JP5700864B2 - Copper fine particle dispersion, conductive film forming method, and circuit board - Google Patents

Copper fine particle dispersion, conductive film forming method, and circuit board Download PDF

Info

Publication number
JP5700864B2
JP5700864B2 JP2013102916A JP2013102916A JP5700864B2 JP 5700864 B2 JP5700864 B2 JP 5700864B2 JP 2013102916 A JP2013102916 A JP 2013102916A JP 2013102916 A JP2013102916 A JP 2013102916A JP 5700864 B2 JP5700864 B2 JP 5700864B2
Authority
JP
Japan
Prior art keywords
copper fine
copper
film
fine particle
particle dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013102916A
Other languages
Japanese (ja)
Other versions
JP2014225338A (en
Inventor
祐一 川戸
祐一 川戸
英俊 有村
英俊 有村
工藤 富雄
富雄 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Chemical Co Ltd
Original Assignee
Ishihara Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2013102916A priority Critical patent/JP5700864B2/en
Application filed by Ishihara Chemical Co Ltd filed Critical Ishihara Chemical Co Ltd
Priority to KR1020157031362A priority patent/KR101840917B1/en
Priority to PCT/JP2014/052222 priority patent/WO2014185102A1/en
Priority to US14/769,953 priority patent/US20160007455A1/en
Priority to EP14797696.3A priority patent/EP2998967A1/en
Priority to CN201480025664.1A priority patent/CN105210155B/en
Priority to TW103116754A priority patent/TWI534834B/en
Publication of JP2014225338A publication Critical patent/JP2014225338A/en
Application granted granted Critical
Publication of JP5700864B2 publication Critical patent/JP5700864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/105Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by conversion of non-conductive material on or in the support into conductive material, e.g. by using an energy beam
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0386Paper sheets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0302Properties and characteristics in general
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0508Flood exposure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • H05K2203/108Using a plurality of lasers or laser light with a plurality of wavelengths
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1131Sintering, i.e. fusing of metal particles to achieve or improve electrical conductivity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、銅微粒子分散液、該銅微粒子分散液を用いた導電膜形成方法、及び該導電膜形成方法を用いて製造される回路基板に関する。   The present invention relates to a copper fine particle dispersion, a conductive film forming method using the copper fine particle dispersion, and a circuit board manufactured using the conductive film forming method.

従来から、銅箔から成る回路をフォトリソグラフィによって基板上に形成したプリント基板がある。フォトリソグラフィは、銅箔をエッチングする工程を要し、エッチングで発生する廃液の処理等にコストがかかる。   Conventionally, there is a printed circuit board in which a circuit made of copper foil is formed on a substrate by photolithography. Photolithography requires a step of etching a copper foil, and costs are incurred for the treatment of waste liquid generated by etching.

エッチングを要しない技術として、銅微粒子(銅ナノ粒子)を分散媒中に含有する銅微粒子分散液(銅インク)を用いて、基板上に導電膜(導電性フィルム)を形成する方法が知られている(例えば、特許文献1参照)。この方法では、銅微粒子分散液の皮膜が基板上に成膜され、その皮膜が乾燥され、銅微粒子層が形成される。銅微粒子層は、光の照射によって光焼結され、電気抵抗が低い導電膜が形成される。   As a technique that does not require etching, a method of forming a conductive film (conductive film) on a substrate using a copper fine particle dispersion (copper ink) containing copper fine particles (copper nanoparticles) in a dispersion medium is known. (For example, refer to Patent Document 1). In this method, a film of a copper fine particle dispersion is formed on a substrate, and the film is dried to form a copper fine particle layer. The copper fine particle layer is photo-sintered by light irradiation to form a conductive film having low electrical resistance.

しかしながら、上述したような方法において、光焼結において照射する光のエネルギーを大きくしても光焼結が十分に進行せず、その結果、電気抵抗が低い導電膜が形成されないことがある。   However, in the method as described above, even if the energy of light irradiated in the photo-sintering is increased, the photo-sintering does not proceed sufficiently, and as a result, a conductive film having a low electric resistance may not be formed.

米国特許出願第US2008/0286488号公報US Patent Application No. US2008 / 0286488

本発明は、上記問題を解決するものであり、光焼結によって電気抵抗が低い導電膜を容易に形成することが可能な銅微粒子分散液を提供することを目的とする。   This invention solves the said problem, and it aims at providing the copper fine particle dispersion which can form easily the electrically conductive film with low electrical resistance by photosintering.

本発明の銅微粒子分散液は、分散媒と、前記分散媒中に分散された銅微粒子とを有するものであって、焼結進行剤を含有し、前記焼結進行剤は、常温より高い温度で銅から銅酸化物を除去する化合物であり、常温より高い温度で銅と錯生成する化合物であり、前記化合物は、ポリアミドイミド、ポリイミド、ホスホン酸、β−ジケトン、アセチレングリコール、チオエーテル、及び硫酸エステルよりなる群から選ばれることを特徴とする。 The copper fine particle dispersion of the present invention has a dispersion medium and copper fine particles dispersed in the dispersion medium, and contains a sintering promoter, and the sintering promoter has a temperature higher than room temperature. in a compound of removing copper oxide from the copper, a compound of copper and complexing at higher than room temperature, the compound port Riamidoimido, polyimide, phosphonic acid, beta-diketones, acetylene glycol, thioether, and sulfuric acid It is selected from the group consisting of esters.

本発明の銅微粒子分散液は、分散媒と、前記分散媒中に分散された銅微粒子とを有するものであって、焼結進行剤を含有し、前記焼結進行剤は、常温より高い温度で銅から銅酸化物を除去する化合物であり、常温より高い温度で銅酸化物を溶解するアルカリであり、前記アルカリは、水酸化カリウムであることを特徴としてもよい。The copper fine particle dispersion of the present invention has a dispersion medium and copper fine particles dispersed in the dispersion medium, and contains a sintering promoter, and the sintering promoter has a temperature higher than room temperature. It is a compound that removes copper oxide from copper, and is an alkali that dissolves copper oxide at a temperature higher than room temperature, and the alkali may be potassium hydroxide.

この銅微粒子分散液において、常温より高い前記温度は、前記銅微粒子を光焼結するための光の照射によってもたらされる。 In this copper particulate dispersion, the temperature higher than room temperature, Ru caused by irradiation of light for photo sintering the copper fine particles.

本発明の導電膜形成方法は、前記銅微粒子分散液から成る皮膜を基材上に形成する工程と、前記皮膜に光を照射することによって、その皮膜中の銅微粒子を光焼結して導電膜を形成する工程とを有することを特徴とする。   The conductive film forming method of the present invention comprises a step of forming a film comprising the copper fine particle dispersion on a substrate, and irradiating the film with light to photo-sinter the copper fine particles in the film, thereby conducting the conductive film. And a step of forming a film.

本発明の回路基板は、導電膜形成方法によって形成された導電膜を有する回路を前記基材から成る基板上に備えることを特徴とする。   The circuit board of the present invention is characterized in that a circuit having a conductive film formed by a conductive film forming method is provided on a substrate made of the base material.

本発明の銅微粒子分散液によれば、銅微粒子の光焼結において、焼結進行剤が銅微粒子の表面酸化皮膜を除去するので、光焼結によって電気抵抗が低い導電膜を容易に形成することができる。   According to the copper fine particle dispersion of the present invention, since the sintering promoter removes the surface oxide film of the copper fine particles in the photo sintering of the copper fine particles, a conductive film having a low electrical resistance is easily formed by the photo sintering. be able to.

(a)〜(d)は本発明の一実施形態に係る銅微粒子分散液を用いた導電膜の形成を時系列順に示す断面構成図。(A)-(d) is a cross-sectional block diagram which shows formation of the electrically conductive film using the copper fine particle dispersion which concerns on one Embodiment of this invention in time series order.

本発明の一実施形態に係る銅微粒子分散液を説明する。銅微粒子分散液は、分散媒と、銅微粒子とを有する。銅微粒子は、分散媒中に分散されている。この銅微粒子分散液は、
焼結進行剤を含有する。焼結進行剤は、常温より高い温度で銅から銅酸化物を除去する化合物である。銅酸化物は、酸化銅(I)及び酸化銅(II)である。常温より高いこのような温度は、銅微粒子を光焼結するための光の照射によってもたらされる。
A copper fine particle dispersion according to an embodiment of the present invention will be described. The copper fine particle dispersion has a dispersion medium and copper fine particles. Copper fine particles are dispersed in a dispersion medium. This copper fine particle dispersion is
Contains a sintering promoter. A sintering promoter is a compound that removes copper oxide from copper at a temperature higher than room temperature. Copper oxides are copper oxide (I) and copper oxide (II). Such a temperature higher than room temperature is brought about by irradiation with light for photo-sintering the copper fine particles.

焼結進行剤は、例えば、常温より高い温度で銅と錯生成する化合物である。このような化合物は、銅と錯生成することによって、銅から酸化物を除去する。この化合物は、例えば、アルコール、リン酸エステル、カルボン酸、ポリアミドイミド、ポリイミド、アミン、ホスホン酸、β−ジケトン、アセチレングリコール、チオエーテル、硫酸エステル等であり、これらに限定されない。   The sintering promoter is a compound that forms a complex with copper at a temperature higher than room temperature, for example. Such compounds remove oxides from copper by complexing with copper. Examples of the compound include alcohol, phosphate ester, carboxylic acid, polyamideimide, polyimide, amine, phosphonic acid, β-diketone, acetylene glycol, thioether, and sulfate ester, but are not limited thereto.

焼結進行剤は、常温より高い温度で銅酸化物を溶解する酸であってもよい。このような酸は、銅酸化物を溶解することによって、銅から酸化物を除去する。この酸は、例えば、酢酸であり、これに限定されない。   The sintering promoter may be an acid that dissolves copper oxide at a temperature higher than room temperature. Such acids remove the oxide from copper by dissolving the copper oxide. This acid is, for example, acetic acid, but is not limited thereto.

焼結進行剤は、常温より高い温度で銅酸化物を溶解するアルカリであってもよい。このようなアルカリは、銅酸化物を溶解することによって、銅から酸化物を除去する。このアルカリは、例えば、水酸化カリウムであり、これに限定されない。   The sintering promoter may be an alkali that dissolves copper oxide at a temperature higher than room temperature. Such alkali removes the oxide from the copper by dissolving the copper oxide. This alkali is, for example, potassium hydroxide, but is not limited thereto.

焼結進行剤は、常温より高い温度で銅酸化物を還元することによって銅から酸化物を除去する化合物であってもよい。   The sintering promoter may be a compound that removes oxide from copper by reducing copper oxide at a temperature higher than room temperature.

これらの焼結進行剤は、1種類を単独で用いても、2種類以上を適宜混合して用いてもよい。   These sintering promoters may be used alone or in combination of two or more.

本実施形態では、銅微粒子は、平均粒子径が20nm以上1500nm以下程度の銅の粒子である。銅微粒子が分散媒中に分散すれば、銅微粒子の粒径は限定されない。同一平均粒子径の銅微粒子を単独で用いても、2種類以上の平均粒子径を持つ銅微粒子を混合して用いてもよい。銅微粒子分散液は、銅微粒子が分散媒中に分散した液中分散系となっている。分散媒は、アルコール等の液体であり、これに限定されない。   In the present embodiment, the copper fine particles are copper particles having an average particle diameter of about 20 nm to 1500 nm. If the copper fine particles are dispersed in the dispersion medium, the particle size of the copper fine particles is not limited. Copper fine particles having the same average particle diameter may be used alone, or copper fine particles having two or more kinds of average particle diameters may be mixed and used. The copper fine particle dispersion is a dispersion in liquid in which copper fine particles are dispersed in a dispersion medium. The dispersion medium is a liquid such as alcohol, but is not limited thereto.

焼結進行剤は、例えば、分散媒に添加される。焼結進行剤は、銅微粒子分散液の製造時に添加しても、銅微粒子分散液の製造後かつ使用前に添加してもよい。このような焼結進行剤は、例えば、カルボン酸、ポリアミド、ポリアミドイミド、ポリイミド、アミン、ホスホン酸、β−ジケトン、アセチレングリコール、チオエーテル、硫酸エステル等であり、これらに限定されない。   The sintering promoter is added to the dispersion medium, for example. The sintering promoter may be added during the production of the copper fine particle dispersion, or may be added after the production of the copper fine particle dispersion and before use. Such sintering promoters are, for example, carboxylic acids, polyamides, polyamideimides, polyimides, amines, phosphonic acids, β-diketones, acetylene glycols, thioethers, sulfuric esters, and the like, but are not limited thereto.

本実施形態では、分散剤が分散媒に添加される。分散剤は、銅微粒子を分散媒中に分散する。なお、分散剤を用いずに銅微粒子が分散すれば、分散剤が添加されないこともある。   In this embodiment, a dispersant is added to the dispersion medium. The dispersant disperses the copper fine particles in the dispersion medium. If the copper fine particles are dispersed without using a dispersant, the dispersant may not be added.

焼結進行剤として、分散剤を兼ねる化合物を用いてもよい。このような焼結進行剤は、例えば、リン酸エステル等であり、これに限定されない。   As the sintering promoter, a compound that also serves as a dispersant may be used. Such a sintering promoter is, for example, a phosphoric ester or the like, but is not limited thereto.

焼結進行剤として、分散媒を兼ねる化合物を用いてもよい。このような焼結進行剤は、例えば、ジエチレングリコール、ジエチレングリコールモノエチルエーテル等のアルコールであり、これらに限定されない。   A compound that also serves as a dispersion medium may be used as the sintering promoter. Such a sintering promoter is, for example, alcohol such as diethylene glycol and diethylene glycol monoethyl ether, but is not limited thereto.

本実施形態の銅微粒子分散液を用いた導電膜形成方法について図1(a)〜(d)を参照して説明する。図1(a)及び図1(b)に示されるように、先ず、銅微粒子分散液1から成る皮膜2が、基材3上に形成される。この皮膜2中には、銅微粒子11が分散されている。皮膜2は、例えば、印刷法で形成される。印刷法では、銅微粒子分散液1が印刷用のインクとして用いられ、印刷装置によって物体上に所定のパターンが印刷され、そのパターンの皮膜2が形成される。印刷装置は、例えば、スクリーン印刷機、インクジェットプリンタ等である。皮膜2をスピンコーティング等によって形成してもよい。基材3は、例えば、ガラス、ポリイミド、ポリエチレンテレフタラート(PET)、ポリカーボネート(PC)、ガラスエポキシ、セラミック、金属、紙等であり、これらに限定されない。   A method for forming a conductive film using the copper fine particle dispersion of this embodiment will be described with reference to FIGS. As shown in FIGS. 1 (a) and 1 (b), first, a film 2 made of a copper fine particle dispersion 1 is formed on a substrate 3. Copper fine particles 11 are dispersed in the film 2. The film 2 is formed by, for example, a printing method. In the printing method, the copper fine particle dispersion 1 is used as a printing ink, a predetermined pattern is printed on an object by a printing device, and a film 2 of the pattern is formed. The printing apparatus is, for example, a screen printer, an ink jet printer, or the like. The film 2 may be formed by spin coating or the like. The substrate 3 is, for example, glass, polyimide, polyethylene terephthalate (PET), polycarbonate (PC), glass epoxy, ceramic, metal, paper, and the like, but is not limited thereto.

次に、皮膜2が乾燥される。皮膜2の乾燥は、常温で、又は、焼結進行剤がほとんど化学変化しない温度範囲内での加熱により行われる。図1(c)に示されるように、皮膜2の乾燥によって、皮膜2中の液体成分は蒸発するが、銅微粒子11及び焼結進行剤は、皮膜2中に残る。なお、皮膜2を乾燥する乾燥工程は、省略されることがある。例えば、分散媒が焼結進行剤を兼ねる場合、このような乾燥工程は、省略される。   Next, the film 2 is dried. Drying of the film 2 is performed at normal temperature or by heating within a temperature range in which the sintering promoter hardly changes chemically. As shown in FIG. 1C, the liquid component in the film 2 evaporates due to the drying of the film 2, but the copper fine particles 11 and the sintering promoter remain in the film 2. In addition, the drying process of drying the film 2 may be omitted. For example, when the dispersion medium also serves as a sintering promoter, such a drying step is omitted.

次の工程において、乾燥された皮膜2に光が照射される。皮膜2中の銅微粒子11は、光のエネルギーによって光焼結される。銅微粒子11は、光焼結において互いに溶融し、基材3に溶着する。光焼結は、大気下、室温で行われる。光焼結に用いられる光源は、例えば、キセノンランプである。光源にレーザー装置を用いてもよい。光源から照射される光のエネルギー範囲は、0.5J/cm以上、30J/cm以下である。照射時間は、0.1ms以上、100ms以下である。照射回数は、1回でも複数回の多段照射でもよい。光のエネルギーを変えて複数回照射してもよい。光のエネルギー及び照射回数は、これらの値に限定されない。図1(d)に示されるように、皮膜2中の銅微粒子11が光焼結されることにより、皮膜2がバルク化し、導電膜4が形成される。形成された導電膜4の形態は、連続した皮膜である。なお、光の照射前における皮膜2の乾燥を省略した場合、光の照射によって皮膜2が乾燥されるとともに、皮膜2中の銅微粒子11が光焼結される。 In the next step, the dried film 2 is irradiated with light. The copper fine particles 11 in the film 2 are photo-sintered by the energy of light. The copper fine particles 11 are melted together in the photo-sintering and welded to the base material 3. Photosintering is performed at room temperature in the atmosphere. The light source used for photosintering is, for example, a xenon lamp. A laser device may be used as the light source. The energy range of light emitted from the light source is 0.5 J / cm 2 or more and 30 J / cm 2 or less. The irradiation time is 0.1 ms or more and 100 ms or less. The number of times of irradiation may be one time or multiple times of multistage irradiation. You may irradiate several times by changing the energy of light. The energy of light and the number of irradiations are not limited to these values. As shown in FIG. 1D, the copper fine particles 11 in the film 2 are photo-sintered, whereby the film 2 is bulked and the conductive film 4 is formed. The form of the formed conductive film 4 is a continuous film. In addition, when drying of the membrane | film | coat 2 before irradiation of light is abbreviate | omitted, while the membrane | film | coat 2 is dried by irradiation of light, the copper fine particle 11 in the membrane | film | coat 2 is photo-sintered.

銅微粒子11の表面は、酸素によって酸化され、表面酸化皮膜に覆われている。表面酸化皮膜は、光焼結において、銅微粒子11から成る皮膜2のバルク化を妨げる。従来、光焼結において、銅微粒子11の表面酸化皮膜は、光のエネルギーによる光還元反応によって金属銅に還元されると考えられていた。しかしながら、本願発明の発明者が行った実験によれば、光焼結において照射する光のエネルギーを大きくしても、皮膜2のバルク化が不十分な場合がある。また、照射する光のエネルギーが大き過ぎると、皮膜2が損傷することがあるので、光焼結において照射する光のエネルギーの大きさには限界がある。本願発明の発明者は、光のエネルギーだけでは銅微粒子11の表面酸化皮膜が十分に除去されないために光焼結が十分に進行せず、皮膜2のバルク化が不十分になる場合があると考えた。   The surface of the copper fine particles 11 is oxidized by oxygen and covered with a surface oxide film. The surface oxide film prevents bulking of the film 2 composed of the copper fine particles 11 in the photo sintering. Conventionally, it has been considered that the surface oxide film of the copper fine particles 11 is reduced to metallic copper by photoreduction reaction by light energy in the photo sintering. However, according to experiments conducted by the inventors of the present invention, even if the energy of light irradiated in the photo sintering is increased, the coating 2 may not be sufficiently bulked. Moreover, since the film 2 may be damaged if the energy of the irradiated light is too large, there is a limit to the size of the energy of the irradiated light in the photo sintering. The inventor of the present invention believes that photo-sintering does not proceed sufficiently because the surface oxide film of the copper fine particles 11 is not sufficiently removed by light energy alone, and the bulking of the film 2 may be insufficient. Thought.

本願発明の発明者は、銅微粒子11の表面酸化皮膜を化学反応で除去して光焼結を進行させることを数多くの実験により発見した。本実施形態において、焼結進行剤は、皮膜2に光が照射される前の温度、すなわち常温では、銅微粒子11の表面酸化皮膜とほとんど化学反応しない。銅微粒子11は、表面酸化皮膜によって粒子内部の酸化が防がれる。銅微粒子11を光焼結するための光を皮膜2に照射したとき、銅微粒子11は、光のエネルギーを吸収し、高温になる。皮膜2中に存在する焼結進行剤は、高温の銅微粒子11によって加熱され、高温(常温より高い温度)になる。化学反応は高温で促進されるので、焼結進行剤は、銅微粒子11の表面酸化皮膜を化学反応によって除去する。表面酸化皮膜が除去された銅微粒子11が光のエネルギーで焼結されることによって、電気抵抗が低い導電膜4が形成される。   The inventor of the present invention has discovered through numerous experiments that the surface oxide film of the copper fine particles 11 is removed by a chemical reaction and the photosintering proceeds. In this embodiment, the sintering promoter hardly reacts with the surface oxide film of the copper fine particles 11 at a temperature before the film 2 is irradiated with light, that is, at room temperature. The copper fine particles 11 are prevented from being oxidized inside the particles by the surface oxide film. When the film 2 is irradiated with light for photo-sintering the copper fine particles 11, the copper fine particles 11 absorb light energy and become high temperature. The sintering promoter present in the film 2 is heated by the high-temperature copper fine particles 11 and becomes high temperature (temperature higher than normal temperature). Since the chemical reaction is promoted at a high temperature, the sintering promoter removes the surface oxide film of the copper fine particles 11 by the chemical reaction. The copper fine particles 11 from which the surface oxide film has been removed are sintered with light energy, whereby the conductive film 4 having low electrical resistance is formed.

以上、本実施形態に係る銅微粒子分散液1を用いることにより、銅微粒子11の光焼結において、焼結進行剤が銅微粒子11の表面酸化皮膜を除去するので、光焼結によって電気抵抗が低い導電膜4を容易に形成することができる。また、この銅微粒子分散液1を用いることにより、回路基板上に電気抵抗が低い導電膜4を容易に形成することができる。   As described above, by using the copper fine particle dispersion 1 according to the present embodiment, in the photo-sintering of the copper fine particles 11, the sintering promoter removes the surface oxide film of the copper fine particles 11. The low conductive film 4 can be easily formed. Further, by using the copper fine particle dispersion 1, the conductive film 4 having a low electric resistance can be easily formed on the circuit board.

本発明の実施例として、焼結進行剤を含有する銅微粒子分散液1、及び、比較例として、焼結進行剤を含有しない銅微粒子分散液を作った。それらの銅微粒子分散液を用い、光焼結によって基板上に導電膜が形成されるかどうか試験した。   As an example of the present invention, a copper fine particle dispersion 1 containing a sintering promoter and a copper fine particle dispersion containing no sintering promoter were prepared as comparative examples. Using these copper fine particle dispersions, it was tested whether a conductive film was formed on the substrate by photosintering.

分散剤を添加し、分散媒中に銅微粒子を分散させた銅微粒子分散液を作った。分散媒は、アルコール(ジエチレングリコール)とした。この分散媒は、本実施例では焼結進行剤を兼ねる。分散剤は、リン酸エステル(ビックケミー(BYK-Chemie)社製、商品名「DISPERBYK(登録商標)−102」)とした。分散剤の濃度は、銅微粒子分散液に対して2質量%(mass%)とした。平均粒子径が50nmの銅微粒子を用い、銅微粒子の濃度は、40質量%とした。基板として、スライドガラスを用いた。   A dispersant was added to prepare a copper fine particle dispersion in which copper fine particles were dispersed in a dispersion medium. The dispersion medium was alcohol (diethylene glycol). This dispersion medium also serves as a sintering promoter in this embodiment. The dispersant was a phosphate ester (trade name “DISPERBYK (registered trademark) -102” manufactured by BYK-Chemie). The concentration of the dispersant was 2% by mass (mass%) with respect to the copper fine particle dispersion. Copper fine particles having an average particle diameter of 50 nm were used, and the concentration of the copper fine particles was 40% by mass. A slide glass was used as the substrate.

この基板上に銅微粒子分散液をスピンコート法により塗布し、膜厚1μmの皮膜を形成した。皮膜の色は黒色であった。この皮膜を乾燥せずに、皮膜に光を照射した。光照射のエネルギーは、14J/cmとした。 A copper fine particle dispersion was applied onto this substrate by spin coating to form a film having a thickness of 1 μm. The color of the film was black. The film was irradiated with light without drying. The energy of light irradiation was 14 J / cm 2 .

光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜の電気抵抗として、シート抵抗を測定した。導電膜のシート抵抗は、480mΩ/sqという低い値であった。   The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance was measured as the electric resistance of the formed conductive film. The sheet resistance of the conductive film was a low value of 480 mΩ / sq.

分散媒として、実施例1とは異なるアルコール(ジエチレングリコールモノエチルエーテル)を用いた。この分散媒は、本実施例では焼結進行剤を兼ねる。分散剤として、実施例1とは異なるリン酸エステル(ビックケミー社製、商品名「DISPERBYK(登録商標)−111」)を用いた。それ以外の条件を実施例1と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、500mΩ/sqであった。   As the dispersion medium, an alcohol (diethylene glycol monoethyl ether) different from that in Example 1 was used. This dispersion medium also serves as a sintering promoter in this embodiment. As the dispersant, a phosphate ester different from that in Example 1 (BIC Chemie, trade name “DISPERBYK (registered trademark) -111”) was used. The other conditions were the same as in Example 1. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 500 mΩ / sq.

平均粒子径が70nmの銅微粒子を用いて銅微粒子分散液を作った。その後、焼結進行剤としてリン酸エステル(ビックケミー社製、商品名「DISPERBYK(登録商標)−111」)を銅微粒子分散液に添加した。この焼結進行剤は、分散剤を兼ねる。焼結進行剤の濃度は、銅微粒子分散液に対して10質量%とした。基板として、ガラス基板(コーニング社製、商品名「EAGLE XG(登録商標)」)を用いた。それ以外の条件を実施例2と同じにした。基板上に銅微粒子分散液から成る皮膜を形成した。皮膜を乾燥した後、皮膜に光を照射した。光照射のエネルギーは、11J/cmとした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成した導電膜のシート抵抗は、170mΩ/sqであった。 A copper fine particle dispersion was prepared using copper fine particles having an average particle diameter of 70 nm. Thereafter, a phosphoric acid ester (manufactured by Big Chemie, trade name “DISPERBYK (registered trademark) -111”) as a sintering promoter was added to the copper fine particle dispersion. This sintering promoter also serves as a dispersant. The concentration of the sintering promoter was 10% by mass with respect to the copper fine particle dispersion. As the substrate, a glass substrate (manufactured by Corning, trade name “EAGLE XG (registered trademark)”) was used. The other conditions were the same as in Example 2. A film made of a copper fine particle dispersion was formed on the substrate. After drying the film, the film was irradiated with light. The energy of light irradiation was 11 J / cm 2 . The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 170 mΩ / sq.

分散剤としてリン酸エステル(ビックケミー社製、商品名「DISPERBYK(登録商標)−102」)を用いて、銅微粒子分散液を作った。その後、焼結進行剤としてカルボン酸(ビックケミー社製、商品名「DISPERBYK(登録商標)−P−105」)を銅微粒子分散液に添加した。それ以外の条件を実施例3と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、350mΩ/sqであった。   A copper fine particle dispersion was prepared using a phosphate ester (trade name “DISPERBYK (registered trademark) -102” manufactured by Big Chemie Co., Ltd.) as a dispersant. Thereafter, carboxylic acid (manufactured by Big Chemie, trade name “DISPERBYK (registered trademark) -P-105”) as a sintering promoter was added to the copper fine particle dispersion. The other conditions were the same as in Example 3. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 350 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてポリアミドイミド(日本高度紙工業株式会社(NIPPON KODOSHI CORPORATION)製、商品名「SOXR−U」)を添加した。それ以外の条件を実施例4と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、240mΩ/sqであった。   After making the copper fine particle dispersion, polyamideimide (manufactured by NIPPON KODOSHI CORPORATION, trade name “SOXR-U”) was added as a sintering promoter. The other conditions were the same as in Example 4. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 240 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてポリイミド(ポリイミドワニス)を添加した。それ以外の条件を実施例5と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、250mΩ/sqであった。   After making the copper fine particle dispersion, polyimide (polyimide varnish) was added as a sintering promoter. The other conditions were the same as in Example 5. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 250 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてアルコール(ポリエチレングリコール、分子量600)を添加した。それ以外の条件を実施例6と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、300mΩ/sqであった。   After making the copper fine particle dispersion, alcohol (polyethylene glycol, molecular weight 600) was added as a sintering promoter. The other conditions were the same as in Example 6. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 300 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてアミン(トリエタノールアミン)を添加した。それ以外の条件を実施例7と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、350mΩ/sqであった。   After making the copper fine particle dispersion, amine (triethanolamine) was added as a sintering promoter. The other conditions were the same as in Example 7. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 350 mΩ / sq.

平均粒子径が50nmの銅微粒子を用い、焼結進行剤としてアミン(第一工業製薬製、商品名「ディスコール(Discole)(登録商標)N509」)を分散媒に添加して、銅微粒子分散液を作った。焼結進行剤の濃度は、銅微粒子分散液に対して2質量%とした。基板として、スライドガラスを用いた。それ以外の条件を実施例8と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、150mΩ/sqであった。   Copper fine particles having an average particle diameter of 50 nm were added to the dispersion medium by adding amine (made by Daiichi Kogyo Seiyaku, trade name “Discole (registered trademark) N509”) as a sintering promoter. I made a liquid. The concentration of the sintering promoter was 2% by mass with respect to the copper fine particle dispersion. A slide glass was used as the substrate. The other conditions were the same as in Example 8. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 150 mΩ / sq.

分散剤としてポリオキシエチレントリデシルエーテルリン酸エステル(第一工業製薬製、商品名「プライサーフ(Plysurf)(登録商標)A212C」)を用い、焼結進行剤としてポリアミド(ポリビニルピロリドン(polyvinylpyrrolidone)、商品名「PVP K25」)を分散媒に添加して、銅微粒子分散液を作った。焼結進行剤の濃度は、銅微粒子分散液に対して10質量%とした。銅微粒子の濃度は、60質量%とした。銅微粒子分散液は、ペースト状となった。この銅微粒子分散液をドローダウン法により基板上に塗布し、膜厚2μmの皮膜を形成した。それ以外の条件を実施例9と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、240mΩ/sqであった。   Polyoxyethylene tridecyl ether phosphate (trade name “Plysurf (registered trademark) A212C” manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is used as the dispersant, and polyamide (polyvinylpyrrolidone) is used as the sintering promoter. A trade name “PVP K25”) was added to the dispersion medium to prepare a copper fine particle dispersion. The concentration of the sintering promoter was 10% by mass with respect to the copper fine particle dispersion. The concentration of the copper fine particles was 60% by mass. The copper fine particle dispersion became a paste. This copper fine particle dispersion was applied onto a substrate by a draw down method to form a film having a thickness of 2 μm. The other conditions were the same as in Example 9. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 240 mΩ / sq.

平均粒子径が1500nmの銅微粒子を用いて銅微粒子分散液を作った。銅微粒子分散液は、ペースト状となった。光照射のエネルギーは、20J/cmとした。それ以外の条件を実施例10と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、150mΩ/sqであった。 A copper fine particle dispersion was prepared using copper fine particles having an average particle diameter of 1500 nm. The copper fine particle dispersion became a paste. The energy of light irradiation was 20 J / cm 2 . The other conditions were the same as in Example 10. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 150 mΩ / sq.

平均粒子径が20nmの銅微粒子を用い、焼結進行剤としてポリアミド(ポリビニルピロリドン、商品名「PVP K90」)を分散媒に添加して、銅微粒子分散液を作った。銅微粒子分散液は、ペースト状となった。光照射のエネルギーは、10J/cmとした。それ以外の条件を実施例11と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、250mΩ/sqであった。 Copper fine particles having an average particle size of 20 nm were used, and polyamide (polyvinylpyrrolidone, trade name “PVP K90”) was added as a sintering promoter to the dispersion medium to prepare a copper fine particle dispersion. The copper fine particle dispersion became a paste. The energy of light irradiation was 10 J / cm 2 . The other conditions were the same as in Example 11. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 250 mΩ / sq.

平均粒子径が1500nmの銅微粒子を用い、分散媒としてエチレングリコールを用いて、銅微粒子分散液を作った。銅微粒子の濃度は、40質量%とした。焼結進行剤の濃度は、銅微粒子分散液に対して30質量%とした。銅微粒子分散液は、ペースト状となった。光照射のエネルギーは、20J/cmとした。それ以外の条件を実施例12と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、770mΩ/sqであった。 A copper fine particle dispersion was prepared using copper fine particles having an average particle diameter of 1500 nm and ethylene glycol as a dispersion medium. The concentration of the copper fine particles was 40% by mass. The concentration of the sintering promoter was 30% by mass with respect to the copper fine particle dispersion. The copper fine particle dispersion became a paste. The energy of light irradiation was 20 J / cm 2 . The other conditions were the same as in Example 12. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 770 mΩ / sq.

平均粒子径が70nmの銅微粒子を用い、分散媒としてN−メチルピロリドンを用いて、銅微粒子分散液を作った。銅微粒子分散液は、ペースト状となった。その後、焼結進行剤として、ポリアミド(ポリビニルピロリドン、商品名「PVP K25」)を銅微粒子分散液に添加した。焼結進行剤の濃度は、銅微粒子分散液に対して10質量%とした。光照射のエネルギーは、11J/cmとした。それ以外の条件を実施例13と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、200mΩ/sqであった。 A copper fine particle dispersion was prepared using copper fine particles having an average particle diameter of 70 nm and N-methylpyrrolidone as a dispersion medium. The copper fine particle dispersion became a paste. Thereafter, polyamide (polyvinylpyrrolidone, trade name “PVP K25”) was added to the copper fine particle dispersion as a sintering promoter. The concentration of the sintering promoter was 10% by mass with respect to the copper fine particle dispersion. The energy of light irradiation was 11 J / cm 2 . The other conditions were the same as in Example 13. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 200 mΩ / sq.

分散媒としてジエチレングリコールを用いて、銅微粒子分散液を作った。その後、焼結進行剤としてホスホン酸(60質量%ヒドロキシエチリデンジホスホン酸水溶液)を銅微粒子分散液に添加した。焼結進行剤の濃度は、銅微粒子分散液に対して10質量%とした。それ以外の条件を実施例9と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、270mΩ/sqであった。   A copper fine particle dispersion was prepared using diethylene glycol as a dispersion medium. Thereafter, phosphonic acid (60 mass% hydroxyethylidene diphosphonic acid aqueous solution) was added to the copper fine particle dispersion as a sintering promoter. The concentration of the sintering promoter was 10% by mass with respect to the copper fine particle dispersion. The other conditions were the same as in Example 9. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 270 mΩ / sq.

分散媒としてジエチレングリコールモノエチルエーテルを用いて、銅微粒子分散液を作った。その後、焼結進行剤として酢酸を銅微粒子分散液に添加した。それ以外の条件を実施例15と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、240mΩ/sqであった。   A copper fine particle dispersion was prepared using diethylene glycol monoethyl ether as a dispersion medium. Thereafter, acetic acid was added to the copper fine particle dispersion as a sintering promoter. The other conditions were the same as in Example 15. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 240 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてβ−ジケトン(アセチルアセトン)を添加した。それ以外の条件を実施例16と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、250mΩ/sqであった。   After making a copper fine particle dispersion, β-diketone (acetylacetone) was added as a sintering promoter. The other conditions were the same as in Example 16. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 250 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてアセチレングリコール(商品名「サーフィノール(Surfynol)(登録商標)420」)を添加した。焼結進行剤の濃度は、銅微粒子分散液に対して1質量%とした。それ以外の条件を実施例17と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、340mΩ/sqであった。   After making the copper fine particle dispersion, acetylene glycol (trade name “Surfynol (registered trademark) 420”) was added as a sintering promoter. The concentration of the sintering promoter was 1% by mass with respect to the copper fine particle dispersion. The other conditions were the same as in Example 17. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 340 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてチオエーテル、アルコール(チオジグリコール)を添加した。焼結進行剤の濃度は、銅微粒子分散液に対して10質量%とした。それ以外の条件を実施例18と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、160mΩ/sqであった。   After making the copper fine particle dispersion, thioether and alcohol (thiodiglycol) were added as sintering promoters. The concentration of the sintering promoter was 10% by mass with respect to the copper fine particle dispersion. The other conditions were the same as in Example 18. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 160 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤として硫酸エステル(商品名「サンデットEN」)を添加した。それ以外の条件を実施例19と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、200mΩ/sqであった。   After making the copper fine particle dispersion, sulfate (trade name “Sandet EN”) was added as a sintering promoter. The other conditions were the same as in Example 19. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 200 mΩ / sq.

銅微粒子分散液を作った後、焼結進行剤としてアミン、カルボン酸(グリシン)を添加した。それ以外の条件を実施例20と同じにした。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、180mΩ/sqであった。   After making a copper fine particle dispersion, amine and carboxylic acid (glycine) were added as sintering promoters. The other conditions were the same as in Example 20. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 180 mΩ / sq.

分散媒として水を用い、分散剤として酸基を有する共重合物のアルキロールアンモニウム塩(商品名「DISPERBYK(登録商標)−180」)を用いて、銅微粒子分散液を作った。その後、焼結進行剤として、アルカリ(水酸化カリウム)を銅微粒子分散液に添加した。焼結進行剤の濃度は、銅微粒子分散液に対して1質量%とした。それ以外の条件を実施例21と同じにした。作った銅微粒子分散液は、分散したが、銅微粒子の水への溶解が進行するため、1日後には青色の液体になった。このため、銅微粒子分散液を作成後速やかに使用した。光の照射によって皮膜の外観が金属銅の外観に変化し、基板上に導電膜が形成された。形成された導電膜のシート抵抗は、260mΩ/sqであった。   A copper fine particle dispersion was prepared using water as a dispersion medium and an alkylol ammonium salt of a copolymer having an acid group as a dispersant (trade name “DISPERBYK (registered trademark) -180”). Thereafter, alkali (potassium hydroxide) was added to the copper fine particle dispersion as a sintering promoter. The concentration of the sintering promoter was 1% by mass with respect to the copper fine particle dispersion. The other conditions were the same as in Example 21. The prepared copper fine particle dispersion was dispersed, but since the dissolution of the copper fine particles in water progressed, the liquid became a blue liquid after one day. For this reason, the copper fine particle dispersion was used immediately after preparation. The appearance of the film changed to that of metallic copper by light irradiation, and a conductive film was formed on the substrate. The sheet resistance of the formed conductive film was 260 mΩ / sq.

(比較例1)
実施例1と同じ銅微粒子分散液と基板を用いた。この基板上に膜厚1μmの皮膜を形成した。皮膜の色は黒色であった。皮膜を乾燥した後、皮膜に光を照射した。光の照射前に皮膜を乾燥したので、分散媒は焼結進行剤として機能しない。光照射のエネルギーは、実施例1と同じとした。
(Comparative Example 1)
The same copper fine particle dispersion and substrate as in Example 1 were used. A 1 μm-thick film was formed on this substrate. The color of the film was black. After drying the film, the film was irradiated with light. Since the film is dried before light irradiation, the dispersion medium does not function as a sintering promoter. The energy of light irradiation was the same as in Example 1.

光の照射によって、皮膜の色が青色に変化した。この青色は、酸化銅皮膜の干渉色であるので、基板上に導電膜が形成されなかった。銅微粒子の焼結進行が不十分であるため、皮膜が大気中の酸素と反応して酸化したと考えられる。   The color of the film changed to blue by light irradiation. Since this blue color is an interference color of the copper oxide film, no conductive film was formed on the substrate. It is considered that since the sintering of the copper fine particles was insufficient, the film reacted with oxygen in the atmosphere and was oxidized.

(比較例2)
分散媒としてジエチレングリコールジブチルエーテルを用い、平均粒子径が70nmの銅微粒子を用いて、銅微粒子分散液を作った。分散剤も焼結進行剤も分散媒に添加しなかった。銅微粒子の濃度は、40質量%とした。この銅微粒子分散液は、銅微粒子の安定分散性が低く、銅微粒子は、かき混ぜた後しばらくの間は分散したが、1時間程度で沈殿した。基板として、実施例3と同じガラス基板を用いた。この基板上に銅微粒子分散液から成る皮膜を形成した。皮膜を乾燥した後、皮膜に光を照射した。光照射のエネルギーは、11J/cmとした。光の照射によって、凝集した銅微粒子が多くの塊として基板上に残った状態となった。このような状態は、「吹き飛び(blow-off)」と呼ばれる。銅微粒子の焼結はある程度進行したが、導電膜は形成されなかった。
(Comparative Example 2)
A copper fine particle dispersion was prepared using diethylene glycol dibutyl ether as a dispersion medium and copper fine particles having an average particle diameter of 70 nm. Neither a dispersant nor a sintering promoter was added to the dispersion medium. The concentration of the copper fine particles was 40% by mass. This copper fine particle dispersion had low stable dispersion of copper fine particles, and the copper fine particles were dispersed for a while after being stirred, but precipitated in about 1 hour. As the substrate, the same glass substrate as in Example 3 was used. A film made of a copper fine particle dispersion was formed on this substrate. After drying the film, the film was irradiated with light. The energy of light irradiation was 11 J / cm 2 . By the irradiation of light, the agglomerated copper fine particles remained on the substrate as many lumps. Such a state is called “blow-off”. Although the sintering of the copper fine particles proceeded to some extent, no conductive film was formed.

(比較例3)
分散媒としてn−ヘキサンを用いた。分散剤としてリン酸エステル(商品名「DISPERBYK(登録商標)−102」)を用いた。分散剤の濃度は、銅微粒子分散液に対して2質量%とした。それ以外の条件を比較例2と同じにした。基板上に銅微粒子分散液から成る皮膜を形成した。皮膜を乾燥した後、皮膜に光を照射した。光の照射後、基板上の皮膜は、黒色であり、そのシート抵抗は、1Ω/sqという高い値であった。光照射エネルギーを11J/cmより高くすると、皮膜の色が青色に変化し、皮膜の表面酸化が起こった。
(Comparative Example 3)
N-Hexane was used as a dispersion medium. Phosphate ester (trade name “DISPERBYK (registered trademark) -102”) was used as a dispersant. The concentration of the dispersant was 2% by mass with respect to the copper fine particle dispersion. The other conditions were the same as in Comparative Example 2. A film made of a copper fine particle dispersion was formed on the substrate. After drying the film, the film was irradiated with light. After light irradiation, the film on the substrate was black, and its sheet resistance was as high as 1 Ω / sq. When the light irradiation energy was higher than 11 J / cm 2 , the color of the film changed to blue, and surface oxidation of the film occurred.

(比較例4)
分散媒として1,3−ジメチル−2−イミダゾリジノンを用いた。それ以外の条件を比較例3と同じにした。光の照射後、基板上の皮膜は、黒色であり、そのシート抵抗は、1Ω/sqであった。光照射エネルギーを11J/cmより高くすると、皮膜の色が青色に変化し、皮膜の表面酸化が起こった。
(Comparative Example 4)
1,3-Dimethyl-2-imidazolidinone was used as a dispersion medium. The other conditions were the same as in Comparative Example 3. After light irradiation, the coating on the substrate was black and its sheet resistance was 1 Ω / sq. When the light irradiation energy was higher than 11 J / cm 2 , the color of the film changed to blue, and surface oxidation of the film occurred.

(比較例5)
分散媒としてN−メチルピロリドンを用いた。それ以外の条件を比較例4と同じにした。光の照射後、基板上の皮膜は、黒色であり、そのシート抵抗は、1Ω/sqであった。光照射エネルギーを11J/cmより高くすると、皮膜の色が青色に変化し、皮膜の表面酸化が起こった。
(Comparative Example 5)
N-methylpyrrolidone was used as a dispersion medium. The other conditions were the same as those in Comparative Example 4. After light irradiation, the coating on the substrate was black and its sheet resistance was 1 Ω / sq. When the light irradiation energy was higher than 11 J / cm 2 , the color of the film changed to blue, and surface oxidation of the film occurred.

(比較例6)
分散媒として炭酸プロピレンを用いた。それ以外の条件を比較例5と同じにした。光の照射後、基板上の皮膜は、黒色であり、そのシート抵抗は、1Ω/sqであった。光照射エネルギーを11J/cmより高くすると、皮膜の色が青色に変化し、皮膜の表面酸化が起こった。
(Comparative Example 6)
Propylene carbonate was used as a dispersion medium. The other conditions were the same as those in Comparative Example 5. After light irradiation, the coating on the substrate was black and its sheet resistance was 1 Ω / sq. When the light irradiation energy was higher than 11 J / cm 2 , the color of the film changed to blue, and surface oxidation of the film occurred.

(比較例7)
分散媒として水を用いた。分散剤として、酸基を有する共重合物のアルキロールアンモニウム塩(商品名「DISPERBYK(登録商標)−180」)を用いた。それ以外の条件を比較例6と同じにした。作った銅微粒子分散液は、銅微粒子の水への溶解が進行するため、1日後には青色の液体になった。このため、銅微粒子分散液を作成後速やかに使用した。光の照射後、基板上の皮膜は、黒色であり、そのシート抵抗は、1Ω/sqであった。光照射エネルギーを11J/cmより高くすると、皮膜の色が青色に変化し、皮膜の表面酸化が起こった。
(Comparative Example 7)
Water was used as a dispersion medium. As a dispersant, an alkylol ammonium salt of a copolymer having an acid group (trade name “DISPERBYK (registered trademark) -180”) was used. The other conditions were the same as in Comparative Example 6. The prepared copper fine particle dispersion became a blue liquid after one day because dissolution of copper fine particles in water progressed. For this reason, the copper fine particle dispersion was used immediately after preparation. After light irradiation, the coating on the substrate was black and its sheet resistance was 1 Ω / sq. When the light irradiation energy was higher than 11 J / cm 2 , the color of the film changed to blue, and surface oxidation of the film occurred.

上記の実施例1〜22に示されるように、焼結進行剤を含有する銅微粒子分散液を用いた場合、光焼結によって電気抵抗が低い導電膜が基板上に形成された。上記の比較例1〜7に示されるように、焼結進行剤を含有しない銅微粒子分散液を用いた場合、電気抵抗が低い導電膜が基板上に形成されなかった。   As shown in Examples 1 to 22 above, when a copper fine particle dispersion containing a sintering promoter was used, a conductive film having low electrical resistance was formed on the substrate by photo-sintering. As shown in Comparative Examples 1 to 7, when the copper fine particle dispersion containing no sintering promoter was used, a conductive film having low electrical resistance was not formed on the substrate.

なお、本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。例えば、基材3の形状は、板状に限られず、任意の3次元形状であってもよい。   In addition, this invention is not restricted to the structure of said embodiment, A various deformation | transformation is possible in the range which does not change the summary of invention. For example, the shape of the base material 3 is not limited to a plate shape, and may be an arbitrary three-dimensional shape.

1 銅微粒子分散液
11 銅微粒子
2 皮膜
3 基材
4 導電膜
1 Copper Fine Particle Dispersion 11 Copper Fine Particle 2 Film 3 Base Material 4 Conductive Film

Claims (4)

分散媒と、前記分散媒中に分散された銅微粒子とを有する銅微粒子分散液であって、
焼結進行剤を含有し、
前記焼結進行剤は、常温より高い温度で銅から銅酸化物を除去する化合物であり、常温より高い温度で銅と錯生成する化合物であり、
常温より高い前記温度は、前記銅微粒子を光焼結するための光の照射によってもたらされ、
前記化合物は、ポリアミドイミド、ポリイミド、ホスホン酸、β−ジケトン、アセチレングリコール、チオエーテル、及び硫酸エステルよりなる群から選ばれることを特徴とする銅微粒子分散液。
A copper fine particle dispersion having a dispersion medium and copper fine particles dispersed in the dispersion medium,
Contains a sintering promoter,
The sintering promoter is a compound that removes copper oxide from copper at a temperature higher than room temperature, and a compound that forms a complex with copper at a temperature higher than room temperature.
The temperature higher than room temperature is brought about by light irradiation for photosintering the copper fine particles,
Said compounds port Riamidoimido, polyimide, phosphonic acid, beta-diketones, acetylene glycol, thioethers, and copper fine particle dispersion, characterized in that it is selected from the group consisting of sulfuric ester.
分散媒と、前記分散媒中に分散された銅微粒子とを有する銅微粒子分散液であって、
焼結進行剤を含有し、
前記焼結進行剤は、常温より高い温度で銅から銅酸化物を除去する化合物であり、常温より高い温度で銅酸化物を溶解するアルカリであり、
常温より高い前記温度は、前記銅微粒子を光焼結するための光の照射によってもたらされ、
前記アルカリは、水酸化カリウムであることを特徴とする銅微粒子分散液。
A copper fine particle dispersion having a dispersion medium and copper fine particles dispersed in the dispersion medium,
Contains a sintering promoter,
The sintering promoter is a compound that removes copper oxide from copper at a temperature higher than room temperature, an alkali that dissolves copper oxide at a temperature higher than normal temperature,
The temperature higher than room temperature is brought about by light irradiation for photosintering the copper fine particles,
The copper fine particle dispersion, wherein the alkali is potassium hydroxide.
請求項1又は請求項2に記載の銅微粒子分散液から成る皮膜を基材上に形成する工程と、
前記皮膜に光を照射することによって、その皮膜中の銅微粒子を光焼結して導電膜を形成する工程とを有することを特徴とする導電膜形成方法。
Forming a film comprising the copper fine particle dispersion according to claim 1 or 2 on a substrate;
A method of forming a conductive film by irradiating the film with light to photo-sinter copper fine particles in the film to form a conductive film.
請求項に記載の導電膜形成方法によって形成された導電膜を有する回路を前記基材から成る基板上に備えることを特徴とする回路基板。 A circuit board comprising a circuit having a conductive film formed by the conductive film forming method according to claim 3 on a substrate made of the base material.
JP2013102916A 2013-05-15 2013-05-15 Copper fine particle dispersion, conductive film forming method, and circuit board Active JP5700864B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013102916A JP5700864B2 (en) 2013-05-15 2013-05-15 Copper fine particle dispersion, conductive film forming method, and circuit board
PCT/JP2014/052222 WO2014185102A1 (en) 2013-05-15 2014-01-31 Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board
US14/769,953 US20160007455A1 (en) 2013-05-15 2014-01-31 Copper particulate dispersion, conductive film forming method, and circuit board
EP14797696.3A EP2998967A1 (en) 2013-05-15 2014-01-31 Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board
KR1020157031362A KR101840917B1 (en) 2013-05-15 2014-01-31 Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board
CN201480025664.1A CN105210155B (en) 2013-05-15 2014-01-31 Copper microparticle dispersion, conductive film forming method and circuit board
TW103116754A TWI534834B (en) 2013-05-15 2014-05-12 Copper particulate dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013102916A JP5700864B2 (en) 2013-05-15 2013-05-15 Copper fine particle dispersion, conductive film forming method, and circuit board

Publications (2)

Publication Number Publication Date
JP2014225338A JP2014225338A (en) 2014-12-04
JP5700864B2 true JP5700864B2 (en) 2015-04-15

Family

ID=51898090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013102916A Active JP5700864B2 (en) 2013-05-15 2013-05-15 Copper fine particle dispersion, conductive film forming method, and circuit board

Country Status (7)

Country Link
US (1) US20160007455A1 (en)
EP (1) EP2998967A1 (en)
JP (1) JP5700864B2 (en)
KR (1) KR101840917B1 (en)
CN (1) CN105210155B (en)
TW (1) TWI534834B (en)
WO (1) WO2014185102A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5275498B1 (en) * 2012-07-03 2013-08-28 石原薬品株式会社 Conductive film forming method and sintering promoter
US10424648B2 (en) * 2013-07-23 2019-09-24 Asahi Kasei Kabushiki Kaisha Copper and/or copper oxide dispersion, and electroconductive film formed using dispersion
JP2015133317A (en) * 2013-12-10 2015-07-23 Dowaエレクトロニクス株式会社 Conductive paste and production method of conductive film using the same
WO2015145439A1 (en) 2014-03-25 2015-10-01 Stratasys Ltd. Method and system for fabricating cross-layer pattern
US20170213615A1 (en) * 2014-07-22 2017-07-27 Sumitomo Electric Industries, Ltd. Metal nanoparticle dispersion and metal coating film
WO2016117201A1 (en) * 2015-01-22 2016-07-28 アルプス・グリーンデバイス株式会社 Powder core, method for producing same, electric/electronic component provided with same, and electric/electronic device having said electric/electronic component mounted thereon
FR3033666B1 (en) * 2015-03-10 2019-06-07 Ecole Nationale Superieure Des Mines REALIZATION OF ELECTRONIC OBJECTS BY COMBINED USE OF 3D PRINTING AND JET PRINTING
JP2018516181A (en) * 2015-03-25 2018-06-21 ストラタシス リミテッド Method and system for in situ sintering of conductive inks
US20170044382A1 (en) * 2015-08-12 2017-02-16 E I Du Pont De Nemours And Company Process for forming a solderable polyimide-based polymer thick film conductor
US9649730B2 (en) * 2015-08-12 2017-05-16 E I Du Pont De Nemours And Company Paste and process for forming a solderable polyimide-based polymer thick film conductor
US9637647B2 (en) * 2015-08-13 2017-05-02 E I Du Pont De Nemours And Company Photonic sintering of a polymer thick film copper conductor composition
US9637648B2 (en) * 2015-08-13 2017-05-02 E I Du Pont De Nemours And Company Photonic sintering of a solderable polymer thick film copper conductor composition
JP2017212311A (en) * 2016-05-25 2017-11-30 株式会社フジクラ Wiring board manufacturing method
WO2018003399A1 (en) * 2016-06-30 2018-01-04 株式会社コイネックス Copper wiring and manufacturing method thereof, and electronic apparatus, touch pad and touch panel using same
WO2018075032A1 (en) * 2016-10-19 2018-04-26 Hewlett-Packard Development Company, L.P. Three-dimensional (3d) printing
TWI691403B (en) 2017-07-18 2020-04-21 日商旭化成股份有限公司 Copper wiring
JP7280665B2 (en) * 2018-05-08 2023-05-24 石原ケミカル株式会社 Copper nanopowder, copper nanoink, and method for forming conductive film
US11453618B2 (en) * 2018-11-06 2022-09-27 Utility Global, Inc. Ceramic sintering
US11539053B2 (en) 2018-11-12 2022-12-27 Utility Global, Inc. Method of making copper electrode
JP7419676B2 (en) * 2019-06-04 2024-01-23 株式会社レゾナック Electronic component manufacturing method and electronic component
WO2021231846A1 (en) * 2020-05-14 2021-11-18 Utility Global, Inc. Copper electrode and method of making
WO2022176926A1 (en) * 2021-02-22 2022-08-25 三菱マテリアル株式会社 Bonding paste, bonded layer, bonded body, and method for producing bonded body
US20230092683A1 (en) * 2021-09-10 2023-03-23 Utility Global, Inc. Method of making an electrode

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6157480A (en) * 1998-09-21 2000-12-05 Gentex Corporation Seal for electrochromic devices
DE10019599A1 (en) * 2000-04-20 2001-10-31 Wacker Chemie Gmbh Self-adhesive addition-crosslinking silicone compositions
US20100233146A1 (en) * 2002-09-09 2010-09-16 Reactive Surfaces, Ltd. Coatings and Surface Treatments Having Active Enzymes and Peptides
CN101232963B (en) * 2005-07-25 2011-05-04 住友金属矿山株式会社 Copper fine particle dispersion liquid and method for producing same
CN1736593A (en) * 2005-07-28 2006-02-22 武汉理工大学 Copper doped niobium potassium compound oxide photocatalyst and preparation process
US10231344B2 (en) * 2007-05-18 2019-03-12 Applied Nanotech Holdings, Inc. Metallic ink
JP5392884B2 (en) * 2007-09-21 2014-01-22 三井金属鉱業株式会社 Method for producing copper powder
US20090111948A1 (en) * 2007-10-25 2009-04-30 Thomas Eugene Dueber Compositions comprising polyimide and hydrophobic epoxy and phenolic resins, and methods relating thereto
US8801971B2 (en) * 2007-12-18 2014-08-12 Hitachi Chemical Company, Ltd. Copper conductor film and manufacturing method thereof, conductive substrate and manufacturing method thereof, copper conductor wiring and manufacturing method thereof, and treatment solution
US8506849B2 (en) * 2008-03-05 2013-08-13 Applied Nanotech Holdings, Inc. Additives and modifiers for solvent- and water-based metallic conductive inks
US20100000762A1 (en) * 2008-07-02 2010-01-07 Applied Nanotech Holdings, Inc. Metallic pastes and inks
JP2010118449A (en) * 2008-11-12 2010-05-27 Toray Ind Inc Method of manufacturing conductive film
JP2010135205A (en) * 2008-12-05 2010-06-17 Hitachi Cable Ltd Coaxial cable and manufacturing method of the same
JP2010146995A (en) * 2008-12-22 2010-07-01 Hitachi Maxell Ltd Manufacturing method of transparent conductive sheet
WO2011047738A1 (en) * 2009-10-23 2011-04-28 Henkel Ireland Ltd. Aqueous-based composition suitable for use in threadlocking applications
US8558117B2 (en) * 2010-02-13 2013-10-15 Aculon, Inc. Electroconductive inks made with metallic nanoparticles
JP5715851B2 (en) * 2011-02-24 2015-05-13 東芝テック株式会社 Method for producing printed matter using nanoparticle ink composition
JP5088760B1 (en) * 2011-11-14 2012-12-05 石原薬品株式会社 Copper fine particle dispersion, conductive film forming method, and circuit board
JP5088761B1 (en) * 2011-11-14 2012-12-05 石原薬品株式会社 Copper fine particle dispersion, conductive film forming method, and circuit board
TW201339279A (en) * 2011-11-24 2013-10-01 Showa Denko Kk Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating

Also Published As

Publication number Publication date
JP2014225338A (en) 2014-12-04
KR20150138332A (en) 2015-12-09
CN105210155A (en) 2015-12-30
WO2014185102A1 (en) 2014-11-20
TW201511034A (en) 2015-03-16
CN105210155B (en) 2018-03-13
KR101840917B1 (en) 2018-03-21
EP2998967A1 (en) 2016-03-23
US20160007455A1 (en) 2016-01-07
TWI534834B (en) 2016-05-21

Similar Documents

Publication Publication Date Title
JP5700864B2 (en) Copper fine particle dispersion, conductive film forming method, and circuit board
JP6295080B2 (en) Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
JP5615401B1 (en) Copper fine particle dispersion, conductive film forming method, and circuit board
JP5994811B2 (en) Copper nanoparticle dispersion and method for producing conductive substrate
TWI505296B (en) Conductive film forming method and sintering promoter
JP5283291B1 (en) Conductive film forming method and sintering promoter
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP2005135982A (en) Circuit board and manufacturing method therefor
JP2009181946A (en) Electrically conductive board, and manufacturing method thereof
WO2016125355A1 (en) Electroconductive microparticles
JP2007262446A (en) Reduction firing method for surface oxide film of metal oxide grain or metal grain and method for forming electrically conductive component
TW202038257A (en) Conductive paste, substrate with conductive film, and method for producing substrate with conductive film
CN109937189A (en) Cuprous oxide particle, its manufacturing method, light slug type composition, using the light slug type composition conductive film forming method and cuprous oxide particle paste
JP2017022125A (en) Copper nanoparticle dispersion and method of manufacturing conductive substrate
JP2021017641A5 (en)
JP2014186952A (en) Method of producing coated copper particle, method of producing composition for formation of conductive film and method of producing conductive film
KR20180004964A (en) A manufacturing process of graphene anti-oxide layer coated nano copper electrode
TW201946982A (en) Photosintering composition and method of forming conductive film using the same
JP2006257514A (en) Nanoscale metallic film and method for producing the film
JP2015049992A (en) Composition for forming conductive film and method for producing conductive film using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5700864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250