JP5413456B2 - 半導体基板用研磨液及び半導体基板の研磨方法 - Google Patents

半導体基板用研磨液及び半導体基板の研磨方法 Download PDF

Info

Publication number
JP5413456B2
JP5413456B2 JP2011510316A JP2011510316A JP5413456B2 JP 5413456 B2 JP5413456 B2 JP 5413456B2 JP 2011510316 A JP2011510316 A JP 2011510316A JP 2011510316 A JP2011510316 A JP 2011510316A JP 5413456 B2 JP5413456 B2 JP 5413456B2
Authority
JP
Japan
Prior art keywords
polishing
semiconductor substrate
mass
polishing liquid
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011510316A
Other languages
English (en)
Other versions
JPWO2010122985A1 (ja
Inventor
豊 野村
茂 野部
仁 天野倉
直之 小山
文子 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011510316A priority Critical patent/JP5413456B2/ja
Publication of JPWO2010122985A1 publication Critical patent/JPWO2010122985A1/ja
Application granted granted Critical
Publication of JP5413456B2 publication Critical patent/JP5413456B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Description

本発明は、半導体基板の表面加工に好適な半導体基板用研磨液、及び半導体基板の研磨方法に関する。
シリコンに代表される半導体基板の研磨工程には、一般的に、スライシングで発生する表面の凹凸の平滑化及び基板面内の厚みの均一化のためのラッピング工程と、目的とする表面精度に仕上げるためのポリッシング工程(研磨工程)がある。ポリッシング工程は、更に、粗研磨と称される1次ポリッシング工程と、精密研磨と称されるファイナルポリッシング工程に区分けされる。1次ポリッシング工程は、場合によって、1次ポリッシング工程及び2次ポリッシング工程と称される二つの工程に更に分けられる。
ポリッシング工程は、通常の半導体基板の製造工程のみならず、使用済みの半導体基板を再生処理にも使用されている。また、近年では、シリコン貫通ビア(TSV)と呼ばれる構造を有する半導体基板の製造においてポリッシング工程を使用することが検討されている。
TSVと呼ばれる構造は、半導体基板の表層に形成されたデバイスと半導体基板の裏面とを接続する電極が、半導体基板内部を貫通するように形成されている構造である。従来、複数枚の半導体素子を積層して一つの半導体装置(半導体パッケージ)を形成する場合、上下の半導体素子同士の接続はワイヤボンディングで行なわれている。このワイヤボンディングによる接続の代わりに、上記のTSV構造を採用することにより、上下の半導体素子同士の接続に必要な領域をより小さくすることができるため、TSVを形成する技術は、ワイヤボンディングに代わる新たな技術として期待されている。
TSVを形成する工程としては、半導体基板にビアを形成し、ビアを形成した面の裏面を研削(バックグラインド)して、ビアを貫通させる工程が一般的になると考えられている。そして、裏面を研磨する工程でCMP(化学機械研磨)を使用することが検討されている(例えば下記非特許文献1参照)。この裏面のポリッシング工程で使用される研磨液に対しては、製造効率の観点から、高速な研磨速度が求められている。
ところで、従来、半導体基板を形成する代表的な物質であるシリコン(Si)を研磨する為の研磨液として、種々の研磨液が提案されている。例えば、下記特許文献1には、コロイドシリカ及びシリカゲルが、半導体デバイスの製造に最も頻繁に使用される半導体結晶表面の研磨剤として有用であることが示されている。そして、下記特許文献1には、使用されたゾルのコロイドシリカ及びシリカゲルの一次粒子の粒径は4〜200nmであると記載されている。
下記特許文献2には、一次粒子の粒径が4〜200nm、好ましくは4〜100nmのコロイド形態のシリカ又はシリカゲルのいずれかを水溶性アミンと組合せたものを研磨剤として使用することで、半導体基板、特にシリコンの半導体基板表面を効果的に研磨できることが開示されている。シリカゾル又はゲル中に存在するシリカに関するアミンの量は、0.5〜5.0質量%、好ましくは1.0〜5.0質量%、最も好ましくは2.0〜4.0質量%とされている。
下記特許文献3には、0.1〜5.0質量%(最も好ましくは2.0〜4.0質量%)の水溶性第四アンモニウム塩又は第四アンモニウム塩基を添加した水性シリカ組成物を使用することで、シリコン基板の研磨速度が改良できることが示されている。
下記特許文献4には、シリコン又はゲルマニウム半導体材料を高度の表面仕上がり状態に研磨する方法が開示されている。下記特許文献4に記載の技術では、研磨液として、変性処理されたコロイド状シリカゲルを有し、シリカ濃度が約2〜約50質量%であり、pHが11〜12.5である研磨液を使用する。そして、コロイド状シリカゲルの変成処理では、比表面積が約25〜600m/gであるシリカ粒子の表面を、化学的に結合したアルミニウム原子で、未被覆粒子表面上の珪素原子100個当たりアルミニウム原子約1〜約50個の表面被覆となるように被覆せしめたものである。一般的に、pHが11以上の領域では、研磨粒子であるシリカが解重合してアルカリ珪酸塩となりpHを低下させるのに対して、特許文献4には、解重合を生じることなしに、pHが11以上の領域において、迅速に研磨できることが示されている。
下記特許文献5には、ピペラジン、又は窒素に低級アルキル置換基がついたピペラジンと、水性コロイドシリカゾル又はゲルを含み、且つピペラジンはゾルのSiO含有量に対して0.1〜5質量%含まれる研磨液が開示されている。また下記特許文献5には、シリコンウエハ及びこれと同様の材料の研磨方法が開示されている。この特許文献5によれば、研磨液にピペラジンを含有させた場合、アミノエチルエタノールアミンを使用する場合と比べて、少量のコロイドシリカで同等の研磨速度が得られるとされている。また、下記特許文献5には、強塩基性のピペラジンの系統は、pHの調整に必要とされる苛性アルカリの添加量を少量にできる、と記載されている。
下記特許文献6には、研磨材と、アゾール類及びその誘導体の少なくともいずれか一種と、水とを含有することを特徴とする研磨用組成物が開示されている。そして、下記特許文献6には、アゾール類及びその誘導体が研磨用組成物に添加されることによって研磨用組成物の研磨能力が向上する、と記載されている。この理由として、複素五員環の窒素原子の非共有電子対が研磨対象物に直接作用することが指摘され、具体的にはイミダゾールを適用した実施例が開示されている。
下記特許文献7には、半導体基板表面の凹凸を低減する研磨液として、水、コロイダルシリカ、ポリアクリルアミドのような水溶性高分子、及び塩化カルシウムのような水溶性塩類を含有する研磨液が開示されている。しかし、特許文献7に記載の研磨液を用いた場合、水溶性高分子の添加により研磨速度が低下し、加工時間が長くなるという課題が生じる。
下記特許文献8には、欠陥の一種であるLPD(light point defect)を低減する研磨液として、研磨用組成物中のナトリウムイオン及び酢酸イオンのいずれか一方の濃度が10ppb以下、あるいは、研磨用組成物中のナトリウムイオン及び酢酸イオンの濃度がそれぞれ10ppb以下であり、
研磨用組成物は、ヒドロキシエチルセルロースのような水溶性高分子、アンモニアのようなアルカリ、及びコロイダルシリカのような砥粒を好ましくは含有する研磨液が開示されている。特許文献8に記載の研磨液では、水溶性高分子としてヒドロキシエチルセルロース及びポリビニルアルコールを含有し、ナトリウムイオン及び酢酸イオンの濃度が少ないほど、LPDが改善する結果が示されている。しかしながら実施例に示された水溶性高分子の添加量は0.002質量%以下であるため、特許文献8に記載の研磨液を用いた場合、LPD以外の欠陥(例えば基板表面の凹凸)の低減などの効果は不充分であると考えられる。
米国特許第3170273号明細書 米国特許第4169337号明細書 米国特許第4462188号明細書 特公昭57−58775号公報 特開昭62−30333号公報 特開2006−80302号公報 特開平02−158684号公報 特開2008−53414号公報
OKIテクニカルレビュー2007年10月/第211号VOL.74 No.3
半導体基板のポリッシング工程は、複数の工程に分けることで、加工時間の短縮化、効率化及び高品質化を達成しており、それぞれのポリッシング工程で目的が異なり、それぞれのポリッシング工程で使用される研磨液の特性も異なったものとなっている。
粗研磨の段階では、ラッピング工程などで発生した比較的大きめな凹凸の解消や、ダメージを受けた半導体基板部分の除去を目的としているため、高速な研磨速度が求められる。
一方、仕上げ研磨では、粗研磨で達成できなかった表面の高度な平滑化と半導体基板の欠陥の低減が大きな目的である。
上記の特性を満たすべく、先行技術に示されるような、さまざまな研磨液及び研磨方法が発明されているが、上述の特性を充分に満たすには至らず、研磨液及び研磨方法の改良が更に求められている。
シリコン等の半導体基板を形成する材料を研磨する場合、研磨速度を高速化するためには、研磨液のpHを高くすることが有効である。しかしながら、このような研磨液は、その研磨特性にばらつきがあることが多い。すなわち、同一組成の研磨液でありながら、研磨速度、傷、平坦性、面内均一性等の研磨特性が安定しないことがあった。また、研磨粒子を増量した研磨液を用いた場合、砥粒に起因する傷の発生や、廃棄処理でのコストの増加が問題であった。
本発明の第一の目的は、高速で安定なポリッシングにより、半導体基板の加工時間の低減、工程管理の容易化、及び品質の揃った半導体基板の加工を可能とする半導体基板研磨液及び当該半導体基板研磨液を用いた半導体基板の研磨方法を提供することである。
本発明の第二の目的は、半導体基板の表面を、凹凸が少なく平滑で、欠陥の少ない表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法を提供することにある。
本発明の第三の目的は、実用的な研磨速度、且つ少ない研磨量で半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法を提供することにある。
本発明者らは、研磨粒子にシリカ(SiO)を使用する場合において、時間とともに研磨液のpHが低下し、研磨速度が低下しうることを見いだした。更に、本発明者らは、所定の添加剤をシリカと併用することによって、pH及び研磨速度を制御でき、且つ研磨後の基板表面の粗さを低減できることを見いだし、本発明に至った。
<第一の半導体基板用研磨液(第一発明)>
本発明に係る第一の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、塩基性化合物とを含有し、塩基性化合物が、含窒素塩基性化合物又は無機塩基性化合物であり、塩基性化合物の含有量が0.1質量%以上であり、pHが9以上12以下である。
第一発明によれば、シリコン等に代表される材料からなる半導体基板の研磨を高速に行うことができる。また上記第一発明によれば、保存時や使用時における研磨液のpHの低下を抑制できるため、研磨速度の低下及び変動を極めて小さくすることができる。
第一発明において、塩基性化合物は、研磨速度を得るための溶解剤として作用する。そして、半導体基板用研磨液中の塩基性化合物の添加量が多いほど研磨速度が高くなる傾向がある。高い研磨速度を得る観点から、塩基性化合物の含有量は、0.15質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。またエッチングの増加による表面粗さの悪化やシリカの解重合を抑制する観点から、塩基性化合物の含有量は、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。
第一発明では、含窒素塩基性化合物が水酸化アンモニウム又は水酸化テトラメチルアンモニウムを含有することが好ましい。また、第一発明では、無機塩基性化合物が水酸化カリウム又は水酸化ナトリウムを含有することが好ましい。これらの塩基性化合物は低臭気である点において優れている。
<第二の半導体基板用研磨液(第二発明)>
本発明に係る第二の半導体基板用研磨液は、表面がアルミネートにより改質された変性シリカと、無機塩基性化合物とを含有し、変性シリカの含有量が0.01質量%以上1.5質量%以下であり、pHが9以上12以下である。
第二発明によれば、シリコン等に代表される材料からなる半導体基板の研磨を高速で行うことができる。そのため、本発明では半導体基板の加工時間の低減が可能となる。
第二発明では、変性シリカの一次粒径が7〜50nmであることが好ましい。
変性シリカの一次粒径が7nm以上であることにより、実用的な研磨速度を得やすくなる。また、変性シリカの一次粒径が50nm以下であることにより、傷等の研磨欠陥の発生を抑制しやすくなる。
第二発明では、無機塩基性化合物が、水酸化カリウム又は水酸化ナトリウムを含有することが好ましい。
上述の通り、第二発明においても、無機塩基性化合物は、研磨速度を得るための溶解剤として作用する。そして、半導体基板用研磨液中の無機塩基性化合物の添加量が多いほど研磨速度が高くなる傾向がある。また、第二発明では、変性シリカと無機塩基性化合物との組み合わせによって変性シリカ(研磨粒子)の表面電位が最も大きくなるため、研磨速度の高速化が可能となる。無機塩基性化合物の中では、低臭気である点において、水酸化カリウム又は水酸化ナトリウムが優れている。
第二発明は、更に1,2,4−トリアゾールを含有することが好ましい。
これにより、保存時や使用時における研磨液のpHの低下を抑制でき、研磨液の品質が安定するため、研磨速度の低下及び変動を極めて小さくすることができる。その結果、安定なポリッシング、工程管理の容易化、及び品質の揃った半導体基板の加工が可能となる。
更に半導体基板の研磨方法に係る発明として、本発明は、シリコン貫通ビアを形成するための半導体基板の研磨方法であって、シリコン基板の一方の面に凹凸部を形成する工程と、凹凸部に金属を埋め込む工程と、シリコン基板の他方の面をバックグラインドする工程と、第一又は第二の半導体基板用研磨液を用いて、他方の面を、金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法を提供する。
これにより、シリコン貫通ビアを形成する過程で生じる、バックグラインド後のシリコンダメージ層を、良好な研磨速度を保ちつつ、充分に平坦化することができる。
また、半導体基板の研磨方法に係る発明として、本発明は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、シリコンウエハをエッチングし、粗ウエハを準備する工程と、第一又は第二の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法を提供する。なお、本願において、製品となるシリコンウエハを仕上げるための最終研磨加工を「仕上げ研磨」とし、仕上げ研磨の前段階として行う研磨加工を「粗研磨」とする。
このような半導体基板の研磨方法であれば、半導体基板の表面を高速で研磨加工することが可能となる。
半導体基板の研磨方法に係る発明として、本発明は、更に、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、第一又は第二の半導体基板用研磨液を用いて、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法を提供する。
このような半導体基板の研磨方法であれば、再利用するために回収された半導体基板(テストウエハ等)の表面から不要な付着物を除去し、且つ凹凸の少ない平滑な表面に高速で研磨加工することが可能となる。
<第三の半導体基板用研磨液(第三発明)>
本発明に係る第三の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下である。
第三発明によれば、シリコン等に代表される材料からなる半導体基板の表面を、凹凸の少ない平滑な表面に研磨加工することが可能となる。
なお、水溶性高分子の含有量は、半導体基板用研磨液の全質量に対して、0.001質量%以上10質量%以下であることが好ましい。また、1,2,4−トリアゾールの含有量は、半導体基板用研磨液の全質量に対して、0.01質量%以上10質量%以下であることが好ましい。
水溶性高分子及び1,2,4−トリアゾールの含有量を上記範囲とすることで、より確実に半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能となる。
<第四の半導体基板用研磨液(第四発明)>
本発明に係る第四の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、pHが9以上12以下である。
これにより、シリコン等に代表される材料からなる半導体基板の表面を凹凸が少なく平滑で、欠陥の少ない表面に研磨加工することが可能となる。
更に半導体基板の研磨方法に係る発明として、本発明は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、シリコンウエハをエッチングし、粗ウエハを準備する工程と、粗ウエハを研磨する研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法を提供する。
これにより、シリコンウエハ上に存在する微小な凹凸を充分に解消するとともに欠陥の少ない表面に研磨加工することができる。
また半導体基板の研磨方法に係る発明として、本発明は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法を提供する。
このような半導体基板の研磨方法であれば、再利用するために回収された半導体基板(テストウエハ等)の表面から不要な付着物を除去すると共に、シリコンウエハ上に存在する微小な凹凸が解消され欠陥の少ない再利用可能な半導体基板を提供することが可能となる。
<第五の半導体基板用研磨液(第五発明)>
本発明に係る第五の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.2質量%以上3.0質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.01質量%以上0.2質量%以下であり、pHが9以上12以下である。
これにより、半導体基板に対する所定の研磨速度を維持しつつ、基板表面に凹凸がある場合は凸部を優先的に研磨することが可能となる。
更に、半導体基板の研磨方法に係る発明として、本発明は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングした後、シリコンウエハをグラインディングして粗ウエハを準備する工程と、第三又は第五の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法を提供する。
このような半導体基板の研磨方法であれば、従来数ステップに分けて行われていた粗研磨を1ステップで行うことができるため、粗研磨で生じる半導体基板の研磨ロスを低減することが可能となる。これにより、シリコンウエハの再利用回数をより多くできるという効果も得られる。
更に半導体基板の研磨方法に係る発明として、本発明は、シリコン貫通ビアを形成するための半導体基板の研磨方法であって、シリコン基板の一方の面に凹部を形成する工程と、凹部に金属を埋め込む工程と、シリコン基板の他方の面をバックグラインドする工程と、第三又は第五の半導体基板用研磨液を用いて、他方の面を、金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法を提供する。
これにより、シリコン貫通ビアを形成する過程で生じる、バックグラインド後の研削痕を、少ない研磨量で、充分に平坦化することができる。
なお、上述の粗研磨工程において、粗ウエハの研磨量をL(nm)、粗ウエハの初期段差をRt0(nm)及び、粗研磨された後の粗ウエハの段差をRt1(nm)と定義した場合、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨(すなわち、初期段差の1.3倍以下の研磨量だけ研磨)したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を共に満たすこと好ましい。なお、最終的な研磨量は、前述の範囲(Rt0≦L≦Rt0×1.3)以上でもかまわないことは、いうまでもない。
また、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面を凹凸が少なく平滑で、欠陥の少ない研磨加工することが可能となる。
更に、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面をより確実に凹凸が少なく平滑で、欠陥のより少ない表面に仕上げ研磨加工することが可能となる。
なお、上記第三、第四及び第五の半導体基板用研磨液においては、水溶性高分子がノニオン性高分子であることが好ましい。ノニオン性高分子を用いることにより、半導体基板表面の凹凸を低減する効果が顕著となる。ノニオン性高分子は、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種であることが好ましい。また、水溶性高分子が、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種を含む混合物であってもよい。
上記本発明に係る半導体基板用研磨液では、研磨対象である半導体基板が、シリコン、又は基板構成にシリコンを含む基板であることが好ましい。すなわち、本発明は、シリコン、又は基板構成にシリコンを含む基板に対する研磨速度に特に優れている。
本発明に係る半導体基板の研磨方法では、上記本発明に係る半導体基板用研磨液を用いて半導体基板の表面を研磨する。このような研磨方法によれば、半導体基板の表面を平滑で欠陥の少ない表面に高速で研磨加工することが可能となる。
本発明では、高速で安定なポリッシングにより、半導体基板の加工時間の低減、工程管理の容易化、及び品質の揃った半導体基板の加工を可能とする半導体基板用研磨液及び当該半導体基板研磨液を用いた半導体基板の研磨方法を提供することができる。
また、本発明により、半導体基板の表面を凹凸の少ない平滑で欠陥が少ない表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法が提供される。
また、本発明により、実用的な研磨速度で半導体基板の表面を少ない研磨量で凹凸の少ない平滑な表面に研磨加工することが可能な半導体基板用研磨液及び半導体基板用研磨液の研磨方法が提供される。
実施例1〜4及び従来例(比較例1〜11)の各研磨液を調製した時点から24時間後の各研磨液のpHの変化量を示したグラフである。 実施例1〜4及び従来例(比較例1〜11)の各研磨液の調整直後の研磨速度、及び各研磨液を調製した時点から24時間後の各研磨液の研磨速度を示したグラフである。 各研磨液中の砥粒(シリカ)の添加量と、各研磨液を調製した時点から24時間後の各研磨液のpHの変化量の関係を示したグラフである。 実施例9の段差・表面あらさ・微細形状測定装置による測定結果である。 比較例20の段差・表面あらさ・微細形状測定装置による測定結果である。 実施例11〜14と従来例(比較例21〜24)の研磨液のpHと研磨速度を示したグラフである。 実施例19の段差・表面あらさ・微細形状測定装置による測定結果である。 比較例33の段差・表面あらさ・微細形状測定装置による測定結果である。 比較例34の段差・表面あらさ・微細形状測定装置による測定結果である。 比較例35の段差・表面あらさ・微細形状測定装置による測定結果である。 実施例45の研磨量Lと最大高さRtとの関係を示したグラフである。 比較例43の研磨量Lと最大高さRtとの関係を示したグラフである。 本発明の一実施形態に係る半導体基板の研磨方法を示す概略断面図である。 一般的なシリコンウエハの加工工程を示したフローチャートである。 一般的なシリコンウエハの研磨工程を示す模式図である。 図16(a)はシリコンウエハの一般的な再生工程を示したフローチャートであり、図16(b)は本発明の一実施形態に係る半導体基板の研磨方法を用いた場合の、シリコンウエハの再生工程を示したフローチャートである。 第三〜第五の半導体基板用研磨液における、1,2,4−トリアゾール及び水溶性高分子の含有量を示すグラフである。
以下、本発明の一実施形態に係る半導体基板用研磨液及び当該研磨液を用いた半導体基板の研磨方法ついて、必要に応じて図面を参照しながら詳細に説明する。
<第一の半導体基板用研磨液>
第一発明の実施形態として、研磨粒子と、1,2,4−トリアゾールと、塩基性化合物とを含有し、塩基性化合物が、含窒素塩基性化合物又は無機塩基性化合物であり、塩基性化合物の含有量が0.1質量%以上であり、pHが9以上12以下である、半導体基板用研磨液について説明する。
第一の実施形態では、研磨液のpHが9以上12以下の高いアルカリ領域においてもpHの低下を抑制できるため、経時による研磨速度の低下及び変動を極めて小さすることが可能となり、且つ高速な半導体基板のポリッシングが可能となる。
(pH)
第一の実施形態では、半導体基板に対する充分な研磨速度を得るために、半導体基板用研磨液のpHの下限を9.0以上とする。より優れた研磨速度を得る点では、pHは9.5以上であることが好ましい。更に保存時や使用時に研磨液のpHが低下することを充分に抑制するため、pHの上限は12.0であり、11.5以下であることが好ましく、11.0以下であることがより好ましい。
pHは、例えば、1,2,4−トリアゾール及び/又は塩基性化合物の添加量で調整することができる。なお、半導体基板用研磨液のpHは、pHメータ(例えば、横河電機株式会社製、Model pH81)で測定することができる。
(1,2,4−トリアゾール及び塩基性化合物)
第一の実施形態に係る半導体基板用研磨液の重要な特徴は、1,2,4−トリアゾールと、塩基性化合物とを併用する点にある。1,2,4−トリアゾールと塩基性化合物とを併用することが本発明の効果を得るために重要となる理由は詳しくはわかっていないが、半導体基板用研磨液が1,2,4−トリアゾールと塩基性化合物を両方含有することによって下記の事項1、2が達成されることが本発明の効果を奏するための重要なファクターの一つであると考えられる。
[事項1]塩基性化合物の添加量を多くできること。
[事項2]時間の経過に伴う半導体基板用研磨液のpHの変動を少なくすることができること。
上記事項1について詳しく説明する。塩基性化合物は、半導体基板の溶解剤として作用する。従って、高い研磨速度を得る観点からは塩基性化合物の添加量が多いほど好ましい。しかしながら、例えば、研磨液のpHの目標値を11に設定し、塩基性化合物として水酸化カリウムを添加する場合、半導体基板用研磨液のpHがすぐに上昇してしまう。ところが、半導体基板用研磨液に1,2,4−トリアゾールを添加しておくと、1,2,4−トリアゾールのpKaは2.2と低いため、塩基性化合物の添加に伴う半導体基板用研磨液のpHの上昇を抑えることができる。このような理由から、1,2,4−トリアゾールと塩基性化合物とを併用することにより、塩基性化合物を増量することが可能となる。
1,2,4−トリアゾールを単独で研磨液に含有させたとしても、研磨速度が向上する効果はほぼない。研磨速度の向上のためには、1,2,4−トリアゾールを、溶解剤として作用する塩基性化合物と併用することが重要である。
1,2,4−トリアゾールに替えて、硫酸や塩酸等の酸を添加することでも、塩基性化合物を増量することができるが、このような場合では、シリコンに対する研磨速度が充分得られなかったり、配合後のpHの低下を抑制する効果は小さかったりすることが本発明者らの検討でわかっている。
上記事項2について説明する。1,2,4−トリアゾールを含有する研磨液では、その配合から時間が経過してもpHの低下を極めて小さくできる。1,2,4−トリアゾールの代わりに、これに類似する構造を有する1,2,3−トリアゾール(pKa=2.1)や1H−ベンゾトリアゾール(pKa=8.2)を用いた場合、上記事項1で説明したように、研磨液への塩基性化合物の添加量を増量することができるが、配合後のpHの低下を抑制する効果は小さい上、塩基性化合物の添加量に見合う研磨速度向上の効果は得られないことがわかっている。また、1,2,4−トリアゾールの代わりにイミダゾール化合物を用いた場合、イミダゾール化合物のpKaは14.5と高いため、溶解剤として作用する塩基性化合物の添加量を増量することができず、また配合後のpHの低下を抑制する効果も小さい。
第一の実施形態に係る半導体基板用研磨液における1,2,4−トリアゾールの添加量は、研磨液のpH低下抑制と研磨速度向上の効果を充分に得ることはできる点で、0.1質量%以上であることが好ましく、0.25質量%以上であることがより好ましい。また、1,2,4−トリアゾールの添加量は、研磨粒子の凝集等の不具合を防止し易い点において、10質量%以下であることが好ましく、7質量%以下であることがより好ましく、5質量%以下であることが最も好ましい。なお、研磨粒子が凝集は、1,2,4−トリアゾールの添加量だけに起因するとは一概には言えず、研磨粒子の粒径や添加量にも起因する。
第一の実施形態に係る半導体基板用研磨液が含有する塩基性化合物としては、低臭気の点で、水酸化アンモニウム及び水酸化テトラメチルアンモニウムから選ばれる1種類以上の含窒素塩基性化合物、又は、水酸化カリウム及び水酸化ナトリウムから選ばれる1種類以上の無機塩基性化合物が好ましい。これらは単独で、もしくは複数で用いることができる。
(研磨粒子)
第一の実施形態では、半導体基板用研磨液に含まれる研磨粒子としてシリカを使用することが好ましい。これにより、高い研磨速度を得やすくなる。使用できるシリカとしては、公知のものを広く使用することができ、具体的には例えば、フュームドシリカ、コロイダルシリカ、沈殿法シリカ等を挙げることができる。中でも高純度なものが得やすい点で、フュームドシリカ又はコロイダルシリカが好ましく、水への分散安定性や傷等の研磨欠陥が発生し難い点でコロイダルシリカがより好ましい。また、シリカは、必要に応じて他の研磨粒子と併用してもよい。シリカと併用できる他の研磨粒子としては、具体的には例えば、アルミナ、セリア、チタニア、ジルコニア、有機ポリマ等を挙げることができる。
シリカの一次粒子径は、実用的な研磨速度を得ることができる点で、5nm以上であることが好ましく、7nm以上であることがより好ましく、9nm以上であることが特に好ましい。また、シリカの一次粒子径は、傷等の研磨欠陥の発生を抑制しやすい点で、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることが特に好ましく、40nm以下であることが極めて好ましい。シリカの一次粒子径を上記の範囲内とした場合、粒径に依存する機械作用による研磨促進効果と、小粒径化に伴う粒子数増加による研磨促進効果との組み合わせにより、最も研磨速度が向上すると考えられる。
第一の実施形態において、シリカの一次粒子径とは、BET比表面積Vから算出できる粒子の平均直径をいい、ガス吸着法による吸着比表面積(BET比表面積という、以下同じ)の測定から、以下の式(1)
D1=6/(ρ×V) ・・・(1)
により算出される。
式(1)において、D1は粒子の一時粒子径(単位:m)、ρは粒子の密度(単位:kg/m)、VはBET比表面積(単位:m/g)を示す。
より具体的には、まず砥粒を真空凍結乾燥機で乾燥し、この残分を乳鉢(磁性、100ml)で細かく砕いて測定用試料とし、これをユアサアイオニクス(株)製BET比表面積測定装置(製品名オートソーブ6)を用いてBET比表面積Vを測定し、一次粒子径D1を算出する。なお、粒子がコロイダルシリカの場合には粒子の密度ρは、ρ=2200(kg/m)である。
従って、BET比表面積V(m/g)を代入すると、
D1=2.727×10−6/V (m)=2727/V(nm)
として、一次粒子径を求めることができる。
研磨粒子の添加量は、研磨液全体に対して0.01質量%以上5.0質量%以下であることが好ましく、0.05質量%以上3.0質量%以下であることがより好ましく、0.1質量%以上1.0質量%以下であることが更に好ましい。研磨粒子の添加量を0.01質量%以上とすることにより、充分な研磨速度を得易くなる。また、研磨粒子の添加量を5.0質量%以下とすることにより、研摩傷等の欠陥の発生を抑制しやすくなる。
(その他の成分)
第一の実施形態では、上述した成分の他に、水以外の溶媒、防食剤、酸化剤、水溶性高分子ポリマなど一般に研磨液に添加される成分を、上述した研磨液の作用効果を損なわない範囲で半導体基板用研磨液に添加することができる。
(保存形態)
第一の実施形態の半導体基板用研磨液は、その成分濃度を予め高くした濃縮形態として保存できる。研磨液の使用時には、濃縮形態にある研磨液を、水等で本来の成分濃度まで希釈して使用すればよい。更に、半導体基板用研磨液の成分を幾つかに分けた分液形態として保存し、それらを使用時に混合して使用することもできる。
第一の実施形態では、半導体基板用研磨液の配合後のpHの低下を抑制する効果は、シリカの添加量によらず得ることができる。また、第一の実施形態では、半導体基板用研磨液のpHを所定の範囲にしつつ、溶解剤である塩基性化合物の添加量を増量できることから、研磨に寄与する化学作用を強めることができる。この結果、研磨粒子であるシリカの添加量を少なくしても、高い研磨速度を得ることができると考えられる。
<第二の半導体基板用研磨液>
次に、第二発明の実施形態として、第二の半導体基板用研磨液について説明する。なお、第一の半導体基板用研磨液と説明が重複する部分については適宜省略する。
前記第一の半導体基板用研磨液において、1,2,4−トリアゾールと、塩基性物質(有機、無機を問わない)とを併用することによってシリコンに対する良好な研磨速度が得られたが、研磨粒子として、表面がアルミネート化により改質された変性シリカを使用し、これと無機の塩基性物質を併用することによっても、シリコンに対する良好な研磨速度を得ることができる。
すなわち、第二の実施形態として、表面がアルミネートにより改質された変性シリカと、無機塩基性化合物とを含有し、上記変性シリカの含有量が0.01質量%以上1.5質量%以下であり、pHが9以上12以下である、半導体基板用研磨液が提供される。変性シリカと、半導体基板の溶解剤である無機塩基性化合物との組み合わせにおいて変性シリカ(研磨粒子)の表面電位が最も大きくなるため、研磨速度の高速化が可能となる。
(変性シリカ)
アルミネートによるシリカ表面の改質は、例えば、アルミン酸カリウム[(AlO(OH)K]等のアルミニウム化合物を用いて行うことができる。シリカ表面の改質では、例えば、シリカの分散液の中にアルミン酸カリウムを添加し、60℃以上で還流することで、シリカ表面のシラノール基を、よりイオン化しやすい−Si−O−Al(OH)基にする。
使用できる変性シリカとしては、例えば、フュームドシリカ、コロイダルシリカ、沈殿法シリカ等の表面をアルミネート化により改質されたものを用いることができる。中でも高純度なものが得やすい点で、変性フュームドシリカ又は変性コロイダルシリカが好ましく、水への分散安定性や傷等の研磨欠陥が発生し難い点で変性コロイダルシリカが最も好ましい。変性シリカは、必要に応じて他の研磨粒子と併用してもよい。変性シリカと併用できる他の研磨粒子としては、具体的には例えば、アルミナ、セリア、チタニア、ジルコニア、有機ポリマ等を挙げることができる。
なお、仮に溶解剤として水酸化テトラメチルアンモニウムなどの有機アミン類を使用した場合、研磨粒子の表面電位が小さくなり、研磨速度向上の効果が得られない恐れがある。また、アルミネート化により改質された変性シリカの代わりに、表面にスルホン酸基やアミノ基などを有する変性シリカを使用した場合、変性シリカ(研磨粒子)の表面電位が小さくなり、研磨速度向上の効果が得られない恐れがある。
第二の実施形態において、変性シリカの表面電位とは、ゼータ電位測定装置で測定した変性シリカのゼータ電位を指す。ゼータ電位の値は、変性シリカの表面状態を反映する。高いアルカリ領域では、変性シリカはマイナスのゼータ電位を示す。ゼータ電位の値が小さい場合には、電位を打ち消すような化合物(例えば、有機アミン類等)と変性シリカが相互作用していると考えることができる。電位を打ち消すような化合物が変性シリカの表面に存在する場合、変性シリカのメカニカルな研磨作用を緩衝し、本来の研磨力が発揮できていないと、本発明者らは考える。
上記特許文献4に記載の従来技術では、研磨液のpHが10.5以上の領域で生じるシリカの解重合を抑制して研磨速度を得るが、本発明の効果は特許文献4に記載の従来技術とは異なるものである。本発明では、アルミネート化により改質された変性シリカと無機塩基性化合物の併用により、変性シリカ(研磨粒子)が本来有する研磨力が発揮されるため、研磨粒子の添加量が少なくても充分な研磨速度を得ることが可能となる。アルミネート化により改質された変性シリカの添加量は、研磨液全体に対して0.01質量%以上1.5質量%以下であることが好ましく、0.05質量%以上1.0質量%以下であることがより好ましく、0.1質量%以上0.8質量%以下であることが更に好ましい。本発明では、変性シリカの添加量を0.01質量%以上とすることにより、充分な研磨速度を得易くなる。また、本発明では、変性シリカの添加量が少なく、1.5質量%以下であったとしても、充分な研磨速度が得ることができる。
変性シリカの一次粒子径は、実用的な研磨速度を得ることができる点で、5nm以上であることが好ましく、7nm以上であることがより好ましく、9nm以上であることが特に好ましい。また、変性シリカの一次粒子径は、傷等の研磨欠陥の発生を抑制しやすい点で、200nm以下であることが好ましく、100nm以下であることがより好ましく、50nm以下であることが特に好ましく、40nm以下であることが極めて好ましい。変性シリカの一次粒子径を上記の範囲内とした場合、粒径に依存する機械作用による研磨促進効果と、小粒径化に伴う粒子数増加による研磨促進効果との組み合わせにより、最も研磨速度が向上すると考えられる。
なお、変性シリカの一次粒子径は、第一の半導体基板用研磨液におけるシリカの一次粒子径と同様に測定することができる。
(無機塩基性化合物)
無機塩基性化合物は、研磨速度を得るための溶解剤として作用するとともに、変性シリカ(研磨粒子)の表面電位を最大化するため、研磨速度の高速化が可能となる。無機塩基性化合物は、低臭気の点で、水酸化カリウム及び水酸化ナトリウムから選ばれる少なくとも1種類であることが好ましい。これらは単独で、もしくは複数で用いることができる。高い研磨速度を得る観点からは、無機塩基性化合物の添加量は多いほど好ましいため、0.01質量%以上であることが好ましく、0.05質量%以上がより好ましく、0.07質量%以上が更に好ましい。またエッチングの増加による表面粗さの悪化やシリカの解重合を抑制する観点から、無機塩基性化合物の含有量は、5質量%以下が好ましく、3質量%以下がより好ましく、1質量%以下が特に好ましい。
第二の実施形態においては、1,2,4−トリアゾールは必須構成ではないが、シリコンに対するより高速な研磨速度を得るためには、1,2,4−トリアゾールを更に含むことが好ましい。
1,2,4−トリアゾールを用いた場合、研磨速度が向上しやすくなると共に、経時による研磨速度の低下及び変動をより小さすることが可能となる。その結果、高速で安定なポリッシングにより、半導体基板の加工時間の低減、工程管理の容易化、及び品質の揃った半導体基板の加工がより確実に可能となる。
この場合、第二の半導体基板用研磨液への1,2,4−トリアゾールの添加量は、前記第一の半導体基板用研磨液における添加量と同様の範囲が好ましい。
<第三の半導体基板用研磨液>
次に、第三発明の実施形態として、第三の半導体基板用研磨液について説明する。なお、第一及び第二の半導体基板用研磨液と説明が重複する部分については適宜省略する。
第三の実施形態の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下である。このような半導体基板用研磨液とすることによって、半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能となる。
より詳細に説明すると、第三の実施形態では、1,2,4−トリアゾールの含有により、研磨液のpHが9以上12以下の高いアルカリ領域においてもpHの低下を抑制できるため、経時による研磨速度の低下及び変動を極めて小さくし、安定した半導体基板のポリッシングが可能となる。そして、第三の実施形態では、安定なポリッシングにより、品質の揃った半導体基板の加工が可能となる。また第三の実施形態では、水溶性高分子及び1,2,4−トリアゾールによる基板表面の凹凸の低減によって、半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能となる。
(1,2,4−トリアゾール)
なお、1,2,4−トリアゾールによる上記の効果を得るためにも、1,2,4−トリアゾールの含有量は、半導体基板用研磨液の全質量に対して、0.001質量%以上10質量%以下であることが好ましい。
(水溶性高分子)
半導体基板用研磨液が含有する水溶性高分子(水溶性ポリマ)としては、アルギン酸、ペクチン酸、カルボキシメチルセルロ−ス、寒天、キサンタンガム、キトサン、メチルグリコールキトサン、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カ−ドラン及びプルラン等の多糖類;ポリアスパラギン酸、ポリグルタミン酸、ポリリシン、ポリリンゴ酸、ポリメタクリル酸、ポリメタクリル酸アンモニウム塩、ポリメタクリル酸ナトリウム塩、ポリアミド酸、ポリマレイン酸、ポリイタコン酸、ポリフマル酸、ポリ(p−スチレンカルボン酸)、ポリビニル硫酸、ポリアクリル酸、ポリアクリルアミド、アミノポリアクリルアミド、ポリアクリル酸アンモニウム塩、ポリアクリル酸ナトリウム塩、ポリアミド酸、ポリアミド酸アンモニウム塩、ポリアミド酸ナトリウム塩及びポリグリオキシル酸等のポリカルボン酸及びその塩;ポリエチレンイミン、及びその塩;ポリビニルアルコ−ル、ポリビニルピロリドン及びポリアクロレイン等のビニル系ポリマ、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレングリコール−プロピレングリコールブロック共重合体等が挙げられる。その中でも、カルボキシメチルセルロ−ス、寒天、キサンタンガム、キトサン、メチルグリコールキトサン、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルセルロース、カ−ドラン及びプルラン等の多糖類、ポリアクリルアミド、ポリエチレンイミン、ポリビニルアルコ−ル、ポリビニルピロリドン及びポリアクロレイン、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、エチレングリコール−プロピレングリコールブロック共重合体等などのノニオン性高分子が好ましく、ポリビニルピロリドン及びその共重合体がより好ましい。なお、上記の水溶性高分子(水溶性ポリマ)は単独でも、複数種を混合しても使用することができる。また、上記の水溶性高分子のうち複数種を混合して使用する場合、その混合物はポリビニルピロリドン及びその共重合体から選ばれる少なくとも一種を含むことが好ましい。
本発明における半導体基板表面の凹凸の低減は、半導体基板と水溶性ポリマの疎水部との疎水性相互作用による水溶性ポリマの半導体基板表面への吸着によってもたらされる、と本発明者らは考える。すなわち、半導体基板表面に吸着した水溶性ポリマが、半導体基板表面の凹凸に吸着し、研磨パッドや研摩粒子によって凸部の水溶性ポリマが凹部に比べて除去されやすくなった結果、凸部の研磨が促進されて平滑な表面が形成されると考えている。そのため、水溶性ポリマとして、イオン性基のないノニオン性の水溶性ポリマを用いた場合に、凹凸を低減する効果が顕著となる。
水溶性ポリマの添加量は、研磨液に対して、0.001質量%以上10質量%以下であることが好ましく、0.01質量%以上1質量%以下であることがより好ましい。水溶性ポリマの添加量を0.001質量%以上とすることにより、凹凸を低減する効果を大きくなりやすい。また、水溶性ポリマの添加量を10質量%以下とすることにより、水溶性ポリマの添加に伴う研磨液の高粘度化及び高粘度化による流動性の低下を防止しやすくなり、研磨粒子の凝集も防止しやすくなる。
一般に、研磨液の溶解作用を高めると、半導体基板表面の凹凸が大きくなる傾向にある。しかし、本発明に係る半導体基板用研磨液が含有する1,2,4−トリアゾールは、水溶性ポリマと比較して劣るが、基板表面の凹凸を低減する効果を有している。そのため、本発明では、1,2,4−トリアゾールと水溶性ポリマの併用により、半導体基板の表面を高い研磨速度で凹凸の少ない平滑面に研磨加工することが可能となる。
<第四の半導体基板用研磨液>
次に、第四発明の実施形態として、第四の半導体基板用研磨液について説明する。なお、第一、第二及び第三の半導体基板用研磨液と説明が重複する部分については適宜省略する。
第四の実施形態の半導体基板用研磨液は、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの添加量は0.05質量%以上0.5質量%以下であり、水溶性高分子の添加量は、0.001質量%以上0.1質量%以下であり、pHが9以上12以下である。
第四の実施形態は、半導体ウエハの製造工程における仕上げ研磨用途に特に適している。すなわち、シリコン基板に対する研磨速度よりも、シリコン基板上に存在する凹凸を解消すること、シリコン基板上に残存する異物(研磨粒子及び研磨パッドの摩耗により発生する磨耗粉等)の除去及び半導体基板の結晶欠陥を低減することに重点を置いた研磨液である。
(pH)
第四の実施形態では、異物がシリコン基板表面に付着すること等に起因する欠陥を減らす観点で、pHは9以上であり、pH9.5以上がより好ましい。また、過度なエッチングに起因する欠陥の発生を抑制する観点から、pHは12以下であり、11以下が好ましく、10.5以下がより好ましい。
(1,2,4−トリアゾール)
第四の実施形態では、前記1,2,4−トリアゾールの添加量が0.05質量%以上0.5質量%以下である。1,2,4−トリアゾールが有するpH安定性や、溶解剤である塩基性化合物の増量による研磨速度向上効果が得られやすい点、及びウエハ表面の粗度の指標となるヘーズ(HAZE:濁度)の改善効果が得られる点で、添加量は0.05質量%以上であり、0.1質量%以上が好ましい。一方で、添加量に見合うヘーズの改善効果が得られなくなることを避け、更に研磨粒子の凝集を抑制できる点で、添加量は0.5質量%以下であり、0.4質量%以下がより好ましく、0.3質量%以下が特に好ましい。
(水溶性高分子)
第四の実施形態は、水溶性高分子(水溶性ポリマ)の添加量が、0.001質量%以上0.1質量%以下の範囲である。シリコン基板表面の欠陥を低減する効果が充分に得られる点で、添加量は0.001質量%以上であり、0.003質量%以上であることが好ましく、0.005質量%以上であることがより好ましく、0.01質量%以上であることが特に好ましい。また、研磨の阻害、欠陥の増加、ヘーズ改善の阻害といった不具合が生じるのを抑制できる点で、添加量は0.1質量%以下であり、0.08質量%以下が好ましく、0.07質量%以下が更に好ましく、0.05質量%以下が特に好ましく、0.03質量%以下が極めて好ましい。なお、ここでシリコン基板上の欠陥とは、研摩粒子や研磨パッドの摩耗により発生する磨耗粉等の異物や、シリコン基板に発生した結晶欠陥や傷などの総称として用いる。
水溶性高分子の添加による欠陥の低減は、水溶性高分子が半導体基板表面に吸着することによって、研摩粒子や研磨パッドの摩耗により発生する磨耗粉等の異物が固着するのを防ぐとともに、半導体基板表面のダングリングボンド(未結合肢)やCOP(Cristal Oriented Particle)に起因した特定方向のエッチングの発生を抑制することで得られる、と考える。
なお、ヘーズ及び欠陥の値は、研磨終了後のシリコン基板表面を洗浄(例えば、水酸化アンモニウム0.06%を含む洗浄液で、一般的な洗浄ブラシを用いて60秒洗浄)したのち、市販の欠陥検査装置を用いて測定することができる。
具体的には、例えば、下記のような条件で測定される値を、ヘーズ及び欠陥として定義することができる。
欠陥検査装置:LS6700(日立電子エンジニアリング製)
工程条件ファイル(測定レシピ):VeM10L
欠陥測定範囲:0.1μm−3.0μm
投光条件:垂直
前述の通り、第四の実施形態は、半導体ウエハの製造工程における仕上げ研磨用途のように、シリコン基板に対する研磨速度よりも、シリコン基板上に存在する微小な凹凸を解消及び欠陥の低減に重点を置いている。そのため、研磨粒子の添加量としては、研磨液全体に対して0.05質量%以上0.5質量%以下とすることが好ましい。0.05質量%以上であれば凹凸を解消することができ、0.5質量%以下であれば、シリコン基板が過剰に研磨されるのを抑制することができる。
<第五の半導体基板用研磨液>
次に、第五発明の実施形態として、第五の半導体基板用研磨液について説明する。なお、第一、第二及び第三の半導体基板用研磨液と説明が重複する部分については適宜省略する。
第五の実施形態の半導体基板用研磨液は、研磨粒子、1,2,4−トリアゾール、水溶性高分子及び塩基性化合物を含有し、前記1,2,4−トリアゾールの添加量は0.2質量%以上3.0質量%以下であり、前記水溶性高分子の添加量は、0.01質量%以上0.2質量%以下であり、pHが9以上12以下である、半導体基板用研磨液である。
(pH)
第五の実施形態は、前記シリコンに対する所定の研磨速度を得る観点で、前記pHは9以上であり、pH9.5以上がより好ましく、pH10.0以上が更に好ましい。また、過度なエッチングに起因する欠陥を抑制する観点から、前記pHは12以下であり、11以下が好ましい。
第五の実施形態は、第四の半導体基板用研磨液と比較して、1,2,4−トリアゾールの添加量が多く、前記水溶性高分子の添加量が多い。このようにすることにより、シリコン基板に対する所定の研磨速度を得つつ、表面に凹凸がある場合は凸部を優先的に研磨する事が可能な半導体基板用研磨液とすることができる。特に、機械的に研削加工(グラインディング等)したシリコン基板のような高い段差を有するシリコン基板において、前記段差の凸部を優先的に研磨し、前記研削加工時に発生した研削痕を除去する事が可能となる。
このような半導体基板の研磨方法であれば、従来数ステップに分けて行われていた粗研磨を1ステップで行うことができるため、粗研磨で生じる半導体基板の研磨ロスを低減することが可能となる。これにより、シリコンウエハの再利用回数をより多くできるという効果も得られる。
なお、上述の粗研磨工程において、粗ウエハの研磨量をL(nm)、粗ウエハの初期段差をRt0(nm)及び、粗研磨された後の粗ウエハの段差をRt1(nm)と定義した場合、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨(すなわち、初期段差の1.3倍以下の研磨量だけ研磨)したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を共に満たすこと好ましい。なお、最終的な研磨量は、前述の範囲(Rt0≦L≦Rt0×1.3)以上でもかまわないことは、いうまでもない。
ここで、研磨量Lとは、研磨によって粗ウエハから除去された部分の厚さを意味する。また、初期段差Rt0とは、粗研磨前の粗ウエハ表面の凸部と凹部の高さの差の最大値である。粗研磨された粗ウエハの段差Rt1とは、粗研磨された粗ウエハ表面の凸部と凹部の高さの差の最大値である。
なお、図17は、第三〜第五の半導体基板用研磨液における、1,2,4−トリアゾール及び水溶性高分子の含有量を示すグラフである。上述したように、第三の半導体基板用研磨液においては、半導体基板用研磨液の全質量に対して、1,2,4−トリアゾールの含有量は0.01質量%以上10質量%以下であることが好ましく、水溶性高分子の含有量は0.001質量%以上10質量%以下であることが好ましい(図17の第三の半導体基板用研磨液の好ましい範囲)。また、第四の半導体基板用研磨液においては、半導体基板用研磨液の全質量に対して、1,2,4−トリアゾールの含有量は、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量は、0.001質量%以上0.1質量%以下である。さらに、第五の半導体基板用研磨液においては、半導体基板用研磨液の全質量に対して、1,2,4−トリアゾールの含有量が、0.2質量%以上3.0質量%以下であり、水溶性高分子の含有量が、0.01質量%以上0.2質量%以下である。
<半導体基板の研磨方法>
次に、これまで説明した第一〜第五の半導体基板用研磨液を用いて半導体基板の表面を研磨する研磨方法について説明する。研磨方法の一例としては、例えば、研磨定盤の研磨布上に本実施形態の半導体基板用研磨液を供給しながら、被研磨基板(半導体基板)を研磨布に押圧した状態で、研磨定盤と被研磨基板を相対的に動かして半導体基板の表面を研磨する。
本実施形態の研磨方法において使用できる研磨装置としては、例えば、被研磨基板を保持するホルダーと、研磨布(パッド)を貼り付け可能で回転数が変更可能なモータなどを取り付けてある研磨定盤とを有する一般的な研磨装置が使用できる。研磨定盤上の研磨布としては、特に制限はなく、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用できる。半導体基板を研磨布に押圧した状態で研磨布と被研磨基板とを相対的に動かすには、具体的には基板と研磨定盤との少なくとも一方を動かせば良い。研磨定盤を回転させる他に、ホルダーの回転や揺動によって研磨しても良い。
また、研磨方法としては、研磨定盤を遊星回転させる研磨方法、ベルト状の研磨布を長尺方向の一方向に直線状に動かす研磨方法等が挙げられる。なお、ホルダーは、固定、回転、揺動のいずれの状態にあっても良い。これらの研磨方法は、研磨布と半導体基板とを相対的に動かすのであれば、被研磨基板や研磨装置に応じて適宜選択される。研磨している間、研磨布には半導体基板用研磨液をポンプなどで連続的に供給することが好ましい。
<第一又は第二の半導体基板用研磨液を用いた研磨方法>
本実施形態の第一及び第二の半導体基板用研磨液は、上記のような研磨方法を用いて、シリコン又は基板構成にシリコンを含む基板を研磨した場合に、優れた研磨特性を有する。中でもシリコン又は基板構成にシリコンを含む基板に対する研磨速度に優れている。
以下に、第一及び第二の半導体基板用研磨液を用いた半導体基板の研磨方法の実施形態について説明する。
(シリコン貫通ビア裏面研磨方法)
第一及び第二の半導体基板用研磨液の研磨特性を活かした研磨プロセスの一例を、図13を用いて説明する。なお、本発明の半導体基板の研磨方法は、この例に限定されないことはいうまでもない。図13は、シリコン貫通ビア形成工程の一例を示す断面模式図である。
図13(a)において、シリコン等の半導体基板1には貫通ビア用の凹凸が形成され、その凹凸を埋めるように銅等の配線用金属2が形成されている。次に、半導体基板1の凹凸が形成された面の逆の面(裏面)を、公知方法でバックグラインドする。このとき、バックグラインドの強い機械的作用によって、図13(b)に示すように、機械的損傷を受けたシリコンダメージ層3が半導体基板1の裏面に発生する。最後に本実施形態の半導体基板用研磨液を用いて、上記シリコンダメージ層3及び半導体基板1を研磨し、配線用金属2が裏面に露出するまで研磨することで、図13(c)に示すようなシリコン貫通ビアを形成する。
シリコンダメージ層3の表面には微細な凹凸が存在しうるが、本実施形態の半導体基板用研磨液を用いた半導体基板の研磨方法によれば、表面に凹凸のある半導体基板に対しても良好な研磨速度を得ることができる。そのため、本実施形態の半導体基板用研磨液を用いた半導体基板の研磨方法は、半導体基板を研磨する様々な用途に使用することができる。
すなわち本実施形態は、シリコン貫通ビアを形成するための半導体基板の研磨方法であって、シリコン基板の一方の面に凹部を形成する工程と、凹部に金属を埋め込む工程と、シリコン基板の他方の面をバックグラインドする工程と、第一又は第二の半導体基板用研磨液を用いて、他方の面を、金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法である。
また、このようなシリコン貫通ビアのバックグラインドにおいて、最終段階に仕上げ研磨を適用する場合にも、第三又は第四の半導体基板用研磨液を適用することができる。
(シリコンウエハ製造工程に係る研磨方法)
第一及び第二の半導体基板用研磨液の研磨特性を活かした研磨プロセスの他の一例を、図14及び15を用いて説明する。図14は、一般的なシリコンウエハの加工技術のフローである。シリコンウエハは、シリコンの単結晶をスライスする工程(スライシング)と、ラッピング工程又はグラインディング工程と、エッチング工程等とを含む工程を経て、ウエハ形状に加工される。上記ラッピング工程又はグラインディング工程は、機械的に研削するため、シリコン結晶に結晶欠陥等のダメージを与えてしまうことがある。そこで後続のエッチング工程では、このようなダメージを解消すること及び表面の凹凸をある程度解消するのが一般的である。
しかしながら、エッチング工程を経た後のシリコンウエハであっても、いわゆる半導体装置を製造するために充分な程度の平坦性と、結晶欠陥等のダメージの解消が図られていない。そこで、図15に示すように、多段階の研磨工程を経て、平坦なシリコンウエハを得るのが一般的である。図15では、(a)から(b)、(b)から(c)の2段階の粗研磨(荒削り)工程と、(c)から(d)の仕上げ研磨(最終研磨)工程を示しているが、この研磨工程は、ウエハメーカやウエハのグレードによって異なり、もっと多段階になる場合もある。
前記粗研磨は、使用する研磨布の硬さを硬いものから柔らかいものに順次切り替えつつ研磨を行い、膜厚を減らしつつ、凹凸及びダメージを徐々に解消する。仕上げ研磨工程では、シリコンに対する研磨速度はほとんど必要とはされず、欠陥を新たに発せさせることなく、粗研磨時に付着した研磨粒子を除去したり、微小な凹凸を解消したりして、ウエハの鏡面化することを目的とした研磨工程である。
ここで、第一及び第二の半導体基板用研磨液は、上述の粗研磨に適している。すなわち、本実施形態は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、当該シリコンウエハをエッチングし、粗ウエハを準備する工程と、第一又は第二の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法である。
(シリコンウエハの再生に係る研磨方法)
また、前記第一及び第二の半導体基板用研磨液は、シリコンに対する高い研磨速度を活かして、再生ウエハを研磨する方法に好適に使用できる。以下、再生ウエハを研磨する方法について説明する。
一般に、シリコンウエハから、半導体デバイスを製造する各要素工程において、プロセステストのため、多数のウエハがテストウエハとして使用される。このようなテストウエハとしては、平坦なシリコン基板上に絶縁膜や金属膜等の各種膜を製膜したものが挙げられる。これらのテストウエハを製造する目的は、シリコン基板上に各種の膜を製膜するための最適条件を調べる場合、シリコン基板上にレジスト膜を塗布・露光する際の最適条件を調べる場合、定期的に前記各最適条件についてモニタリングする場合、シリコン基板上に製膜された各種の膜に対する研磨液の研磨特性を評価する場合等、多岐にわたって用いられている。
これらのテストウエハは、再度テストウエハとして利用するために、再生処理が行われる。再生処理としては、一般的に、前記各種膜等の付着物をウエットエッチングにより除去し、粗研磨及び仕上げ研磨工程を経て、再度平坦なウエハを得る。また、前記テストウエハは、再生工程にまわされるまでに大きなキズがついてしまったり、評価の際に凹凸を形成したりする場合がある。この場合には、キズや凹凸を研削加工により除去し、これを粗研磨及び仕上げ研磨することによって、再度平坦なウエハが得られるのが一般的である。
本発明の半導体基板用研磨液のうち、第一及び第二の半導体基板用研磨液は、このような再生ウエハを粗研磨するのに好適に使用できる。すなわち、本実施形態は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、第一又は第二の半導体基板用研磨液を用いて、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法である。
なお、再利用しようとするシリコン基板の表面に凹凸やキズがある場合は、第一又は第二の半導体基板用研磨液を用いて研磨するステップの前に、機械的な研削工程を有することが好ましい。
<第三又は第四の半導体基板用研磨液を用いた研磨方法>
本実施形態の半導体基板用研磨液のうち、第三の半導体基板用研磨液は、研磨粒子、1,2,4−トリアゾール及び塩基性化合物を含有し、pHが9以上12以下である半導体基板用研磨液に、水溶性高分子を含有させることによって、シリコン表面の凹凸を解消する事ができるものである。
また、第三の半導体基板用研磨液において、研磨速度を調節したり、解消したい凹凸の目標サイズを変えたりするために、1,2,4−トリアゾール、水溶性高分子の添加量を最適化し、必要に応じてpH等を制御することによって、第四の半導体基板用研磨液を得ることが可能となる。
以下、第三又は第四の半導体基板用研磨液を用いた半導体基板の研磨方法の実施形態について説明する。
(シリコンウエハ製造工程に係る研磨方法)
前述の通り、平坦なシリコンウエハを得るためには、図15に示すように、粗研磨(荒削り)工程及び仕上げ研磨(最終研磨)工程を経るのが一般的である。ここで、第三及び四の半導体基板用研磨液は、シリコンに対する研磨速度よりも、シリコン基板上に存在する凹凸を解消すること及びシリコン基板上に残存する異物(研磨粒子及び研磨パッドの摩耗による発生する磨耗粉等)を除去することに重点を置いた研磨液であり、シリコンウエハの製造工程における仕上げ研磨用途に特に適している。すなわち、本実施形態は、シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、該シリコンウエハをエッチングし、粗ウエハを準備する工程と、粗ウエハを研磨する粗研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法である。なお、粗ウエハを研磨する粗研磨工程において、第一又は第二の半導体基板用研磨液を用いてもよい。
(シリコンウエハの再生に係る研磨方法)
また、第三及び第四の半導体基板用研磨液は、前述した再生ウエハを得る工程における仕上げ研磨にも適用することができる。すなわち、本実施形態は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングする工程と、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、第三又は第四の半導体基板用研磨液を用いて、粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法である。なお、ウエットエッチングされたシリコンウエハを研磨する粗研磨工程において、第一又は第二の半導体基板用研磨液を用いてもよい。
なお、再利用しようとするシリコン基板の表面に凹凸やキズがある場合は、第三又は第四の半導体基板用研磨液を用いて研磨するステップの前に、機械的な研削工程を有することが好ましい。
また、シリコンに対する研磨速度よりも、シリコン基板上の欠陥を低減し、表面の微小な凹凸を解消して高度な鏡面を得るために第三又は第四の半導体基板用研磨液を用いる場合は、研磨パッドにはある程度、やわらかいものであることが好ましく、例えばアスカーゴム硬度計C型で測定した硬度(Asker C硬度)が60度より小さいものが好ましい。
<第三又は第五の半導体基板用研磨液を用いた研磨方法>
本実施形態の半導体基板用研磨液のうち、第五の半導体基板用研磨液は、第四の半導体基板用研磨液と比較して、表面の凹凸を解消しつつ、シリコンに対するある程度の研磨速度が得られるものである。これにより、比較的大きい凹凸を有する半導体基板の凸部を優先して研磨する事が可能となる。なお、後述する研磨方法において、第五の半導体基板用研磨液の代わりに第三の半導体基板用研磨液を用いてもよい。
以下に、第五の半導体基板用研磨液を用いた半導体基板の研磨方法の実施形態について説明する。
図16(a)は、シリコンウエハの一般的な再生工程フローである。再利用するために回収されたシリコンウエハは、受入検査をされた後、付着物を除去するためのウエットエッチング工程、比較的大きな凹凸を解消するためのグラインディング工程を経て、粗ウエハとなる。この粗ウエハを所定の方法で洗浄した後、粗研磨工程にて多段階(第一次研磨、第二次研磨・・・)に分けて粗研磨され、更に仕上げ研磨工程、洗浄工程を経て、再生ウエハとして出荷される。
しかしながら、グラインディング後の多段階の粗研磨により、シリコンウエハが必要以上に削られてしまうのが現状である。従って、このような「研磨しろ」を低減し、より効率的にシリコンウエハを再利用するためには未だ改善が必要である。
一方、第五の半導体基板用研磨液を用いることにより、このような改善を可能にする、従来にない新しい研磨方法を提供することができる。すなわち、本実施形態は、再利用するための半導体基板の研磨方法であって、付着物が付着したシリコンウエハをウエットエッチングした後、当該シリコンウエハをグラインディングして粗ウエハを準備する工程と、第五の半導体基板用研磨液を用いて、粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法である。
このような半導体基板の研磨方法であれば、従来数ステップに分けて行われていた粗研磨を1ステップで行うことができる(図16(b)参照)ため、粗研磨で生じる半導体基板の研磨しろを低減することが可能となる。これにより、シリコンウエハの再利用回数をより多くできるという効果も得られる。
なお、上述の粗研磨工程において、粗ウエハの研磨量をL(nm)、粗ウエハの初期段差をRt0(nm)及び、粗研磨された後の粗ウエハの段差をRt1(nm)と定義した場合、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨(すなわち、初期段差の1.3倍以下の研磨量だけ研磨)したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を全て満たすこと好ましい。なお、最終的な研磨量は、前述の範囲(Rt0≦L≦Rt0×1.3)以上でもかまわないことは、いうまでもない。
また、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面を凹凸の少ない平滑な表面に高速で仕上げ研磨加工することが可能となる。
更に、上述の半導体基板の研磨方法において、粗研磨工程後の粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備えていてもよく、研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、1,2,4−トリアゾールの含有量が、半導体基板用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、水溶性高分子の含有量が、半導体基板用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、pHが9以上12以下であることが好ましい。これにより、半導体基板の表面をより確実に凹凸の少ない平滑な表面に高速で仕上げ研磨加工することが可能となる。
また、第五の半導体基板用研磨液は、前記のTSV裏面研磨方法においても好適に適用することができる。一般的にTSVの裏面は、回路面(活性面)ほどの平坦性が要求されないため、機械的な研削を一段階実施した後、第五の半導体基板用研磨液を用いてTSV裏面研磨を行うことにより、充分実用に耐えるTSV基板を得ることができる。従来、TSVの裏面研磨は、研磨を行うまでに複数段階の機械的研削工程を経ていたが、本発明の方法によれば、TSVの製造工程を大幅に簡略化することができる。
また、第五の半導体基板用研磨液では、グラインディング等で表面に発生したある程度大きな凹凸を解消しつつ、シリコンに対するある程度の研磨速度を得るために、研磨パッドにはある程度の硬度があることが好ましく、例えばアスカーゴム硬度計C型で測定した硬度(Asker C硬度)が60度以上が好ましく、70度以上がより好ましく、80度以上が更に好ましい。これらの硬度を有することにより、良好な研磨速度が得られやすく、凹凸の解消性にも優れる傾向がある。
このような研磨方法によれば、理想的には複数段階の粗研磨が必要なくなるため、一段階の粗研磨からなる半導体ウエハの研磨方法、又は一段階の粗研磨と一段階の仕上げ研磨からなる半導体ウエハの研磨方法が提供される。
以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
<第一の半導体基板用研磨液>
(実施例1〜8)
[半導体用研磨液の調製]
1,2,4−トリアゾール、塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表1に示す添加量で配合して、実施例1〜8の各半導体用研磨液を調製した。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾールを溶解させ、これに塩基性化合物を添加し、次いで、一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。
(実施例9及び10)
[半導体用研磨液の調製]
1,2,4−トリアゾール、塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表2に示す添加量で配合して、実施例9及び10の各半導体用研磨液を調製した。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール溶解させ、これに塩基性化合物を添加し、次いで、一次粒径が17nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。
[pH測定]
実施例1〜10の各半導体用研磨液のpHを以下の方法で測定した。
(pHの測定方法)
pHメータ:横河電機株式会社製Model pH81
校正:中性リン酸塩pH緩衝液pH6.86(25℃)及びホウ酸塩pH標準液(pH9.18)(25℃)による2点校正
測定温度:25℃
マグネチックスターラー:アズワン製HS−30D
測定手順:長径約4cm、短径約0.5cmのフッ素樹脂でコーティングされた攪拌子を使用し、500rpmで研磨液を攪拌した状態でpHの測定をおこなった。
測定時期:配合直後、一日静置後
なお、上記「配合直後」とは、上記の半導体用研磨液の調整(配合)を完了してから1時間未満であることを、「一日静置後」とは、上記の半導体用研磨液の調整(配合)を完了してから24〜25時間静置した後を、それぞれ意味するものとし、以下同様である。
配合直後の各半導体用研磨液のpHを表1及び表2に示す。また、配合してから一日静置した後の各半導体用研磨液のpHと、配合直後に測定したpHからの変化量を表1に示す。
[半導体基板の研磨1]
研磨定盤の研磨布上に、配合直後の実施例1の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例1と同様の方法で、配合直後の実施例2〜8の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件1)
研磨装置:ナノファクター製FACT−200型
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:80rpm
ホルダー回転数:駆動装置無し(自由回転)
研磨圧力:33.83kPa(345gf/cm
研磨液供給量:16ml/分
研磨時間:5分
半導体基板(被研磨物):2cm角シリコンウエハ(P型<100>)
[半導体基板の研磨2]
同様に、研磨定盤の研磨布上に、配合直後の実施例9及び10の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件2)
研磨装置:アプライドマテリアルズ社製MIRRA
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:93rpm
ホルダー回転数:87rpm
研磨圧力:20.7kPa
研磨液供給量:200ml/分
研磨時間:3分
半導体基板(被研磨物):200mmシリコンウエハ(P型<100>)
[洗浄]
研磨後は、ポリビニルアルコール製ブラシ及び超音波水による半導体基板の洗浄を行った。洗浄後、スピンドライヤにて半導体基板を乾燥した。
[配合直後の研磨速度の測定]
配合直後の実施例1〜10の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を測定した。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。
[一日静置後の研磨速度の測定]
配合直後の実施例1〜8の各半導体用研磨液を用いた場合と同様の方法で、一日静置後の実施例1〜8の各半導体用研磨液を用いた場合の研磨速度を測定した。
[表面粗さ評価]
配合直後の実施例9及び10の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、段差・表面あらさ・微細形状測定装置を使用し、シリコンウエハの研磨面の算術平均粗さを以下の条件で測定した。
段差・表面あらさ・微細形状測定装置:KLA Tencor製P16−OF
測定モード:Roughness
測定長:200μm
測定速度:5μm/秒
測定荷重:1mg
実施例1〜8の評価結果を表1に、実施例9及び10の評価結果を表2に、それぞれ示す。
(比較例1〜14)
下記表3、表4に示す塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表3、表4に示す添加量で配合して、比較例1〜14の各半導体基板用研磨液を調製した。各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に塩基性化合物を添加し、次いで、一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例1〜14の各研磨液のいずれにも1,2,4−トリアゾールを含有させなかった。
実施例1と同様の方法で、配合直後の比較例1〜14の各半導体用研磨液のpH、一日静置後の各半導体用研磨液のpH、及び配合直後から一日静置後のpHの変化量を測定した。測定結果を表3、4に示す。
実施例1と同様の方法で、配合直後の比較例1〜14の各半導体用研磨液を用いた場合の研磨速度を測定した。また、実施例1と同様の方法で、一日静置後の比較例1〜14の各半導体用研磨液を用いた場合の研磨速度を測定した。測定結果を表3、4に示す。
(比較例15〜18)
下記表5に示すpKa(ここでpKaとはpKaである。以下同じ)を有する化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表5に示す添加量で配合して、比較例15〜18の各半導体基板用研磨液を調製した。各研磨液の調製では、研磨液全体の50質量%に相当する純水にpKaを有する化合物を溶解し、これに塩基性化合物を添加した。次いで、一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例15〜18の各研磨液のいずれにも1,2,4−トリアゾールを含有させなかった。
(比較例19)
1,2,4−トリアゾール、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表5に示す添加量で配合して、比較例19の半導体基板用研磨液を調製した。研磨液の調製では、研磨液全体の50質量%に相当する純水に1,2,4−トリアゾールを1質量%溶解し、これに一次粒径が35nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例19の研磨液には塩基性化合物を含有させなかった。
実施例1と同様の方法で、配合直後の比較例15〜19の各半導体用研磨液のpH、一日静置後の各半導体用研磨液のpH、配合直後から一日静置後のpHの変化量を測定した。測定結果を表5に示す。
実施例1と同様の方法で、配合直後の比較例15〜19の各半導体用研磨液を用いた場合の研磨速度を測定した。また、実施例1と同様の方法で、一日静置後の比較例15〜19の各半導体用研磨液を用いた場合の研磨速度を測定した。測定結果を表5に示す。
(比較例20)
下記表6に示す塩基性化合物、及び研磨粒子であるコロイダルシリカを、以下の手順に従って、表6に示す添加量で配合して、比較例20の半導体基板用研磨液を調製した。研磨液の調製では、まず研磨液全体の50質量%に相当する純水に塩基性化合物を添加し、次いで、一次粒径が17nmのコロイダルシリカを分散させ、残部を純水で計100質量%になるように配合した。なお、比較例20の研磨液には1,2,4−トリアゾールを含有させなかった。
実施例1と同様の方法で、配合直後の比較例20の半導体用研磨液のpH、配合直後の比較例20の半導体用研磨液を用いた場合の研磨速度を測定した。また、実施例9及び10と同様の方法で、比較例20の半導体用研磨液を用いた研磨後のシリコンウエハの研磨面の算術平均粗さを測定した。測定結果及び算術平均粗さを表6に示す。
図1に、実施例1〜4及び比較例1〜11の各研磨液の配合直後のpHと、一日静置後の各研磨液のpH変化量を示す。図2に、実施例1〜4及び比較例1〜11の各研磨液の配合直後のpH及び研磨速度、並びに各研磨液の一日静置後のpH及び研磨速度を示す。図3に、実施例及び比較例の各研磨液における砥粒(シリカ)の添加量と、配合直後から一日静置後の各研磨液のpH変化量の関係を示す。なお、図1〜3において、「TA」は1,2,4−トリアゾールを含む実施例であり、それ以外の印は1,2,4−トリアゾールを含まない比較例である。また、「TMAH」は水酸化テトラメチルアンモニウムの含有を意味し、「KOH」は水酸化カリウムの含有を意味する。
上述のように、実施例1〜8の半導体基板用研磨液は、シリカ及び1,2,4−トリアゾールを含有すると共に、塩基性化合物(含窒素塩基性化合物として水酸化テトラメチルアンモニウム、又は無機塩基性化合物として水酸化カリウム)を含有する。そして、実施例1〜8の半導体基板用研磨液では、塩基性化合物の含有量が0.1質量%以上であり、pHが9以上12以下である。このような実施例1〜8では、配合直後のpHが各実施例と同様の比較例と比べて、研磨液の配合直後の研磨速度と一日静置後の研磨速度に大きな違いはなく、また一日静置後のpH変化量も極めて小さいことがわかった。従って、本発明の半導体基板用研磨液は、シリコンを高速に研磨でき、かつその研磨速度が安定していることがわかった。
一方、比較例1〜5は、実施例1〜6と同様に溶解剤として水酸化テトラメチルアンモニウムを含有する。しかし、比較例1〜5のpHは、非常に少量の水酸化テトラメチルアンモニウムの添加で実施例とほぼ同一となっている。このような比較例1〜5では、実施例と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。
また、比較例6〜14は、溶解剤として水酸化カリウムを含有する。上述の比較例と同様に、比較例6〜14のpHは、非常に少量の水酸化カリウムの添加で実施例とほぼ同一となっている。このような比較例6〜14では、実施例と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。また、比較例6〜14では、水酸化テトラメチルアンモニウムを溶解剤として使用する研磨液と比較して、一日静置後のpH変化量が大きくなる傾向があった。
また、比較例15は、1,2,4−トリアゾールの代わりに同じアゾール系のイミダゾールを添加した。比較例15では、pKaが14.5と高いことから、非常に少量の水酸化テトラメチルアンモニウムの添加で実施例3と同一のpHとなった。比較例15では、実施例3と比較して研磨速度が遅く、また、1,2,4−トリアゾールと同じアゾール系を用いているが、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。
比較例16には、1,2,4−トリアゾールの代わりに同じアゾール系の1,2,3−ベンゾトリアゾールを添加した。比較例16では、pKaが8.2であり、1,2,3−ベンゾトリアゾールを添加しない場合よりも、水酸化テトラメチルアンモニウムの添加できる量が多かった。しかし、比較例16では、実施例3と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。
比較例17及び18には、1,2,4−トリアゾールの代わりに酸を添加した。りんご酸を添加した比較例17では、りんご酸を添加しない場合よりも水酸化テトラメチルアンモニウムを添加できる量が多く、実施例3よりも添加できる量が多かった。比較例17では、実施例3と研磨速度が同一であったが、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。硫酸を添加した比較例18では、硫酸を添加しない場合よりも水酸化カリウムを添加できる量が多く、実施例7よりも添加できる量が多かった。しかし、比較例18では、実施例7と比較して研磨速度が遅く、研磨液の配合直後と一日静置後のpH変化量も大きく、一日静置後の研磨速度も低下することがわかった。
比較例19は1,2,4−トリアゾールを単独で含有させた研磨液である。比較例19では、研磨液の配合直後と一日静置後のpH及び研磨速度の変化は認められなかったが、研磨速度は200nm/分未満と低く、1,2,4−トリアゾール単独では研磨速度が向上する効果はほぼないことが分かった。
また、実施例9及び10と、比較例20とを比較すると、研磨液が1,2,4−トリアゾールを含むことで、研磨終了後の表面の荒れを抑制できることがわかった。
<第二の半導体基板用研磨液>
[ゼータ電位測定用研磨液の調製]
半導体用研磨液全体の50質量%に相当する純水に、塩基性化合物(水酸化カリウム)を、pHが9になるまで添加した。次いで、砥粒(研磨粒子)として、表面がアルミネートにより改質された変性コロイダルシリカを0.5質量%添加したのち、純水で計95質量%になるように配合した。pHが11まで塩基性化合物(水酸化カリウム)を添加し、残部を純水で計100質量%になるように配合した。このようにして、ゼータ電位測定用研磨液Cを調製した。
ゼータ電位測定用研磨液Cに添加した変性コロイダルシリカは、シリカの分散液の中にアルミン酸カリウム[(AlO(OH)K]を添加し、60℃以上で還流することで、シリカ表面のシラノール基を、よりイオン化しやすい−Si−O−Al(OH)基にして得たものである。
表7に示す砥粒及び塩基性化合物を用いたこと以外は、ゼータ電位測定用研磨液Cと同様の方法で、ゼータ電位測定用研磨液A、B、D、E、F、G、Hをそれぞれ調製した。なお、表7に示す砥粒は、いずれも砥粒メーカーより購入したものである。
[ゼータ電位の測定]
以下の測定条件の下で、各ゼータ電位測定用研磨液中の砥粒のゼータ電位を測定した。
測定原理:レーザードップラー法
ゼータ電位測定装置:ZETASIZER3000HS(MALVERN製)
測定温度:25℃
分散媒の屈折率:1.331
分散媒の粘度:0.893cP
(実施例11〜16)
[半導体用研磨液の調製]
アルミネートによる改質シリカ及び下記表8に示す無機塩基性化合物を、以下の手順に従って、表8に示す添加量で配合して、実施例11〜16の各半導体用研磨液を調製した。なお、表8に示す「アルミネートによる改質シリカ」とは、アルミネートにより改質した変性コロイダルシリカであり、上記ゼータ電位測定用研磨液Cに添加したものと同じである。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、無機塩基性化合物である水酸化カリウムをpHが9になるまで添加した。次いで、砥粒として、アルミネートにより改質した変性コロイダルシリカを分散させ、純水で計95質量%になるように配合した。更に、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。
(実施例17)
表8に示すように、1質量%の1,2,4−トリアゾールを、研磨液全体の50質量%に相当する純水で溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、砥粒として、アルミネートにより改質した変性コロイダルシリカを分散させ、純水で計95質量%になるように配合した。pHが11まで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。このようにして、実施例17の半導体基板用研磨液を調製した。
[pH測定]
実施例11〜17の各半導体用研磨液のpHは、以下の方法で測定した。各半導体用研磨液のpHを表8に示す。
(pHの測定方法)
pHメータ:横河電機株式会社製Model pH81
校正:中性リン酸塩pH緩衝液pH6.86(25℃)及びホウ酸塩pH標準液(pH9.18)(25℃)による2点校正
測定温度:25℃
マグネチックスターラー:アズワン製HS−30D
測定手順:長径約4cm、短径約0.5cmのフッ素樹脂でコーティングされた攪拌子を使用し、500rpmで研磨液を攪拌した状態でpHの測定をおこなった。
測定時期:研磨液の配合直後
[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例11の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例11と同様の方法で、配合直後の実施例12〜17の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨装置:ナノファクター製FACT−200型
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:80rpm
ホルダー回転数:駆動装置無し(自由回転)
研磨圧力:33.83kPa(345gf/cm
研磨液供給量:16ml/分
研磨時間:5分
半導体基板(被研磨物):2cm角シリコンウエハ(P型<100>)
[洗浄]
研磨後は、ポリビニルアルコール製ブラシ及び超音波水による半導体基板の洗浄を行った。洗浄後、スピンドライヤにて半導体基板を乾燥した。
[研磨速度の測定]
配合直後の実施例11〜17の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を測定した。測定結果を表2に示す。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。
(比較例21〜27)
表9、10に示す未改質のコロイダルシリカ及び塩基性化合物を、以下の手順に従って、表9、10に示す添加量で配合して、比較例21〜27の各半導体用研磨液を調製した。なお、表9、10に示すシリカは、いずれも砥粒メーカーより購入したものである。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、塩基性化合物をpHが9になるまで添加した。次いで、砥粒として、未改質のコロイダルシリカを分散させ、純水で計95質量%になるように配合した。更に、所望のpHまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。
(比較例28)
表10に示すように、1質量%の1,2,4−トリアゾールを、研磨液全体の50質量%に相当する純水で溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、砥粒として、未改質のコロイダルシリカを分散させ、純水で計95質量%になるように配合した。pHが11まで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。このようにして、比較例28の半導体基板用研磨液を調製した。
(比較例29〜32)
表10に示す改質シリカ及び塩基性化合物を、以下の手順に従って、表10に示す添加量で配合して、比較例29〜32の各半導体用研磨液を調製した。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に、塩基性化合物をpHが9になるまで添加した。次いで、砥粒として、改質した変性コロイダルシリカを分散させ、純水で計95質量%になるように配合した。更に、pHが11まで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。
実施例11と同様の方法で、配合直後の比較例21〜32の各半導体用研磨液のpHを測定した。測定結果を表9、10に示す。
実施例11と同様の方法で、配合直後の比較例21〜32の各半導体用研磨液を用いた場合の研磨速度を測定した。測定結果を表9、10に示す。
図6に実施例11〜14及び比較例21〜24の各研磨液のpHと研磨速度を示す。
実施例11〜14、16及び比較例21〜24、26、27、29〜32のうち、砥粒の添加量及びpHが同様である実施例と比較例とを対比した場合、実施例の研磨速度が比較例より常に高いことが確認された。
実施例17は、砥粒の添加量及びpHが比較例25より小さいにも関わらず、実施例17の研磨速度は比較例25より高いことが確認された。また、実施例17及び比較例28は、共に1,2,4トリアゾールを含有し、両者の砥粒の一次粒径、添加量及びpHは等しいにもかかわらず、実施例17の研磨速度は比較例28より高いことが確認された。
<第三の半導体基板用研磨液>
(実施例18〜24)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表11に示す添加量で配合して、実施例18〜24の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、K値が異なる三種類のポリビニルピロリドン(PVP_K15、PVP_K30、PVP_K90)のいずれかを用いた。ここで、K15等と表されるK値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。
[pH測定]
実施例18〜24の各半導体用研磨液のpHを以下の方法で測定した。各半導体用研磨液のpHを表11に示す。
(pHの測定方法)
pHメータ:横河電機株式会社製Model pH81
校正:中性リン酸塩pH緩衝液pH6.86(25℃)及びホウ酸塩pH標準液(pH9.18)(25℃)による2点校正
測定温度:25℃
マグネチックスターラー:アズワン製HS−30D
測定手順:長径約4cm、短径約0.5cmのフッ素樹脂でコーティングされた攪拌子を使用し、500rpmで研磨液を攪拌した状態でpHの測定をおこなった。
測定時期:研磨液の配合直後(なお、配合直後とは、半導体用研磨液の調整(配合)を完了してから1時間未満であることを意味し、以下同様である。)
[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例18の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例18と同様の方法で、配合直後の実施例19〜24の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨装置:ナノファクター製FACT−200型
研磨布:ニッタ・ハース製IC−1010
研磨定盤回転数:80rpm
ホルダー回転数:駆動装置無し(自由回転)
研磨圧力:33.83kPa(345gf/cm
研磨液供給量:16ml/分
研磨時間:5分
半導体基板(被研磨物):2cm角シリコンウエハ(P型<100>)
[洗浄]
研磨後は、ポリビニルアルコール製ブラシ及び超音波水による半導体基板の洗浄を行った。洗浄後、スピンドライヤにて半導体基板を乾燥した。
[研磨速度の測定]
配合直後の実施例18〜24の各半導体用研磨液を用いて、上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を算出した。算出結果を表11に示す。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。
[表面粗さ評価]
実施例18〜24の研磨液を用いて上記の方法でシリコンウエハを研磨した後、段差・表面粗さ・微細形状測定装置を使用し、シリコンウエハの研磨面の算術平均粗さを以下の条件で測定した。測定結果を表11に示す。
(測定条件)
段差・表面粗さ・微細形状測定装置:KLA Tencor製P16−OF
測定モード:Roughness
測定長:200μm
測定速度:5μm/秒
測定荷重:1mg
(比較例33)
下記表12に示す研磨粒子、水溶性高分子(水溶性ポリマ)、及び無機塩基性化合物を、以下の手順に従って、表12に示す添加量で配合して、比較例33の半導体用研磨液を調製した。なお、比較例33の研磨液には、1,2,4−トリアゾールを添加しなかった。
比較例33の研磨液の調製では、研磨液全体の50質量%に相当する純水に0.05質量%のポリビニルピロリドン(PVP_K30)を溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。
(比較例34)
下記表12に示す研磨粒子、1,2,4−トリアゾール、及び無機塩基性化合物を、以下の手順に従って、表12に示す添加量で配合して、比較例2の半導体用研磨液を調製した。
なお、比較例34の研磨液には、ポリビニルピロリドンを添加しなかった。
比較例34の研磨液の調製では、研磨液全体の50質量%に相当する純水に0.5質量%の1,2,4−トリアゾールを溶解し、これに水酸化カリウムをpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。
(比較例35)
下記表12に示す研磨粒子及び無機塩基性化合物を、以下の手順に従って、表12に示す添加量で配合して、比較例35の半導体用研磨液を調製した。なお、比較例35の研磨液には、1,2,4−トリアゾール及びポリビニルピロリドンを添加しなかった。
比較例35の研磨液の調製では、研磨液全体の50質量%に相当する純水に水酸化カリウムをpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHまで水酸化カリウムを添加し、残部を純水で計100質量%になるように配合した。
実施例18と同様の方法で、比較例33〜35の各半導体用研磨液のpH及び研磨速度、並びに比較例33〜35の各研磨液を用いた研磨後の半導体基板表面の算術平均粗さ及び最大高さを測定した。測定結果を表12に示す。
実施例19では、1,2,4トリアゾールを含有しないこと以外は実施例19と同様である比較例33に比べて、研磨速度が高く、算術平均粗さ及び最大高さが小さいことが確認された。比較例34、35では、実施例18〜24に比べて、算術平均粗さ及び最大高さが大きいことが確認された。以上のことから、本発明では、高い研磨速度で半導体基板の表面を凹凸の少ない平滑な表面に研磨加工することが可能であることが確認された。
<第四の半導体基板用研磨液>
(実施例25〜36)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表13に示す添加量で配合して、実施例25〜36の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、ポリビニルピロリドン(PVP_K30)を用いた。K値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.3質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。
[pH測定]
実施例25〜36の各半導体用研磨液のpHを、実施例18と同様にして測定した。各半導体用研磨液のpHを表13に示す。
[粗研磨半導体基板の調整]
直径300mmのシリコンウエハを下記条件で研磨し、表面が粗研磨されたシリコンウエハを調整した。
研磨ウエハ:300mmシリコンウエハ
研磨機:Reflexion (アプライドマテリアルズ社製)
研磨定盤回転数:123rpm
ホルダー回転数:117rpm
研磨圧力:13.7kPa
研磨液供給量:250ml/分
研磨パッド:SUBA600(ニッタ・ハース製)
研磨液:シリカ砥粒(一次粒径17nm)0.5%、水酸化テトラメチルアンモニウム(以下「TMAH」という)、pH10.5
研磨時間:90秒
[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例25の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例25と同様の方法で、配合直後の実施例26〜36の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨ウエハ:前記で作成した粗研磨後の300mmシリコンウエハ
研磨機:Reflexion (アプライドマテリアルズ社製)
研磨定盤回転数:123rpm
ホルダー回転数:117rpm
研磨圧力:9.7kPa
研磨液供給量:250ml/分
研磨パッド:Supreme RN−H Pad 30.5”D PJ;CX01 (ニッタ・ハース製)
研磨時間:10分
[洗浄]
前記研磨後のウエハを、下記条件で洗浄した。
洗浄機:MESA (アプライドマテリアルズ社製)
洗浄液:水酸化アンモニウム0.06体積%
ブラシ洗浄時間:60秒
[欠陥数及びHAZE値の測定]
実施例25〜36の研磨液を用いて上記の方法でシリコンウエハを研磨し、洗浄した後、下記の装置を用いて、欠陥数及びHAZE(ヘーズ)値として表示される値を測定した。測定結果を表13に示す。
欠陥検査装置:LS6700(日立電子エンジニアリング製)
工程条件ファイル(測定レシピ):VeM10L
欠陥測定範囲:0.1μm−3.0μm
投光条件:垂直
(比較例36〜39)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表14に示す添加量で配合して、比較例36〜39の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、ポリビニルピロリドン(PVP_K30)を用いた。K値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.3質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。
実施例25と同様の方法で、比較例36〜39の各半導体用研磨液のpH、並びに比較例36〜39の各研磨液を用いた研磨後のシリコンウエハ表面の欠陥数及びHAZE値を測定した。測定結果を表14に示す。
実施例25〜36では、比較例36〜39に比べて、欠陥数が少ない上に、表面の粗さの指標となるHAZEの値も小さく、凹凸を解消することができることが確認された。
<第五の半導体基板用研磨液>
(実施例37〜44)
[半導体用研磨液の調製]
研磨粒子、水溶性高分子(水溶性ポリマ)、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表15に示す添加量で配合して、実施例37〜44の各半導体用研磨液を調製した。各研磨液の調製には、水溶性ポリマとして、K値が異なる三種類のポリビニルピロリドン(PVP_K15、PVP_K30、PVP_K90)のいずれかを用いた。を用いた。K値は分子量と相関する粘性特性値で、毛細管粘度計により測定される25℃での相対粘度値である。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾール及びポリビニルピロリドン(PVP)を溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。
[pH測定]
実施例37〜44の各半導体用研磨液のpHを、実施例18と同様にして測定した。各半導体用研磨液のpHを表15に示す。
[半導体基板の研磨]
研磨定盤の研磨布上に、配合直後の実施例37の半導体基板用研磨液を供給しながら、半導体基板を研磨布に押圧した状態で、半導体基板に対して研磨定盤を相対的に回転させることにより、半導体基板の表面を研磨した。また、実施例37と同様の方法で、配合直後の実施例38〜44の各研磨液を用いて半導体基板を研磨した。研磨条件の詳細は以下の通りである。
(研磨条件)
研磨ウエハ:グラインディング後の300mmシリコンウエハ
研磨機:Reflexion (アプライドマテリアルズ社製)
研磨定盤回転数:123rpm
ホルダー回転数:117rpm
研磨圧力:13.7kPa
研磨液供給量:250ml/分
研磨パッド:MH−S15C (ニッタ・ハース製)
[洗浄]
前記研磨後のウエハを、下記条件で洗浄した。
洗浄機:MESA (アプライドマテリアルズ社製)
洗浄液:水酸化アンモニウム0.06体積%
ブラシ洗浄時間:60秒
[研磨速度の測定]
上記の方法でシリコンウエハを研磨した後、研磨に伴うシリコンウエハの質量の減少量を測定した。そして、質量の減少量、ウエハ面積(706.5cm2)、シリコンの比重及び研磨時間から研磨速度(単位:nm/分)を算出した。なお、シリコンウエハの質量測定には、分析用電子天秤(メトラー製AB104)を使用した。測定温度は25℃とし、測定湿度は40%RH以上とした。シリコン比重は2.33とした。測定結果を表15に示す。
[表面粗さ評価]
上記の方法でシリコンウエハを研磨した後、段差・表面粗さ・微細形状測定装置を使用し、以下の条件でシリコンウエハの研磨面の欠陥評価を行った。なお、粗ウエハの目標研磨量をL(nm)、粗ウエハの初期段差(最大高さ)Rt0(nm)及び、粗研磨された粗ウエハの段差(最大高さ)Rt1(nm)とした。測定結果を表15に示す。
(測定条件)
段差・表面粗さ・微細形状測定装置:KLA Tencor製P16−OF
測定モード:Roughness
測定長:5mm
測定荷重:1mg
(比較例40〜42)
[半導体用研磨液の調製]
研磨粒子、1,2,4−トリアゾール、及び塩基性化合物を、以下の手順に従って、表16に示す添加量で配合して、比較例40〜42の各半導体用研磨液を調製した。
各研磨液の調製では、まず研磨液全体の50質量%に相当する純水に1,2,4−トリアゾールを溶解させ、これに塩基性化合物をpHが9になるまで添加した。次いで、比較例40では一次粒径が36nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。比較例41では一次粒径が7nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。比較例42では一次粒径が17nmのコロイダルシリカを0.5質量%分散させた後、純水で計95質量%になるように配合した。そして、所望のpHとなるまで塩基性化合物を添加し、残部を純水で計100質量%になるように配合した。なお、比較例比較例42には、1,2,4−トリアゾールを添加しなかった。
実施例37と同様の方法で、比較例40〜42の各半導体用研磨液のpH、並びに比較例40〜42の各研磨液を用いてシリコンウエハを研磨したときの研磨速度測定、及び表面粗さ評価を行った。測定結果を表16に示す。
実施例37〜44では、比較例40〜42に比べて、研磨量Lに対する研削痕の解消効率に優れ、且つ研磨後の研削痕深さRt1が小さくなった。すなわち少ない研磨量で凹凸を解消できることが確認された。
実施例37と比較例40の研磨液について、研磨量Lと研削痕解消性についてより詳細に調べるため、改めて研磨を実施した(それぞれ実施例45、比較例43)。予め1000nm前後深さの研削痕のあるシリコンウエハを7回に分けて研磨し、各研磨量Lにおける、ウエハの中心から0mmの部分(Center)、ウエハの中心から60mmの部分(Middle)、ウエハの中心から120mmの部分(Edge1)及びウエハの中心から140mmの部分(Edge2)の最大高さRtをそれぞれ測定して評価した。評価結果を表17及び表18並びに図11及び図12に示す。
実施例45では、比較例43に比べて、研磨量Lに対する最大高さRtが早い段階で低くなっており、研削痕の解消効率に優れることが分かる。
1・・・半導体基板、2・・・配線用金属、3・・・シリコンダメージ層。

Claims (24)

  1. 研磨粒子と、1,2,4−トリアゾールと、塩基性化合物とを含有し、
    前記塩基性化合物が、含窒素塩基性化合物又は無機塩基性化合物であり、
    前記塩基性化合物の含有量が0.1質量%以上であり、
    pHが9以上12以下である、シリコン材料用研磨液。
  2. 前記含窒素塩基性化合物が水酸化アンモニウム又は水酸化テトラメチルアンモニウムを含有する、請求項1に記載のシリコン材料用研磨液。
  3. 前記無機塩基性化合物が水酸化カリウム又は水酸化ナトリウムを含有する、請求項1又は2に記載のシリコン材料用研磨液。
  4. 表面がアルミネートにより改質された変性シリカと、無機塩基性化合物とを含有し、
    前記変性シリカの含有量が0.01質量%以上1.5質量%以下であり、
    pHが9以上12以下である、シリコン材料用研磨液。
  5. 前記変性シリカの一次粒径が7〜50nmである、請求項4に記載のシリコン材料用研磨液。
  6. 前記無機塩基性化合物が、水酸化カリウム又は水酸化ナトリウムを含有する、請求項4又は5に記載のシリコン材料用研磨液。
  7. 更に1,2,4−トリアゾールを含有する、請求項4〜6のいずれか一項に記載のシリコン材料用研磨液。
  8. シリコン貫通ビアを形成するための半導体基板の研磨方法であって、
    シリコン基板の一方の面に凹部を形成する工程と、
    前記凹部に金属を埋め込む工程と、
    前記シリコン基板の他方の面をバックグラインドする工程と、
    請求項1〜7のいずれか一項に記載のシリコン材料用研磨液を用いて、前記他方の面を、前記金属が露出するように研磨する研磨工程と、を備える半導体基板の研磨方法。
  9. シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、該シリコンウエハをエッチングし、粗ウエハを準備する工程と、
    請求項1〜7のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法。
  10. 再利用するための半導体基板の研磨方法であって、
    付着物が付着したシリコンウエハをウエットエッチングする工程と、
    請求項1〜7のいずれか一項に記載のシリコン材料用研磨液を用いて、前記ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法。
  11. 研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
    pHが9以上12以下である、シリコン材料用研磨液。
  12. 前記水溶性高分子の含有量が、シリコン材料用研磨液の全質量に対して、0.001質量%以上10質量%以下である、請求項11記載のシリコン材料用研磨液。
  13. 前記1,2,4−トリアゾールの含有量が、シリコン材料用研磨液の全質量に対して、0.01質量%以上10質量%以下である、請求項11又は12に記載のシリコン材料用研磨液。
  14. 研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
    前記1,2,4−トリアゾールの含有量が、シリコン材料用研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、
    前記水溶性高分子の含有量が、シリコン材料用研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、
    pHが9以上12以下である、シリコン材料用研磨液。
  15. シリコン単結晶インゴットをスライスして得られたシリコンウエハをラッピング又はグラインディングした後に、該シリコンウエハをエッチングし、粗ウエハを準備する工程と、
    前記粗ウエハを研磨する粗研磨工程と、
    請求項11〜14のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法。
  16. 再利用するための半導体基板の研磨方法であって、
    付着物が付着したシリコンウエハをウエットエッチングする工程と、
    前記ウエットエッチングされたシリコンウエハを研磨する粗研磨工程と、
    請求項11〜14のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗研磨工程後のシリコンウエハを更に研磨する仕上げ研磨工程と、を備える半導体基板の研磨方法。
  17. 研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
    前記1,2,4−トリアゾールの含有量が、シリコン材料用研磨液の全質量に対して、0.2質量%以上3.0質量%以下であり、
    前記水溶性高分子の含有量が、シリコン材料用研磨液の全質量に対して、0.01質量%以上0.2質量%以下であり、
    pHが9以上12以下である、シリコン材料用研磨液。
  18. 再利用するための半導体基板の研磨方法であって、
    付着物が付着したシリコンウエハをウエットエッチングした後、該シリコンウエハをグラインディングして粗ウエハを準備する工程と、
    請求項11〜13又は17のいずれか一項に記載のシリコン材料用研磨液を用いて、前記粗ウエハを研磨する粗研磨工程と、を備える半導体基板の研磨方法。
  19. 前記粗研磨工程において、前記粗ウエハの研磨量をL(nm)、該粗ウエハの初期段差をRt0(nm)及び、粗研磨された該粗ウエハの段差をRt1(nm)とした場合において、Rt0≦L≦Rt0×1.3を満たすL(nm)だけ粗ウエハを研磨したときに、L/(Rt0−Rt1)≦1.3及びRt1≦100(nm)を共に満たす、請求項18記載の半導体基板の研磨方法。
  20. 前記粗研磨工程後の前記粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備え、
    前記研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
    pHが9以上12以下である、請求項18又は19に記載の半導体基板の研磨方法。
  21. 前記粗研磨工程後の前記粗ウエハを、研磨液を用いて研磨する仕上げ研磨工程を更に備え、
    前記研磨液が、研磨粒子と、1,2,4−トリアゾールと、水溶性高分子と、塩基性化合物とを含有し、
    前記1,2,4−トリアゾールの含有量が、研磨液の全質量に対して、0.05質量%以上0.5質量%以下であり、
    前記水溶性高分子の含有量が、研磨液の全質量に対して、0.001質量%以上0.1質量%以下であり、
    pHが9以上12以下である、請求項18又は19に記載の半導体基板の研磨方法。
  22. 前記水溶性高分子がノニオン性高分子である、請求項11〜14又は17のいずれか一項に記載のシリコン材料用研磨液。
  23. 前記ノニオン性高分子が、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種である、請求項22に記載のシリコン材料用研磨液。
  24. 前記水溶性高分子が、ポリビニルピロリドン及びポリビニルピロリドンの共重合体から選ばれる少なくとも一種を含む混合物である、請求項11〜14、17、22又は23のいずれか一項に記載のシリコン材料用研磨液。
JP2011510316A 2009-04-20 2010-04-19 半導体基板用研磨液及び半導体基板の研磨方法 Expired - Fee Related JP5413456B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510316A JP5413456B2 (ja) 2009-04-20 2010-04-19 半導体基板用研磨液及び半導体基板の研磨方法

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
JP2009101919 2009-04-20
JP2009101920 2009-04-20
JP2009101920 2009-04-20
JP2009101919 2009-04-20
JP2009102919 2009-04-21
JP2009102919 2009-04-21
JP2009173334 2009-07-24
JP2009173334 2009-07-24
JP2009173352 2009-07-24
JP2009173352 2009-07-24
JP2009173355 2009-07-24
JP2009173355 2009-07-24
JP2011510316A JP5413456B2 (ja) 2009-04-20 2010-04-19 半導体基板用研磨液及び半導体基板の研磨方法
PCT/JP2010/056948 WO2010122985A1 (ja) 2009-04-20 2010-04-19 半導体基板用研磨液及び半導体基板の研磨方法

Publications (2)

Publication Number Publication Date
JPWO2010122985A1 JPWO2010122985A1 (ja) 2012-10-25
JP5413456B2 true JP5413456B2 (ja) 2014-02-12

Family

ID=43011102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011510316A Expired - Fee Related JP5413456B2 (ja) 2009-04-20 2010-04-19 半導体基板用研磨液及び半導体基板の研磨方法

Country Status (4)

Country Link
JP (1) JP5413456B2 (ja)
KR (1) KR101277342B1 (ja)
TW (1) TW201042019A (ja)
WO (1) WO2010122985A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697576B2 (en) * 2009-09-16 2014-04-15 Cabot Microelectronics Corporation Composition and method for polishing polysilicon
TWI492290B (zh) * 2010-12-10 2015-07-11 Shibaura Mechatronics Corp Machining devices and machining methods
MY163201A (en) * 2011-01-21 2017-08-15 Cabot Microelectronics Corp Silicon polishing compositions with improved psd performance
KR20130135384A (ko) * 2011-06-01 2013-12-10 히타치가세이가부시끼가이샤 Cmp 연마액 및 반도체 기판의 연마 방법
CN102816530B (zh) * 2011-06-08 2016-01-27 安集微电子(上海)有限公司 一种化学机械抛光液
JP2013004910A (ja) * 2011-06-21 2013-01-07 Disco Abrasive Syst Ltd 埋め込み銅電極を有するウエーハの加工方法
US9579769B2 (en) 2011-10-24 2017-02-28 Fujimi Incorporated Composition for polishing purposes, polishing method using same, and method for producing substrate
US20140319411A1 (en) * 2011-11-16 2014-10-30 Nissan Chemical Industries, Ltd. Semiconductor wafer polishing liquid composition
WO2014196299A1 (ja) * 2013-06-07 2014-12-11 株式会社フジミインコーポレーテッド シリコンウエハ研磨用組成物
US9593272B2 (en) 2013-07-24 2017-03-14 Tokuyama Corporation Silica for CMP, aqueous dispersion, and process for producing silica for CMP
WO2016181888A1 (ja) * 2015-05-08 2016-11-17 株式会社フジミインコーポレーテッド 研磨用組成物
JP6829192B2 (ja) * 2015-05-08 2021-02-10 株式会社フジミインコーポレーテッド 研磨方法
JP6747376B2 (ja) * 2017-05-15 2020-08-26 信越半導体株式会社 シリコンウエーハの研磨方法
IT201900006736A1 (it) 2019-05-10 2020-11-10 Applied Materials Inc Procedimenti di fabbricazione di package
US11931855B2 (en) * 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates
US11454884B2 (en) 2020-04-15 2022-09-27 Applied Materials, Inc. Fluoropolymer stamp fabrication method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349266A (ja) * 1999-03-26 2000-12-15 Canon Inc 半導体部材の製造方法、半導体基体の利用方法、半導体部材の製造システム、半導体部材の生産管理方法及び堆積膜形成装置の利用方法
WO2005055302A1 (ja) * 2003-12-05 2005-06-16 Sumco Corporation 片面鏡面ウェーハの製造方法
JP2007214152A (ja) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2007273910A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp 研磨用組成液
JP2008277723A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp 金属用研磨液及び研磨方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349266A (ja) * 1999-03-26 2000-12-15 Canon Inc 半導体部材の製造方法、半導体基体の利用方法、半導体部材の製造システム、半導体部材の生産管理方法及び堆積膜形成装置の利用方法
WO2005055302A1 (ja) * 2003-12-05 2005-06-16 Sumco Corporation 片面鏡面ウェーハの製造方法
JP2007214152A (ja) * 2006-02-07 2007-08-23 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2007273910A (ja) * 2006-03-31 2007-10-18 Fujifilm Corp 研磨用組成液
JP2008277723A (ja) * 2007-03-30 2008-11-13 Fujifilm Corp 金属用研磨液及び研磨方法

Also Published As

Publication number Publication date
WO2010122985A1 (ja) 2010-10-28
JPWO2010122985A1 (ja) 2012-10-25
KR20120001766A (ko) 2012-01-04
KR101277342B1 (ko) 2013-06-20
TW201042019A (en) 2010-12-01

Similar Documents

Publication Publication Date Title
JP5413456B2 (ja) 半導体基板用研磨液及び半導体基板の研磨方法
JP6581198B2 (ja) 化学機械平坦化組成物用の複合研磨粒子及びその使用方法
JP4983603B2 (ja) 酸化セリウムスラリー、酸化セリウム研磨液及びこれらを用いた基板の研磨方法
JP5915843B2 (ja) 化学機械研磨用水系分散体の製造方法
JP4985409B2 (ja) 絶縁膜研磨用cmp研磨剤、研磨方法、該研磨方法で研磨された半導体電子部品
JP7148506B2 (ja) 研磨用組成物およびこれを用いた研磨方法
JP2008512871A (ja) メタレート変性シリカ粒子を含有する水性スラリー
WO2011158718A1 (ja) 半導体基板用研磨液及び半導体ウエハの製造方法
TWI814722B (zh) 研磨用組成物及研磨方法
TW201615796A (zh) 矽晶圓研磨用組成物
JP2014154707A (ja) 研磨液、研磨方法及びシリコンウエハの製造方法
KR102617007B1 (ko) 기판의 연마 방법 및 연마용 조성물 세트
TWI812595B (zh) 用於阻擋層平坦化之化學機械研磨液
JP6678076B2 (ja) シリコンウェーハ用研磨液組成物
TW201518488A (zh) 研磨用組成物及其製造方法
JP2018535538A (ja) Cmp用スラリー組成物及びこれを用いた研磨方法
JP6021584B2 (ja) 調整可能な研磨配合物を用いて研磨する方法
JP2013043893A (ja) 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法
JP4346712B2 (ja) ウェーハエッジ研磨方法
JP2013110253A (ja) 半導体基板用研磨液及び半導体基板の研磨方法
TW202038325A (zh) 化學機械研磨用水系分散體以及化學機械研磨方法
JP7138432B2 (ja) シリコンウェーハ製造方法
JP2024002535A (ja) シリカ微粒子分散液、その製造方法及びシリカ微粒子分散液を含む研磨用砥粒分散液
JP2024058695A (ja) シリカ微粒子分散液、その製造方法及びシリカ微粒子分散液を含む研磨用砥粒分散液

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131028

LAPS Cancellation because of no payment of annual fees