processing apparatus, radar apparatus, and signal processing method
JP3575694B2 (ja) 走査型fmcwレーダ
JP2012103203A (ja) Fmcwレーダ装置
US11035932B2 (en) Radar device and transmission processing method of radar device
US10310065B2 (en) Radar device, signal processing device for radar device, and signal processing method
JP5653726B2 (ja) レーダ装置
US9075130B2 (en) Calculation device for radar apparatus, radar apparatus, and calculation method and program for radar apparatus
JP7275897B2 (ja) レーダシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140811

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R151 Written notification of patent or utility model registration

Ref document number: 5655516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250